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Parr’s theorem now follows in the form
AE:Ei <A'|i{i(x')—I?i<x)!x>/<x'|x>
=N QMIHQ)=HN N/ [N,

where H is any one of the one-body terms. Equation (3)
now follows upon substitution of the spinless transition
density explicitly defined as
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In the text for py(¥;’, ¥4, A*,\) (the transition density), we
use the shorthand notation p,(A’,A).

SA specific example involving 7 is given in Sec. VII B.
‘W. L. Clinton, G.A. Henderson, and J.V. Prestia,
Phys.Rev. 177, 13 (1969); paper III of this series, pre-

ceding paper.

°E. Clementi, J. Chem. Phys. 38, 996 (1963).

%1t should be noted [viz. Egs. (19) and (20)] that the
use of K transition constraints requires one to know K
of the P matrices in order to iteratively generate the un-
known (K+1)th P matrix.

"The rate of convergence of Eq. (26) depends on the
initial guess and on the choice of constraints. The num-
ber of iterations necessary to achieve idempotency
[Tr(P? - p)2~107% varies markedly; the 7000 is our
worst case. See paper V for a more thorough discussion
of optimum convergence.

PHYSICAL REVIEW VOLUME 177, NUMBER 1 5 JANUARY 1969

Direct Determination of Pure - State Density Matrices. V.
Constrained Eigenvalue Problems*

William L. Clinton, Anthony J. Galli, | George A. Henderson,
Guillermo B. Lamers, Louis J. Massa,+ and John Zarur
Department of Physics, Georget own University, Washington, D. C.

(Received 16 February 1968)

A density-matrix approach to constrained eigenvalue problems is presented. It is shown
that all of the linearly independent eigenvectors of an Hermitian matrix can be generated with
the idempotency equations (P equations) developed in previous papers of this series. In
particular, the method is applied to variational calculations in H2+ and He.

Since the local-energy method assumes eigenvalue form, it also can be formulated in terms
of the P equations. Various local energies for Hy* and He are calculated. Direct methods
of incorporating local energies as constraints are suggested. An orthogonal operator for-
malism for the P equations is given. Such operators O k> @ have the property that Tr0,0,
=0 for k=1. The iterative P equations, then, assume the simple form

— - 2
P 1~<pn+2k[<9k Tr®0,)/Tr0,*10, ,

—n+

where @ = 3{’2 -2P % and the constraints, TrP O P Ok , are now identically satisfied.

1. INTRODUCTION

In papers I-IV of this series,!'a method was de-
veloped for the calculation of one-body density ma-
trices. In the present paper it will be shown that
the method is also applicable to general eigenvalue
theory. In particular, it will be seen that the con-
strained P equations of paper II can be used to gen-
erate all of the linearly independent eigenvectors
of an Hermitian matrix by casting the eigenvalue
equation into constraint form. The present ap-
proach allows other theoretical or empirical con-
straints to be included into the eigenvalue problem;
thus it is particularly suited for constrained ener-
gy-variational calculations.? The method is applied
to both eigenvalue and pseudo-eigenvalue (non-unit

metric) problems with and without additional “non-
eigenvalue” constraints.

The present paper deals with eigenvalue theory
in a nonconventional way. Thus an enumeration of
the applications of the P equations investigated to
date will be given in order to establish a context
in which the current work is to be viewed.

1. Semiempivical Constvaints. It was shown in
papers I and II that the electrostatic and virial
theorems can be used to generate reasonable first-
order density kernels using experimental data.
These densities can be made quantum-mechanically
valid by using the P equations. The use of hyper-
virial® constraints was also suggested as an area
of future investigation. Clearly, any observable
(e.g., empirical) moments of a charge distribu-
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tion can also be employed as a constraint.

2. Theovetical Constvaints. In paper III, a pure-
ly theoretical constraint (the electrostatic-virial
theorem) was shown to be effective in generating
reasonable densities. In the present paper, we
investigate further theoretical constraints.

3. Mixed Constraints. It is obvious that any
combination of 1. and 2. is possible. We will
see, for example, that in the energy eigenvalue
problem the number of Hamiltonian matrix ele-
ments that need be calculated is reduced in pro-
portion to the number of available empirical con-
ditions. This is a consequence of the particular
form of the eigenvalue constraints.

4. Fitting Densities to Other Bases. In paper
IV it was seen that Hartree- Fock (HF) densities
in one basis set can be “operator fitted” to another
basis set, provided sufficient expectation values
are available. It was pointed out there that the
method may offer some advantages over the usual
least-squares technique,

5. Continuation of Havtvee-Fock Densities. In
paper III, an expression for the derivative of an
idempotent density matrix was derived. The de-
rivative matrix dP/d\ allows one to obtain P (A
+AX) if P(A) is known. In general, X is any
parameter of the system (e.g., R, Z,m, etc.).

6. FEigenvalue Theory. The theoretical and
practical aspects of eigenvalue theory form the
subject matter of the present paper.

Finally, a remark concerning the scope of the
P equations is in order. In general, all idem-
potent density matrices are solutions of these
equations. In particular, two classes of consid-
erable interest are: (a) reduced Hartree-Fock
density matrices, e.g., the one- and two-body den-
sity matrices p,(1’,1) and

po(1727,12)=3[p,(17,1)p,(2",2)
-p,(17,2)p,(27,1)];

(b) any density matrix of the form

plr’,x)=¥x(x")¥(x),

where x represents any set of coordinates. The
eigenvalue theory of the following sections is con-
cerned mainly with this broader class (b).

II. A DENSITY-MATRIX APPROACH
TO EIGENVALUE PROBLEMS

A. Discrete Representations

We begin by casting the eigenvalue problem for
an Hermitian matrix into density-matrix form.
Consider
; A=AT (1)

AC.=¢€.C.; c.Tc.=s..
==i i=i’ Zi =j

i

which imply a set of density matrix equations,

once we define P;=C;C; T. Thus
. popt
AP;=¢P; PyPi=Pb,; P=P 1, (2)

and one also easily sees that
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[él_,_}_’.]:g; TrP,A=¢; TrP,=1. (3)

Furthermore, it has been shown that* P;*=P; and
Trp;=1 constltute necessary and sufficient condl—
tlons for factorization in the form P;=C; CzT It
was also shown in paper II that a fmlte number k
of constraints will determine any »-dimensional

Hermitian, idempotent matrix P.! Such a matrix
can be generated with the iterative equation
K
- 2 3
Ly 1738, 28, +kéahk9k @)

obtained from 8Tr(P2- PP=0 subject to constraints
of the form TrPOp = Op with Lagrange multipliers
—27p. We therefore need only to convert Eqs. (2)and
(3) to constraint form; this can be done as follows.
Define an m-square matrix O(k1) such that(O(kl)),s ;s

=0pp'077’. One then easily sees that
Tr_(_)(kl)[é_ Gil]fi:{[é‘Eil]fi}lk, (5a)
TrOkI)NA,P;1=[A,P;],,, (5b)

so that every matrix element of the eigenvalue

Egs. (2) and (3) can be generated via Egs. (5).
These can be rewritten as
TrP, OkDIA - ¢;1]=0, (62)
TrP,[0(k1),A]=0. (8b)

Equations (6) constitute two alternative (but not in-
dependent) sets of eigenvalue constraints to be used
in Eq. (4). Equation (Bb) offers the better set of
constraints from a computational standpoint, since
the constraining matrix [O(k1), A] does not depend
upon P; unless A does. By contrast, Eq. (6a) has
an additional P dependence via €z —TrPZA so that
the constraining matrix (A -1 1) must be recom-
puted at every iteration.

It is clear that completely arbitrary matrices
can be used in place of O(kl), since, for example,
TrO[ P; ,A]=0 at solution for every O. We will
discuss Iater some attempts to choose O so as to
optimize convergence. On the other hand, in the
event A corresponds to a Hamiltonian matrix H,
the O(k!) constraints allow one to avoid the calcu-
lation of some of the matrix elements (H)z since
only the kth column and /th row of H are necessary
per _Q(kl) constraint, These constraints then can
be augmented with empirical or other theoretical
conditions.

In using Eq. (6a) as a set of constraints, we note
that the eigenvalue must be stationary at solution.
Consequently, the handling of these constraints is
particularly simple. Thus we can write

TroP, O(k1)[A - ¢;1] =0, (M
because 5¢; =0 at solution. Therefore Eq. (7) may
be treated as an ordinary constraint, except that
€ () =Tr(P; ),A must be computed at each iteration.
It will now be shown that all of the linearly inde-
pendent eigenvectors of the matrix A can be gener-
ated by incorporating the orthogonality conditions
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P; P;=0 as constraints into our for 1alism. The
total’ solution of the eigenvalue pro lem then takes
the following form. In the usual w: 7, we seek a
solution P; that satisfies

P2=pP.; TrP,=1;
-1 —1 —1

TrP {[0k,1),A] +[0(k,1),4] T} =0, @)
In this case, Eq. (4) becomes
(n) n)
(fz‘)nu =@, M 1+k§l"kz
x{[0(k,1),4] +[0G1),4] T}, 9

where (®;),, =3(P;?),, - 2(P;®),,. Having generated
the first P; (and, therefore, a C;) we now require

P2=pP.; TrP.=1; TrP.,P.=0,
= =i =j ~j=i

TP, {[06:1), 4] +[0k1),41 T} -0. (10)

The solution P; must then correspondto another
linearly indepéendent eigenvector C;. The reason
for this is that if solutions of Eqs.” (8) and (10) ex-
ist, then P;=C;C; T and P;=C;C; T so that

_ i T_ IPE
Trfifj—Tr_Qigi ngj "(91' _Qj)l

is zero if and only if C; and C; are linearly inde-
pendent. Indeed, the r nontr1v1a.1 solutions of Egs.

(8) and (10) must be orthogonal so that even degen-
erate eigenvectors are automatically orthogonalized
by this method. One now simply continues in this
fashion until all of the m linearly independent eigen-
vectors are generated.® This formalism has been
verified in several sample calculations.

We next consider AC;=¢; SC;, which is often re-
ferred to as a pseudo- elgenvalue equation. This
can be immediately converted to an ordinary eigen-
value problem if S is nonsingular. Thus define
A =S5"'A, so that

— -

AC,=¢,C,5 A #A. 11
Defining, in addition, P;=C;C; TS and requiring
c;TSc;=1, one again obtains P ;#=P;. The con-
straints can now be formulated much as before
except that the first of Eqs. (3) becomes by virtue
of Eq (11) a pseudocommutation relation

AP;s=-p.s-14'-0. (12)

As a check on this pseudo-eigenvalue formalism,
Eq. (12) was used in constraint form to reproduce
the variational results of James” for the ground
electronic state of the H,™ molecule. The James
basis set consisted of the two functions, exp(- af)
and 7%exp(- a£) with ¢ =1.35. We also have per-
formed H,* calculations, using three- and four-
function bases chosen out of the general set

{£%™e™ %%

We next consider the eigenvalue problem in which
A depends upon its own eigenvectors. In the Har-

tree-Fock problem, for example, A A(P) 8 This
form of A requires a slightly modified approach
in deriving the P equations, since now variations
in P imply also variations in A. Proceeding as
before, we obtain constraints of the form

TrP[0,A]=0 . (13)
A variation 6P now implies

TroP[O(k),A] + TrP[O(k1),54]=0. (14)

But 64 =A(P+06P)-A(P), or
.y 8(A)aB

5(:4) o ,B_(j’)— 5(P) B
=Tr(4 )013 P
where the matrix (A4 '),g has elements
p a(é)aB

8(1_))(1'6"

Equation (14) becomes now
Trop {[061),4]

a,B,y

B a,%,y (21)6‘}/ (él)')’a

(Q(kl))ya(é')a 8
(0r)) 8 }=0, (15)

or since (Q(kl))ya = ka éla

TroP; {[0k1),A] +215(P) g, (A1), 5

~Z )y (40, =0, (16)

In the Hartree-Fock case, A is the Fock Hamilto-
nian matrix F and depends ‘on P through the self-
consistent-field (SCF) potential term which is lin-
ear in the elements of P. In this case (4)4g is
simple to calculate.

The method has been used to solve the He-atom
Hartree-Fock equation. In these calculations
Clementi bases!® were used.

Another type of eigenvalue problem of relevance
in quantum mechanics derives from the energy-
variance minimization procedure. Thus, defining
the variance V=(H?) - (H)?, we have

8{(H?) - (H)?} =0;

where H is _the Hamiltonian of the system and
general, (O) —f\Il*O\Iqu Alternatively, (O) can
be defined via a discrete sum average as in the
local energy method.!! Equations (17) imply the
eigenvalue equation

(1y=1, (17)

{fz2-2(AYA-2} ¥=0, (18)

where the Lagrangian multiplier is given by A
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=(H?)-2(H)2. Since Eq. (18) is an eigenvalue
equation, the preceding density-matrix formalism
is immediately applicable.

B. Mixed Representations
Consider now the eigenvalue equation
Alx)¥(x)= e; Y();

(19)

Jdx wi*(x)@].(x) =0

where x represents a set of coordinates and A(x)
is an Hermitian operator. Defining the density
matrix in the x representation as

p;lx’,x) = ‘l’i*(x')‘l’z.(x) ,

" Eq. (19) becomes

A(x)pi(x’,x):eipi(x’,x). (20)

Introducing, in addition, the discrete basis X via
¥; =xC and defining as usual P;=C; C; T, p; {x’,x)
becomes

pi(x’,x)=Tr£iXT(x’)z(x). (21)
Inserting Eq. (21) into Eq. (20), we obtain

TrB, x (AN () = ¢, Tep, x T (); 22)
or, defining

Alx’,x)=x

Tty @)

and S(x’,x)= XT(x')X(x) ,

we see that

Trfz.[ﬁl(x’,x)—ei§(x’,x)]=0. (23)
This is a mixed representation analog of Eq. (5a).
In principle, Eqgs. (23) can be used as constraints
to completely determine the eigenfunction ¥;(x) in
the y basis set. However, in a truncated basis set
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the set of points (x’,x) at which the constraints are
applied.

A measure of the adequacy of the basis set in
representing the eigenfunction is the constancy of
the “local eigenvalue”

() =A ()€ (x)/¥(x) . (24)
This quantity has been calculated and is plotted in
Figs. 1-4, for H,* and He. In H,*

Alx)= - 3V2 -~ 1/1’A— I/VB ,
and in He
Al)==3v2=z/r+ [@r 1 9E )2/ 1T-F'].

James’s function” ¥(£,n)~ (1 + an?) exp(- 2£) was used
for H,* (Fig. 1). For He, a best atom (Fig. 2) and
two different Hartree-Fock functions! (Figs. 3 and
4) were used. The fact that these local energies
are reasonably constant over a significant range of
the variables, even though the basis sets are small,
suggests that the ambiguity regarding the choice of
points need not be a serious limitation. That is,
any choice of points in the region of constancy will
generate essentially the same density matrix. The
poor large-7 behavior of the He-atom local ener-
gies (Figs. 3 and 4) could be avoided by requiring
that € (=) be equal to the y basis set Hartree-Fock
eigenvalue [i.e., e€(»)=éygp=TrPF, where F is
the Fock operator in the y basis]. In the present
case X, ~exp(— a;7), implying the condition ()
=TrPF =- a,?/2, where a, is the smallest expon-
ent in the y basis set. Clementi’s calculation in-
cludes a base function with @ =0.59, thereby lead-
ing to a poor local energy as v — «,

Other special constraints derive from the singu-
larities in the potential when viewed in the x repre-
sentation. In particular, in atomic and molecular
theory the singularities are of the Coulomb type
and the concomitant conditions on the wave function
are called cusp conditions.'? As Bingle! has shown,
these cusp conditions-can be put in density-matrix
form. Corresponding to the nuclear attraction

différent results will be obtained, depending upon term ~ 2. ; Za/7;jq, Where 7;q is the distance be-
-
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FIG. 1. Local energies for the James functions in Hy". The abscissa is the spheroidal variable £. The curves A

through E correspond to n=0.2, 0.4, 0.6, and 0.8.
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FIG. 4. Local SCF eigenvalue versus 7 for the
Roothaan-Sachs-Weiss 12~function exponential-

-1.00- polynomial basis.
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RADIAL DISTANCE — a.u. summing over ¢, and integrating over all electronic

FIG. 2. Local SCF eigenvalue versus 7 for the coordinates except the ith, it follows that

helium best-atom function &= (£%/2/7'72) exp(—¢7);

£=1.6875. o, R, R)
BT =R, IF-R_1=0
tween the ith electron and ath nucleus of charge Z, ‘i, .
one has the cusp condition r'=r
QU(F For oo F ) R == Zp R, )llr— 1=0. (26)
R == Z U(F T, ) , Rq
ia Yia~ 0 Yia =0 In this form, the cusp condition can be used as a
constraint in the P equations.

(25) Thus far we have considered the applications of
and here the infinite nuclear-mass approximation the P equations to several important types of eigen-
has been invoked. Multiplying Eq. (25) by value problems. The main value of the present

. (E = - method would appear to be not so much that it
U*(F Fye e F) "rl =0 represents an alternative eigenvalue technique, but

rather the ease with which additional constraints
can be incorporated.

III. FORMULATION OF THE P EQUATIONS IN
2501 ORTHOGONAL OPERATORS

In all of our previous work we have had to deter-
mine the Lagrangian multipliers Ap of Eq. (4) by
solving a set of linear inhomogeneous equations of
the form

2,001

g

I’L(n) _ A

, 27

)
o
i

where (T),; =TrOp0; and

o
o
1

(8", =(0,-20,0,).
This must be done at every iteration.

We now show that this phase of the calculation
can be reformulated to considerable advantage.
The formulation involves introducing new opera-
tors 01';09'...0p". .. in place of O]_...Ok.. .
that are orthogonal in the sense that TrOp’'0O;’

) 2 4 2 . 14 (6 =0;k #1. Interms of these orthogonal operators

RADIAL D|°TANCE—°U 7 is diagonal and inversion of Eq. (27) becomes
FIG. 3. Local SCF eigenvalue versus # for the trivial, reducing considerably the time of each
helium Clementi 5-function basis. iteration. In addition, there are theoretical

LOCAL ENERGY=—a.u.

0.004

~0.50
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reasons to believe that the rate of convergence
should be improved. We will return to this point
later.

We write the constraints as usual in the form

Trf’gk = Ok .

We now introduce orthogonal operators via a
Schmidt orthogonalization procedure.

(28)

let
0,°=9¢
Oy =01 +a950,
Oy =0+ 2302““3303’ .

“ 291“‘25 1% (29)

where TrOp 07’ O' k #1 serves to determine the
parameters agy- - *app. In this formalism, the
Lagrange multipliers are given by

by (ﬂ) - (Ok ’

5 (30)

—_ 4 g 2
Tie, 0,)/T0, ",

where Op ' =01 +agp09 ++* *appOp . The first-
order iterative P equations now become

=2[(0,”

One easily sees now that TrP, 10, ' =0p’, and
therefore the constraints are identically satisfied
at every iteration. In addition, we see that

-Tre O, )/TrO ’2] . (31)

71+1

(n) _
Ay = (Ok

since in that limit

2z 14
-Tre an )/TrO

7
A 2.0 asn—o,

® =3P 2-2P 3~P
-n -n -n  -n

Another practical advantage that we have realized
is that, in every case tried, the number of itera -
tions necessary for convergence is reduced. A
possible reason for this is seen by considering the
step length in our iteration process. In first order,

8I= 6 Tr{[P*- P]?-21, 0, }
is proportional to Tr(P-¢@ — kakok) . Now if
one begins with an idempotent guess, P, =@, and
the improvement in 7 is given by

81~ Zklkk"z Tr0,0, .

But a quadratic form achieves its extreme value
when it is in diagonal form. If, then, the Op

(32)

operators are chosen orthogonal, i.e., if we use
the previously defined Op’, we have
~ 2 2
81~25, 7,2 Tr0, 2. (33)
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TABLE I. Rates of convergence of the P equations
from an initial null-matrix guess for: A. Nonorthog-
onal operators without steepest descent; B. Orthogonal
operators without steepest descent; C. Orthogonal
operators with steepest descent.

Method Number of Iterations Tr(P? - p)?
A 2500 1078
B 463 1078
C 84 1078

Thus, the orthogonal choice of operators generates
an optimum one-step improvement from an idem-
potent guess.

Further improvement of the convergence rate
can be obtained by combining the orthogonal
operator formalism with the steepest-descent pro-
cedure detailed in paper II. We have found that the
use of orthogonal operators combined with the
steepest-descent procedure of paper II is the best.
Some preliminary convergence data are given in
Table I for the ground electronic state of the HF
molecule. Using electrostatic and virial theorem
constraints, the calculation reported in paper II
was repeated with several different P equation
algorithms. The data seem to corroborate our
theoretical considerations on convergence. A
more thorough study of the factors affecting
convergence and their optimization is now being
pursued.

IV. CONCLUSION

In this paper we have developed all the formalism
necessary to apply the P equations to constrained
eigenvalue problems. We have also given calcu-
lations on the He atom and H,* molecule that serve
to corroborate the theoretical considerations., It
was suggested that the method is ideally suited for
constrained variational calculations.? In this
connection either empirical or theoretical con-
straints may be used. As an example of the
latter, we discussed the “pointwise” local-energy
method, based on the fact that even very simple
variational calculations yield rather reasonable
local-energy curves, Thus constraining a varia-
tional calculation to give the correct local-energy
at a point, or set of points, may not be overly
traumatic and at the same time may result in a
considerable computational advantage.

Finally, the P equations have been put in their
optimum form by recasting the constraints in
terms of orthogonal operators. This form of the
equations, in addition to yielding considerable
computational advantage, yields an explicit expres-
sion for the Lagrange multipliers resulting in a
much more transparent iterative density-matrix
equation. When coupled with the steepest descent
procedure, an optimum computational form is
obtained.
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The Brueckner-Goldstone many-body perturbation theory has been applied to calculate the
hyperfine constant a of atomic nitrogen in its ground state 4S5/5. The exchange core-polariza-
tion diagrams lead to contributions of —49.71072 and 55.418 82 Mc/sec from the 1s and
2s states, respectively, adding to a total of 5.708 10 Mc/sec. Higher-order diagrams
characterizing mainly correlation effects produce an additional contribution of 4.780 22
Mc/sec. The total theoretical result 10.49 0. 15 Mc/sec is in excellent agreement with the
experimental value of 10.45 + 0.000 07 Mc/sec. The major correlation effectarisesfrom the
interaction between the valence electrons and core s electrons, the effect of the 2s being the
dominant one. It is found that a knowledge of the wave function up to second order is ade-
quate for a sufficiently accurate evaluation of the hfs constant. The trends in the contribu-
tion from various physical effects observed by an analysis of pertinent diagrams are ex-
pected to be helpful in simplifying the analysis of more complex atoms.

I. INTRODUCTION

The Brueckner-Goldstone (BG) linked-cluster
perturbation approach! to many-body theory has
been applied successfully by Kelly23 to the atomic
systems beryllium and oxygen. The method was
shown to yield excellent results for correlation

energy, polarizabilities, and shielding factor.
The BG theory was also used recently for calcu-
lation of the ground-state properties of atomic
lithium by Chang, Pu, and Das.%5 In particular,
Chang et al.* utilized this approach for the first
time in a calculation of the hyperfine structure
(hfs) constant of lithium atom 2S and obtained good



