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Parr's theorem now follows in the form

DE=+ p'l H. (A.'}—H. (A) ~ ) )/()l. '[ x)
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where H is any one of the one-body terms. Equation (3)
nowfollows upon substitution of the spinless transition
density explicitly defined as
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In the text for p&(r&', r~, A. ', X) (the transition density), we
use the shorthand notation p&(X', X) .

A specific example involving q is given in Sec. VII B.
W. L. Clinton, G. A. Henderson, and J.V. Prestia,

Phys. Rev. 177, 13 (1969);paper III of this series, pre-
ceding paper.

E. Clementi, J. Chem. Phys. 38, 996 (1963).
It should be noted I viz. Eqs. (19) and (20) ] that the

use of X transition constraints requires one to know X
of the P matrices in order to iteratively generate the un-
known (Ã+ 1)th P matrix.

The rate of convergence of Eq. (26) depends on the
initial guess and on the choice of constraints. The num-
ber of iterations necessary to achieve idempotency
[Tr(P P) -10 ] varies markedly; the 7000 is our
worst case. See paper V for a more thorough discussion
of optimum convergence.
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A density-matrix approach to constrained eigenvalue problems is presented. It is shown
that all of the linearly independent eigenvectors of an Hermitian matrix can be generated with
the idempotency equations (P equations) developed in previous papers of this series. In
particular, the method is applied to variational calculations in Hq and He.

Since the local-energy method assumes eigenvalue form, it also can be formulated in terms
of the P equations. Various local energies for H2+ and He are ca1culated. Direct methods
of incorporating local energies as constraints are suggested. An orthogonal operator for-
malism for the P equations is given. Such operators O&, O& have the property that TrO~O)
= 0 for k & l . The iterative P equations, then, assume the simple form

P =6' +P [(0 —Tr(PO„)/TrO 2]O

where (P =—3P —2P and the constraints, TrP 0& = 0&, are now identically satisfied.

I. INTRODUCTiON

In papers I-IV of this series, 'a method was de-
veloped for the calculation of one-body density ma-
trices. In the present paper it will be shown that
the method is also applicable to general eigenvalue
theory. In particular, it will be seen that the con-
strained P equations of paper II can be used to gen-
erate all of the linearly independent eigenvectors
of an Hermitian matrix by casting the eigenvalue
equation into constraint form. The present ap-
proach allows other theoretical or empirical con-
straints to be included into the eigenvalue problem;
thus it is particularly suited for constrained ener-
gy-variational calculations. ' The method is applied
to both eigenvalue and pseudo-eigenvalue (non-unit

metric) problems with and without additional "non-
eigenvalue" constraints.

The present paper deals with eigenvalue theory
in a nonconventional way. Thus an enumeration of
the applications of the P equations investigated to
date will be given in order to establish a context
in which the current work is to be viewed.

1. Semiempixical Constraints. It was shown in
papers I and II that the electrostatic and virial
theorems can be used to generate reasonable first-
order density kernels using experimental data.
These densities can be made quantum-mechanically
valid by using the P equations. The use of hyper-
viriai3 constraints was also suggested as an area
of future investigation. Clearly, any observable
(e. g. , empirical) moments of a charge distribu-
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tion can also be employed as a constraint.
2. TI2eo/etical Constraints. In paper III, a pure-

ly theoretical constraint (the electrostatic-virial
theorem) was shown to be effective in generating
reasonable densities. In the present paper, we
investigate further theoretical constraints.

3. Mixed Constraints. It is obvious that any
combination of 1. and 2. is possible. We will
see, for example, that in the energy eigenvalue
problem the number of Hamiltonian matrix ele-
ments that need be calculated is reduced in pro-
portion to the number of available empirical con-
ditions. This is a consequence of the particular
form of the eigenvalue constraints.

4. Fitting Densities to Other Bases. In paper
IV it was seen that Hartree-Fock (HF) densities
in one basis set can be "operator fitted" to another
basis set, provided sufficient expectation values
are available. It was pointed out there that the
method may offer some advantages over the usual
least- squares technique.

5. Continuation of Hartree Foek D-ensities In.
paper III, an expression for the derivative of an
idempotent density matrix was derived. The de-
rivative matrix dP/dX allows one to obtain P (X

+ hX) if P(X) is known. In general, X is any
parameter of the system (e. g. , R, Z, I, etc. ).

6. Eigenvalue Theory. The theoretical and
practical aspects of eigenvalue theory form the
subject matter of the present paper.

Finally, a remark concerning the scope of the
P equations is in order. In general, all idem-
potent density matrices are solutions of these
equations. In particular, two classes of consid-
erable interest are: (a) reduced Hartree-Fock
density matrices, e. g. , the one- and two-body den-
sity matrices p, (1', 1) and

p, (1'2', 12) = —,
' [p,(1', 1)p,(2 ', 2)
—p, (1',2)p, (2', 1)];

(b) any density matrix of the form

p(x', , x) = + +(x')4 (x),

where x represents any set of coordinates. The
eigenvalue theory of the following sections is con-
cerned mainly with this broader class (b).

II. A DENSITY-MATRIX APPROACH
TO EIGENVALUE PROBLEMS

A. Discrete Representations

We begin by casting the eigenvalue problem for
an Hermitian matrix into density-matrix form.
Consider

A C. = e. C.; C.~C. = 5. . ; A =A——2 2 —2' —2 —2 U' ——
which imply a set of density matrix equations,
once we define Pi =—Ct Ci t . Thus

3 P. = &. P.; P.P.=P. 5..; P.=P.——2 2 —2 —2 —J —j 2g —2 —2

and one also easily sees that

[A, P. ] =0; TrP. A = e. ; TrP. =1.—2— 2' —2

Furthermore, it has been shown that4 P2' =P2 and
TrP2 = 1 constitute necessary and sufficient condi-
tions for factorization in the form Pi=CiC j . It
was also shown in paper II that a finite number K

of constraints will determine any nz-dimensional
Hermitian, idempotent matrix P.' Such a matrix
can be generated with the iterative equation

K

P
1

=3P ' —2P '+ Z XkOk (4)
&=1

obtained from 5Tr(P' —P) =0 subject to constraints
of the form TrPOy = Oy with Lagrange multipliers
—2Xk. We therefore need only to convert Eqs. (2) and
(3) to constraint form; this can be done as follows.
Define an m-square matrix O(kl) such that(O(ki))kiti
= Gay I'll . One then easily sees that

Tr0(kl)[A —e. 1)P. = l [A —e. 1]P.j&k,

TrO(kl)[A, P. ] = [A, P. ] (5b)

so that every matrix element of the eigenvalue
Eqs. (2) and (3) can be generated via Eqs. (5).
These can be rewritten as

TrP O(kl) [A .—e. 1]= 0,

TrP. [O(kl), A] = 0.

(6a)

(6b)

Equations (6) constitute two alternative (but not in-
dependent) sets of eigenvalue constraints to be used
in Eq. (4). Equation (6b) offers the better set of
constraints from a computational standpoint, since
the constraining matrix [O(kl), A] does not depend
upon P& unless A does. By contrast, Eq. (6a) has
an additional P dependence via qi = TrPiA so that
the constraining matrix (A —ei 1) must be recom-
puted at every iterdtion.

It is clear that completely arbitrary matrices
can be used in place of O(kl), since, for example,
TrO[Pi, A] =0 at solution for every O. We will
discuss later some attempts to choose 0 so as to
optimize convergence. On the other hand, in the
event A. corresponds to a Hamiltonian matrix H,
the O(kl) constraints allow one to avoid the calcu-
lation of some of the matrix elements (H)i& since
only the 0th column and lth row of II are necessary
per O(kl) constraint. These constraints then can
be augmented with empirical or other theoretical
conditions.

In using Eq. (6a) as a set of constraints, we note
that the eigenvalue must be stationary at solution.
Consequently, the handling of these constraints is
particularly simple. Thus we can write

Tr5P. O(kl)[A —e. 1] = 0,

because 5e; =0 at solution. Therefore Eq. (7) may
be treated as an ordinary constraint, except that
e; (&) =Tr(Pi )„A must be c—omputed at each iteration.
It will nom be shown that all of the linearly inde-
pendent eigenvectors of the matrix' can be gener-
ated by incorporating the orthogonality conditions
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P~ P = 0 as constraints into our for malism. The
tota( solution of the eigenvalue pro tern then takes
the following form. In the usual w; p, we seek a
solution Pz that satisfies

tree-Fock problem, for example, A =A(P). ' This
form of A requires a slightly modified approach
in deriving the P equations, since now variations
in P imply also variations in A. Proceeding as
before, we obtain constraints of the form

P 2=P. ; TrP. =1;-Z —2 y

TrP. {[O(k, l),A]+ [0(k, I),A] j =0. (8)
TrP[O, A] = 0

In this case, Eq. (4) becomes

(&,.)„„=(&,) +~I
" i+ Z ~, "

x{[O(k,f),A] i[O(kf), A] ],
where ($'f)n -=3(Pf2)n —2(Pf'')„. Having generated
the first P~f(and, therefore, a Cf) we now require

A variation 5P now implies

Tr5P[O(kl), A] + TrP[O(kl), 5A] = 0.

But 5A =A(P+—5P) A(P)-, or
s(A)op

5(A)
p

= Z
(p) 5(P) ,p,nl pl nip/

=—Tr(A') 5P,

(14)

P 2=P; TrP. =1; TrPP. =0,—j -j ' —j ' —j f

TrP. {[O(kf),A]+ [O(kf),A] j =0. (10)

where the matrix (A ')na has elements

s(A)

s(p)
The solution P& mustthencorrespondto another
linearly independent eigenvector C& . The reason
for this is that if solutions of Eqs. (8) and (10) ex-
ist, then P; = Cf Cf ~ and P& =

C& C& t so that

TrP. P. = TrC. C. ~ C.C. ~ = I (C. ~C.) t

is zero if and only if Cz and C are linearly inde-
pendent. Indeed, the nontrivial solutions of Eqs.
(8) and (10) must be orthogonal so that even degen-
erate eigenvectors are automatically orthogonalized
by this method. One now simply continues in this
fashion until all of the m linearly independent eigen-
vectors are generated. ' This formalism has been
verified in several sample calculations.

We next consider AC& = qz SCz, which is often re-
ferred to as a pseudo-eigenvalue equation. This
c@n be immediately converted to an ordinary eigen-
value problem if S is nonsingular. Thus define
A =-S 'A, so that

AC. =c.C. ; A. 4A.

Defining, in addition, Pf -=Cf Cf~S and requiring
C;~SC; = I, one again obtains Pfm = P; . The con-
straints can now be formulated much as before
except that the first of Eqs. (3) becomes by virtue
of Eq. (11) a pseudocommutation relation

AP. S '-P. S 'A~=0. (i2)

As a check on this pseudo-eigenvalue formalism,
Eq. (12) was used in constraint form to reproduce
the variational results of James' for the ground
electronic state of the H, + molecule. The James
basis set consisted of the two functions, exp(- n$)
and g'exp(- n$) with n =1.35. We also have per-
formed H, + calculations, using three- and four-
function bases chosen out of the general set

{n m —n$j

We next consider the eigenvalue problem in which
A depends upon its own eigenvectors. In the Har-

Equation (14) becomes now

Tr6P.{[O(kl), A]

+ Z (P,.) (o(kf)) (A')

Z (P.)
p

(A') (O(kl)) j = 0,
n, p, r

or since (O(kl)) = 5k 5&yn ky lo.

Tr5P {[O(kf),A]. +Z (P.) k(A')&

(16)

{H' —2(H) H Xj 4'=0, - (18)

where the Lagrangian multiplier is given by X

In the Hartree-Fock case, A is the Fock Hamilto-
nian matrix E and depends on P through the self-
consistent-field (SCF) potential term which is lin-
ear in the elements of P. In this case (A')np is
simple to calculate.

The method has been used to solve the He-atom
Hartree-Fock equation. In these calculations
Clementi bases" were used.

Another type of eigenvalue problem of relevance
in quantum mechanics derives from the energy-
variance minimization procedure, Thus, defining
the variance V—= (H') —(H)', we have

5{(H2)—(H)2 j =0; (1)=1, (i7)
A,

where II is the Hamiltonian of the system and, in
general, (0) =- J4'*04'dq. Alternatively, (0) can
be defined via a discrete sum average as in the
local energy method. " Equations (17) imply the
eigenvalue equation
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=(H') —2(H)'. Since Eq. (18) is an eigenvalue
equation, the preceding density-matrix formalism
is immediately applicable.

B. Mixed Representations

the set of points (x', x) at which the constraints are
applied.

A measure of the adequacy of the basis set in
representing the eigenfunction is the constancy of
the "local eigenvalue"

Consider now the eigenvalue equation e(x) -=A (x)4'(x)/i(x) . (24)

A (x)&'(x) = e, +(x);

Jdx 4.+(x)+.(x) = 5i j ij'
where x represents a set of coordinates and A(x)
is an Hermitian operator. Defining the density
matrix in the x representation as

p.(x', x) =-+.+(x')+,(x),

Eq. (19) becomes

A(x)p. (x', x) = e.p. (x', x) . (20)

Introducing, in addition, the discrete basis X via
4f =yC and defining as usual Pf Cf C=—f, ~, p. (x', x)
becomes

p.(x', x) =TrP g(x')lf(x. ). (»)

Inserting Eq. (21) into Eq. (20), we obtain

TrP y(x ')A. (x)y (k) = e. TrP. y (x')y (x); (22)

or, defining

A(x', x) =-X (x')A(x)y (x)

and S(x', x)=- y (x')y(x),

we see that

TrP. LA(x', x) —&. S(x', x)] =0. (23)

This is a mixed representation analog of Eq. (5a).
in principle, Eqs. (23) can be used as constraints
to completely determine the eigenfunction 4&(x) in
the y basis set. However, in a truncated basis set
different results will be obtained, depending upon

This quantity has been calculated and is plotted in
Figs. 1—4, for H, + and He. In H, +

A(x) —= ——'&' —I/r —I/r2 A B '

and in He

A(x) = —2&' —Z/r+Jd'r'I 0(r ') l'/Ir —r ') .

James's function7 4($, 7l)-(1+aran') exp( —2$) was used
for H, + (Fig. 1). For He, a, best atom (Fig. 2) and
two different Hartree-Fock functions" (Figs. 3 and
4) were used. The fact that these local energies
are reasonably constant over a significant range of
the variables, even though the basis sets are small,
suggests that the ambiguity regarding the choice of
points need not be a serious limitation. That is,
any choice of points in the region of constancy will
generate essentially the same density matrix. The
poor large-x behavior of the He-atom local ener-
gies (Figs. 3 and 4) could be avoided by requiring
that e (~) be equal to the y basis set Hartree-Fock
eigenvalue [i.e. , c( ) = a HF-=TrPF, where E is
the Fock operator in the y basis]. In the present
case X;-exp(- o.~r), impIying the condition e(~)
= TrP5 = —o. ,'/2, where o, , is the smallest expon-
ent in the y basis set. Clementi s calculation in-
cludes a base function with n = 0. 59, thereby lead-
ing to a poor local energy as x- ~.

Other special constraints derive from the singu-
larities in the potential when viewed in the x repre-
sentation. In particular, in atomic and molecular
theory the singularities are of the Coulomb type
and the concomitant conditions on the wave function
are called cusp conditions. " As Bingle" has shown,
these cusp conditions-can be put in density-matrix
form. Corresponding to the nuclear attraction
term —Z «Zo/sf~, where r;~ is the distance be-
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FIG. 1. Local energies for the James functions in H2 . The abscissa is the spheroidal variable (. The curves A

through E correspond to q=0.2, 0.4, 0.6, and 0.8.
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FIG. 4. Local SCF eigenvalue versus x for the
H,oothaan-Sachs-Weiss 12-function exponential-
polynomial basis.
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FIG. 2. Local SCF eigenvalue versus r for the
helium best-atom function 4 = (&3 /7I ) exp(- Cx);
g = 1.6875.

8+(rlr2 ~ r )n
ef »

gQ

= —Z C(rr r)
=0 2 l~. = 0

iQ iQ

(25)

and here the infinite nuclear-mass approximation
has been invoked. Multiplying Eg. (25) by

e+(rlr2 r ) I

iQ

tween the ith electron and Qth nucleus of charge g,
one has the cusp condition

summing over i, and integrating over all electronic
coordinates except the ith, it follows that

BPl(r', r, R ~ ~ R )Q P
&Ir-g I

Q

= —Z p&(r, % " R ) - (26)Q 1 Q P tr 8 ) 0Q

In this form, the cusp condition can be used as a
constraint in the P equations.

Thus far we have considered the applications of
the P equations to several important types of eigen-
value problems. The main value of the present
method would apyear to be not so much that it
represents an alternative eigenvalue technique, but
rather the ease with which additional constraints
can be incorporated.

2.50»
III. FORMULATION OF THE P EQUATIONS IN

ORTHOGONAL OPERATORS
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FIG. 3. Local SCF eigenvalue versus ~ for the
helium Clementi 5-function basis.

In all of our previous work we have had to deter-
mine the Lagrangian multigliers 0 y of Eq. (4) by
solving a set of linear inhomogeneous equations of
the form

~(&) ~(&)

where (v }yf =- TrOyOf and

"- )~="u-"-' -'~'(n)

This must be done at every iteration.
We now show that this phase of the calculation

can be reformulated to considerable advantage.
The formulation involves introducing new opera-
tors Oy';02'. ..Ok'. .. in place of Oy. ..Ok. ~ .
that are orthogonal'~ in the sense that TrOk

'0 '
=0;k w l. In terms of these orthogonal operators
7. is diagonal and inversion of Eq. (27) becomes
trivial, reducing considerably the time of each
iteration. In addition, there are theoretical
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TI PO —0 (2s)

reasons to believe that the rate of convergence
should be improved. We will return to this point
later.

We write the constraints as usual in the form

TABLE I. Rates of convergence of the P equations
from an initial null-matrix guess for; A. Nonorthog-
onal operators without steepest descent; B. Orthogonal
operators without steepest descent; C. Orthogonal
operators with steepest descent.

We now introduce orthogonal operators via a
Schmidt orthogonalization procedure. For example,
let

O1 —01,
O2' =- 01 a220

Method

A

B
C

Number of Iterations

2500
463

84

Tr(P 2 —P) 2

10 8

10 8

10-'

0 ' =01+a2302+a3303, ~ ..
Tq

—1
2

where TrOy 'O~ ' = 0; k c l serves to determine the
parameters a22 ~ akk. In this formalism, the
Lagrange multipliers are given by

A~ = (0~
' —Tr0' O~ ')/TrO (30)

where Ok
' = 01+a2k02+ ~ ~ akkOk . The first-

order iterative P equations now become

P
&

=+[(0& ' —Tr(P 0& ') /TrO& "]0&'. (3l)

One easily sees now that TrPn+10k'=Ok', and
therefore the constraints are identically satisfied
at every iteration. In addition, we see that

A. =— (0 —Tr(P 0 )/TrO -0 as n- ~,(~) f I2

k k —n-k —k

since in that limit

-=3P 2 —2P 3-P—n —n —n

.kl 0 l —0—l'
But a quadratic form achieves its extreme value
when it is in diagonal form. If, then, the Ok
operators are chosen orthogonal, i. e, , if we use
the previously defined Qy', we have

5I-Z~&@'TrO~ ". (33)

Another practical advantage that we have realized
is that, in every case tried, the number of itera-
tions necessary for convergence is reduced. A
possible reason for this is seen by considering the
step length in our iteration process. In first order,

5I= 5Tr( P' Pj '——ZA&O j-
is proportional to Tr(P-(P —ZlkyOy)'. Now if
one begins with an idempotent guess, Pp (Pp and
the improvement in I is given by

Thus, the orthogonal choice of operators generates
an optimum one-step improvement from an idem-
potent guess.

Further improvement of the convergence rate
can be obtained by combining the orthogonal
operator formalism with the steepest-descent pro-
cedure detailed in paper II. We have found that the
use of orthogonal operators combined with the
steepest-descent procedure of paper II is the best.
Home preliminary convergence data are given in
Table I for the ground electronic state of the HF
molecule. Using electrostatic and virial theorem
constraints, the calculation reported in paper II
was repeated with several different P equation
algorithms. The data seem to corroborate our
theoretical considerations on convergence. A
more thorough study of the factors affecting
convergence and their optimization is now being
pursued.

IV. CONCLUSION

In this paper we have developed all the formalism
necessary to apply the P equations to constrained
eigenvalue problems. We have also given calcu-
lations on the He atom and H, + molecule that serve
to corroborate the theoretical considerations. It
was suggested that the method is ideally suited for
constrained variational calculations. ' In this
connection either empirical or theoretical con-
straints may be used. As an example of the
latter, we discussed the "pointwise" local-energy
method, based on the fact that even very simple
variational calculations yield rather reasonable
local-energy curves. Thus constraining a varia-
tional calculation to give the correct local-energy
at a point, or set of points, may not be overly
traumatic and at the same time may result in a
considerable computational advantage.

Finally, the P equations have been put in their
optimum form by recasting the constraints in
terms of orthogonal operators. This form of the
equations, in addition to yielding considerable
computational advantage, yields an explicit expres-
sion for the Lagrange multipliers resulting in a
much more transparent iterative density-matrix
equation. When coupled with the steepest descent
procedure, an optimum computational form is
obtained.
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The Brueckner-Goldstone many-body perturbation theory has been applied to calculate the
hyperfine constant a of atomic nitrogen in its ground state S3~2. The exchange core-polariza-
tion diagrams lead to contributions of -49.710 72 and 55.418 82 Mc/sec from the 1s and

2s states, respectively, adding to a total of 5.708 10 Mc/sec. Higher-order diagrams
characterizing mainly correlation effects produce an additional contribution of 4. 780 22

Mc/sec. The total theoretical result 10.49 +0. 15 Mc/sec is in excellent agreement with the
experimental value of 10.45 + 0.000 07 Mc/sec. The major correlation effect arises from the
interaction between thevalence electrons and core s electrons, the effect of the 2s being the
dominant one. It is found that a knowledge of the wave function up to second order is ade-
quate for a sufficiently accurate evaluation of the hfs constant. The trends in the contribu-
tion from various physical effects observed by an analysis of pertinent diagrams are ex-
pected to be helpful in simplifying the analysis of more complex atoms.

I. INTRODUCTION

The Brueckner-Goldstone (BG) linked-cluster
perturbation approach' to many-body theory has
been applied successfully by Kelly2~' to the atomic
systems beryllium and oxygen. The method was
shown to yield excellent results for correlation

energy, polarizabilities, and shielding factor.
The BG theory was also used recently for calcu-
lation of the ground-state properties of atomic
lithium by Chang, Pu, and Das. 4~' In particular,
Chang et al. 4 utilized this approach for the first
time in a calculation of the hyperfine structure
(hf s) constant of lithium atom 'S and obtained good


