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The sum of tree graphs for forward pion scattering, generated by any chiral-invariant Lagrangian, is
required to grow no faster at high energies than the actual scattering amplitude. In consequence, algebraic
restrictions must be imposed on the axial-vector coupling matrix X and the mass matrix m': For each he-
licity, X must, together with the isospin T, form a representation of SU(2)QxSU(2), and ra must behave
with respect to commutation with T and X as the sum of a chiral scalar and the fourth component of a chiral
four-vector. If it is further assumed that the contribution of tree graphs to inelastic forward pion scattering
vanishes at high energy, the two parts of the mass matrix must commute; this Gxes various mixing angles,
and leads to predictions like m =m„mp, =42m p F p 135 MeV, etc. If all pion transitions involved only
p-wave pions, then X would form part of the algebra of SU(4), and the mass matrix would behave as the
sum of a 1- and a 20-dimensional representation of SU(4); if s-wave transitions are allowed, then the algebra
must be enlarged to at least SO(7).

I. CHIRAL DYNAMICS AND CHIRAL ALGEBRA

iP(x) -+S-t(A)$(Ax+ a), (Lorentz
invariance)

p(x) ~ e" fe(sx), A&(x') -+ A&(x), (ordinary gauge
invariance)

"ATURE exhibits symmetries of two different
sorts. ' On one hand, there are the algebraic sym-

metrics, like Lorentz invariance, ordinary gauge in-

variance, and the charge independence of strong inter-
actions. These symmetries yield conservation laws, as
for energy, momentum and angular momentum, for
charge, and for isotopic spin, and they predict ratios
among S-matrix elements for processes involving a fixed
number of particles. Algebraic symmetries are realized
in 6eld theories by homogeneous linear transformation

laws, such as

principle of equivalence) on the response of physical
systems to slowly varying gravitational or electromag-
netic fields. Dynamic symmetries are realized inhomo-
geneously on the fields of the massless bosons, i.e., on
the one connection

Bx'" Bx' Bx Bx'" 8'x&

and on the vector potential

A„(x)~ A„(x)+8„0(x).

We now know that the strong interactions obey an

approximate dynamic symmetry, ' chiral SU(2) && SU(2).
Chirality is realized through inhomogeneous transfor-
mations on the pion 6eld, ' i.e.,

tt(x) ~exp(r'8 t) P(x) (charge
independence).

&ic=F pa+8 s(sr(sr e) —-',srsel},

The other symmetries are dynamic, like general covari-
ance and local gauge invariance. ' These do not yield
conservation laws (aside from those already implied by
their algebraic subgroups) and do not predict relations

among processes involving fixed numbers of particles.
Instead, the dynamic symmetries yield low-energy

theorems for soft gravitons and photons, or to put it
classically, they impose restrictions (such as Einstein's

*This work is supported in part through funds provided by the
Atomic Energy Commission under Contract No. AT(30-1)2098.

t A preliminary report was presented at the International
Symposium on Contemporary Physics at Trieste in June, 1968.

f. On leave from the University of California, Berkeley, Calif.
~The distinction made here between algebraic and dynamic

symmetries is essentially the same as drawn between "geometric"
and dynamic symmetries by E. P. Wigner, Symmetries and Re-
jections (Indiana University Press, Bloomington, Indiana, 1967),
except that we separate ordinary gauge invariance, by which we
mean invariance under gauge transformations with constant phase,
from local gauge invariance, for which the gauge transformations
depend upon the space-time coordinates. (Wigner characterizes
dynamic symmetries as those which characterize theories while

the "geometric" symmetries govern events directly. The low-

energy theorems arising from dynamic symmetries somewhat
vitiate this distinction. )

~ This interpretation of chiral symmetry goes back to the work
of Nambu and his collaborators; Y. Nambu and G. Jona-Lasinio,
Phys. Rev. 122, 345 (1961); 124, 246 (1961);Y. Nambu and D.
Lurie, ibid. 125, 1429 (1962); Y. Nambu and E. Shrauner, ibid.
128, 862 (1962); etc.

'J. Schwinger, Phys. Letters 24B, 473 (1967); J. W. Wess
and B. Zumino, Phys. Rev. 163, 1727 (1967). The relation be-
tween invariance of the Lagrangian under such transformations
and the soft-pion theorems of current algebra had been pointed out
by S. Weinberg, Phys. Rev. Letters 18, 507 (1967).The essential
uniqueness of these transformation rules was proved by W. A.
Bardeen and B. W. Lee, in Nuclear und Particle Physics, edited
by B. Margolis and C. Lam (W. A. Benjamin, Inc. , New York,
1968), p. 273; L. S. Brown, Phys. Rev. 163, 1802 (1967); S. Wein-
berg, ibid. 166, 1568 (1968). This uniqueness theorem has been
extended to general compact Lie groups by S. Coleman, J. W.
Wess, and B. Zumino, Phys. Rev. 177, 2239 (1968).Lagrangians
invariant under nonlinear chiral transformations were considered
before the advent of current algebra by F. Gursey, Nuovo
Cimento 16, 705 (1960); in Proceedings of the 1960 Rochester
Conference on High Energy Physics (Wiley-Interscience Publishers,
Inc. , New York, 1960), p. 572; and Ann. Phys. (N. Y.) 12, 91
(1961); M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960);F. Giirsey and B.Zumino (unpublished); and J.A. Cronin
(unpublished); and Phys. Rev. 161, 1483 (1967). For an assort-
ment of recent related work, see H. S. Mani, Y. Tomozawa, and
Y. P. Yao, Phys. Rev. Letters 18, 1084 (1967); P. Chang and
F. Giirsey, Phys. Rev. 164, 1752 (1967); B. W. Lee and H. T.
Nieh, ibid. 166, 1507 (1968); etc.
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where e is an infinitesimal chiral "boost" vector, and
F ~190 MeV is the pion decay amplitude. In con-
sequence chiral symmetry yields low-energy theorems
for soft pions, which would presumably be exact in a
better world with vanishing pion mass. Further, the
chiral transformation properties of general fields (and
hence the scattering of soft pions by the corresponding
particles) are determined by their isospin, i.e.,

g=iF '(t&&~) eg, (1.2)

D„n=(1+F. 'm') 'it„n. (1.4)

There are obvious differences between chirality and
the other dynamical symmetries. First, pions are not
massless, so predictions for soft-pion processes can never
be trusted to better than a few percent. This very
important problem will not be discussed at all in this
paper; we will take the pion mass as zero throughout. '
Second, local guage invariance and general covariance
can be derived' as requirements imposed on photon and
graviton interactions by Lorentz invariance and quan-
tum mechanics. No similar derivation exists for chirality
nor does it seem likely that one will be found, since we
can easily write Lagrangians for massless pions which
seem physically satisfactory and yet are not chiral in-
variant. It has been suggested~ that chirality is re-
quired, not by the spin of the pion, but by its member-
ship in a family of Regge trajectories. This, also, will

not be pursued further here.
The problem before us in this article arises from

another difference between chirality and its older
cousins. Gauge invariance and general covariance are
purely dynamic symmetries, whose consequences are
completely different in character from those of an

4 S. Weinberg, Phys. Rev. 166, 1568 (1968). For the extension
to general compact Lie groups, see C. G. Callan, S. Coleman, J.
Wess, and 8. Zumino, Phys. Rev. 177, 2247 (1968).' For a recent and very thorough treatment of this problem,
see S. Fubini and G. Furlan (to be published). This paper shows
how the dynamic interpretation of chiral symmetry in a process
like m-E scattering depends upon the smallness of m ' compared
with 4m~' and (mN —m~)', where E' is the S&1, resonance at
1550 MeV.' S. Weinberg, Phys. Rev. 135, 81049 (1964); 138, 8988 (1965).
Also see D. Zwanziger, ibid. 133, 81036 (1964).

~ S. Mandelstam, Phys. Rev. 168, 1884 (1968).

where t is the isospin matrix appropriate to ip. Since
the pion carries isospin, chiral-invariant Lagrangians
must be highly nonlinear, just as the Einstein equations
are nonlinear because gravitations carry energy and
momentum, while Maxwell's equations are linear be-
cause photons do not carry charge. Even the detailed
rules for constructing chiral-invariant Lagrangians are
suggestively reminiscent of the rules for general co-
variance in general relativity: derivatives of general
fields must appear in "covariant derivatives"4

D„iP= 8„$+2iF '(1+F '~') 't (mX B„n)iP (1.3)

and the pion field may only appear in D„iP and its own
"covariant derivative'"

algebraic symmetry like isotopic spin. Also, the sym-
metry groups they form are infinite-dimensional, so it is
not clear how they could possibly have algebraic con-
sequences in any case. In contrast, chiral SU(2) &(SU(2)
is an ordinary Lie group, and chiral transformations
were until recently thought of as ordinary algebraic
symmetry transformations, which happen to be spon-
taneously broken by a large vacuum expectation value
of the chiral partner fT of the pion Geld. Indeed, the
modern development of current algebra arose from the
attempt to derive algebraic results from the chiral com-
mutation relations, by saturating them with single-
particle states. ' It was soon realized that this saturation
program could only be successful at inGnite momen-
tum, "where hopefully the disconnected three-particle
and one-pion states would not contribute, and in this
way there have been derived many interesting results
of a purely algebraic character.

Our problem is: FIow is it possible for a dynamic
symmetry Hke chirality to have any algebraic conseqlences?
At Grst sight this seems a paradox, because chiral-
invariant Lagrangians can be constructed with any
values of the axial-vector coupling constants, using only
ordinary isospin multiplets like E and ~, with no need
to add other particles like 0. which complete chiral
multiplets. It is only necessary that a Lagrangian con-
serve isotopic spin and be constructed out of iP, D„iP,
and D„~ for it to be chiral-invariant. Clearly, chirality
alone does not have algebraic consequences.

We can solve this paradox by taking another look at
our formulas [Eqs. (1.3) and (1.4)] for the covariant
derivatives D„iP and D„n. Any Lagrangian built from
such ingredients will be highly nonlinear and replete
with derivative interactions. In consequence, the S-
matrix elements, at least in lowest order, will have bad
asymptotic behavior at high energy, unless detailed
cancellations intervene. The algebraic aspects of chiral
symmetry arise from the need for cancellations which inslre
reasonable asymptotic behavior at high energy

How are we to implement this idea? Certainly we
are not going to calculate the high-energy behavior of
the exact S-matrix elements arising from a general
chiral-invariant Lagrangian. ' The best use to which

' See, for example, M. Gell-Mann and M. Levy, Ref. 3. An
algebraic symmetry broken by the vacuum is from our present
point of view just a particular species of dynamic symmetry.

'M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964);R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 678 (1964); B. W. Lee, ibid. 14, 271 (1965); R. F.
Dashen and M. Gell-Mann, Phys. Letters 17, 275 (1965); 17,
279 (1965),

'o S. Fubini and G. Furlan, Physics 1, 229 (1965);R. F. Dashen
and M. Gell-Mann, Phys. Rev. Letters 17, 371 (1966); and in
ProceeCings of the Third Coral Gables Conference on Symmetry
I'rinciples at High Energy (W. H. Freeman and Company, San
Francisco, 1966)."E. S. Fradkin (to be published) and H. M. Fried (to be
published) have argued that the nonlinearities of the chiral-
invariant Lagrangian give the exact S matrix a bad asymptotic be-
havior at high energy. It would be very interesting to know whether
this really happens, but for our present purposes it does not matter,
since we are using the Lagrangian only as a device for generating
trees which satisfy the soft-pion theorems of current algebra.
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we (or at any rate, I) can put such Lagrangians is to
use them in the "tree" approximation, keeping only
diagrams without loops. This approximation is guar-
anteed 2 to give the right answer for low-energy pion
processes, because soft-pion matrix elements are pre-
dicted by current algebra proper, and predicted further-
more to be of the "tree" form. "But we do not expect
and shall not assume the tree approximation„with any
Qnite number of resonances, to give good results at very
high energy. Rather, we shall impose in our trees only
the weak requirement, that their sum not grow faster
at high energy than the actual scattering amplitude.
That is, since individual tree graphs do have a worse
high-energy behavior than that expected for the actual
scattering amplitude, we shall require that the rapidly
gro7oing terms contributed by the tree graphs shall cancel
cmosg )hA5$8lMs, and not with the continuum which
is left out of the tree approximation.

Perhaps the most convincing argument I can give
for this assumption is to point out that the sum of tree
graphs obviously obeys the usual dispersion relations
with the "correct" number of subtractions, if and only
if it behaves no worse at high energy than the actual
physical amplitude. The exclusion of all diagrams but
the trees then just corresponds to the saturation of the
dispersion integrals by single-particle states. Hence our
assumption about cancellation of trees at high energy
is just what is needed to ensure that the scattering
amplitude calculated in the tree approximation should

agree with that calculated by single-particle saturation
of dispersion relations. The latter is known to give a
good approximation in the low- and medium-energy
regions (as for instance in m-S forward scattering) so
the eGect of our assumption is not to extend the tree
approximation into the region of high energies, where
it has no place, but is rather to make it valid in the
resonance-dominated region of medium energies, where
it operates as a Lorentz- and crossing-invariant form
of the Sreit-Wigner approxima, tion.

Why then (asks the unkind reader) do I bother with

Lagrangians and trees, and not work directly with dis-
persion relations and the sum rules derived from theme
I Gnd it more iHuminating to think about Lagrangian
field theories than dispersion relations, but that is a
matter of taste, and certainly in the simple processes
where convenient dispersion sum rules are available,
we get the same results by saturating them with single-

particle states as by requiring the high-energy cancel-
lation of chiral trees. (See Appendix A.) The real answer
is that dispersion relations are simply not available for
multiparticle processes like rr+F —+2m.+S or s+X
+F~ rr+F+X, while there is no difficulty in calcu-
lating them using chiral-invariant tree graphs. Thus the
present work should be regarded, not so much as an
attempt to derive new predictions, but as a 6rst step

"S.Weinberg, Phys. Rev. Letters 18, 507' I'1967}.
I3 See, e.g. , H. D. I. Abarbanel and S. Nussinov, Ann. Phys.

(N. Y.) 42, 467 (1967).

towards a general understanding of those algebraic as-
pects of chiral symmetry which make possible chiral™
invariant theories of general low- and medium-energy
pion processes.

In this paper we will be applying these ideas to only
one sort of process, the forward scattering (elastic or
inelastic) of massless pions on an arbitrary target par-
ticle. Our results for this case may be expressed in terms
of an axial-vector coupling matrix X,(X), defined by
giving the matrix elements at zero invariant momentum
transfer of the axial-vector current between states with
collinear momenta as

(p'X'p
I (A.'+A.')

I p)~n) = (2ir)-'(4p"P')-'t'
X4A, ,[X.( )j, (l.s)

where n and p are stable or unstable one-particle states
with momenta y and p' in the 3 direction; X and X' are
their helicities; a is the isovector index; and the quan-
tity b is dined by writing the condition of zero in-
variant momentum transfer as

I p I+(p'+m-')'"=
I
pl'+(p"+me')"'=—h 0 6)

This de6nition of the axial-vector couplings is parti-
cularly convenient as it can be used for particles of
arbitrary spin, and in arbitrary collinear reference
frames, including both the frames in which n is at rest
and in which it moves with infinite momentum. (The
matrix X() ) is independent of the reference frame. ) To
make our normalization perfectly clear, we should add
that A,~ is defined as in earlier papers, and that the
rate for a decay process n &p+s., w—ith n unpolarized
and at rest, is given by

r(n~ p+~;))
(m '—me')'

I[X.( )le-I' (& 7)
4irF 'm '(2J' +i)

where X is the helicity of p, and a is the pion isovector
index. (This formula is for zero pion mass; effects of
the finite pion mass are discussed in Sec. V.) Also, the
matrix elements of X,(X) between one-nucleon states
are given by the substitution

X.(X)= (gg/g r)) r. ,

where r is the PauIi matrix, and Ig~/grI is experi-
mentally about 1.2.

After kinematic preliminaries in Sec. II, we show in
Sec. III that there are certain terms in a high-energy
asymptotic expansion of the tree graphs for forward
pion scattering which may, in a completely general
chiral-invariant theory, be expressed entirely in terms
of X,()~), the isospin matrix T„and the mass matrix
mp ' —=es 25p„. These terms are proportional to a power
of the energy higher than allowed by Regge-pole theory,
and therefore should be assumed to cancel. Ke show in
Sec. IV that the cancellation of the terms with T=i
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where

ms =m, '(~)ym4s(~)

[X.(X),~t,'(X)]=0 (1.12)

PX.(lt),ttt '(X)]= im '(lt), (1.13)

[X.(lt),ttt b'(lt)] = ib.b—ttbbs(X) . (1.14)

If there were no Regge trajectories with the quantum
numbers of the vacuum and with n(0)&0 then we
would further assume the cancellation of terms with
T=O in the t channel, and. we would then find that
ttb4'(X) =0. Of course such vacuum trajectories do exist,
so ttb' does tbot commute with X,(X), and therefore
particle states of definite mass generally belong to
reducible representations of SU(2)QxSU(2). In this
sense, then, we can still say that algebraic chiral sym-
metry is broken by the vacuum. We may, however,
conjecture that these vacuum trajectories do not have
appreciable residues" for inelastic processes like x+tV—+

rr+1P(1470) or v+x —b tr+At, in which case we find
that m4'(X) is diagonal, i.e.,

$ttt', ttbb'(lt)] = Lms'(X), m4'(X)] = 0 . (1.15)

These general results are applied in Sec. VI to the
X=O states of ~, p, 0, and A~. We obtain the results
already found" from saturation of elastic Adler-Weis-
berger relations, i.e., that the observed p width deter-

"It is assumed here that there are no Regge trajectories with
T=2.and n(0)&0; see R. de Alfaro, S. Fubini, G. Rossetti, and
G. Furlan, Phys. Rev. Letters 21, 576 (1968); F. J. Gilman and
H. Harari, Phys. Rev. 165, 1803 (1968). The mass formulas
derived by Gilman and Harari are special cases of the general
formula (1.10).

"There is experimental evidence that the differential cross
sections do/dt for the inelastic p. rocesses s.+tV-+ s+tit' and
x+N~A1+N approach constants as s —+~ with t fixed and
small, but that these constant cross sections are appreciably
smaller than the corresponding limits of the cross sections for the
elastic process x+N —+ m+N. For a summary, see L. Van Hove,
paper SMR 5/2, International Symposium on Contemporary
Physics at Trieste, 1968 (to be published). Our conjectures with
regard to the process m.+~—+ 7t-+A I then follow via the factoriza-
tion of the Pomeron residue. I wish to thank P. G. Freund for an
informative discussion of this point.

"See particularly F. J. Gilman and H. Harari, Ref. 14.

in the t channel requires that

[X.(x),xb(x)] = ie.„T. (1 9)

while the cancellation of the terms with T=2 in the t

channel requires that"

[X (X),LX P),ttb']] b b . (1.10)

In the language of group theory, Kq. (1.9) tells us that
the one parti-cle states of any given heticity must be tbs-

sembted into representations of chiral SU(Z) XSU(Z), ctnd

thttt these representations (ittcluding their mixing angles)
determine the measurable ttxiat vector-couPting matrix
X (1t). Also, we show in Sec. IV that (1.10) implies that
ms mtty be written ebs the sum of a chiral scalar -mes and
the fourth component m4' of a chiral four vector. T-hat is,
for each X we may write

mines the rr-A i mixing angle f to be 45'—50', and that
with /=45' we have ttb~, ——V2m„ tn. =m„ I', =600
MeV, etc. In addition we now have information on the
relative sign of the A i —+ o+v.—& 3v. and A i -+ p+v —&

3m decay amplitudes, equivalent to that which would
have been obtained by saturation of inelastic Adler-
Weisberger sum rules. But more important, we now
have a clue as to why it should be 45'; it turns out that
the communtator (1.15) is proportional to cos2$, and
thereforeg=45 is just the mixing angle required if tree
contributions to the amplitude for v.+v. —b v.+A i cancel
at high energy.

A different technique is used in Sec. VII to apply our
general results to the 'A =

& states of nonstrange baryons.
We include in our calculation only the nucleon, the
8 (1238), and a T= rs resonance tV'. Our results are again
just those obtained" from the Adler-Weisberger sum
rules, giving gg/gv, I'a, mba. , etc. , in terms of a single
mixing angle 8. If we further conjecture that the tree
contributions to tr+tV-+ n.+tV' cancel at high energy
then (1.15) applies, and tells us that 0=45', giving

~ gg/gv~ =-', and mbt '=2ma' rttbts. —
In Sec. VIII we begin an attack on a more ambitious

problem, of finding solutions to the chiral commutation
relations (1.9) which satisfy the general requirement
that the amplitude for pion transitions n —b pjv with
orbital angular momentum l has the helicity dependence
Cz.t(JeX; XO). We approach this problem by enlarging
the algebra to include an angular-momentum vector
J; which acts in the usual way on helicity indices, and
by imposing certain tb priori restrictions on the algebra
generated by T„J;,and I,.We 6nd that if this algebra
contains no elements with T= 2, and if all pion tran-
sitions have l=1, then the algebra generated is that of
SU(4). Further, (1.11)—(1.14) then require that the
chiral-scalar and. chiral four-vector parts of the mass
matrix belong respectively to 1- and 20-dimensional
representations of SU(4). The algebra can be further
enlarged to allow s-wave as well as p-wave pion tran-
sitions; the simplest possibility is then that T„J;,and
the 1=0 and l= 1 parts of X,(X) generate the algebra
of SO(7).

This long introduction would not be complete without
a comparison of our work with the saturation of com-
mutation relations at infinite momentum. Certainly the
commutation relation (1.9) was derived'i some years
ago by the p = oo method, though I am not sure whether
the simple connection between X (X) and the center-
of-mass pion transition amplitudes is generally realized.
(It is this connection that leads to our speculations on
helicity dependence and supermultiplet structure in
Sec. VIII.) To my knowledge, the commutation prop-
erty of X,(X) with the mass matrix expressed in Eqs.
(1.10) or (1.11)—(1.14), has not been derived for zero
pion mass by the p= oo method, nor do I see how it
could have been. Also, I see no way that the P= eo

'7 R. F. Dashen and M. Gell-Mann, Ref. 10.
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method can be used to treat multiparticle processes like
~+X~ 2s+S. On the other hand, the p= oo method
aIlows us to make use of deta1lcd properties of the
currents (such as space-space commutators, etc.) which
do not arise directly from the underlying chiral sym-
metry of the strong interactions, and which therefore
can play no role in the approach used here. Apart from
thcsc d18crences ID output) there 18 also R d18CI'CQcc IQ

the theoretical input; the saturation of commutation
relations Rt 1D6nltc momentum can oDly wolk lf the Z
graphs" or "pair states" do not contribute at p= oo."
It is believed that this assumption is equivalent to the
assumed Rbscncc of 8UbtI'actions 1D dIspcrslon relations)
but I do Dot know of any direct connection between the
two assumptions, aside of course from the equivalence
of some of their consequences. Lacking such a connec-
tion~ lt sccIDs 8Rftcl to rely only Upon those high-energy
assumptions which Rrlsc d1I'ectly from Reggc-pole
theory and which can be veriied experimentally.

Possible extensions of our approach to other physical
problems are discussed briefly in Sec. IX.

II. KINEMATIC PRELIMINARIES

Wc coD81dcr thc folward scRttcr1Dg process

x(q, e)+n(p, X) ~ m (g', b)+P(p', ) ') . (2.1)

Here a and P label the type and isospin of the initial
and. 6nal target particles; X and X' are their helicities;
6 and 5 Rlc pion lsovcctoI' 1Qd1ccs running ovcI' 1~ 2q 3

q

and g, p, q', and p' are the respective four-momenta.
We will adhere throughout to the approximation of
neglect1ng the p1on mass, so

the dependence of M on p, p', and n being suppressed
throughout.

The crossing symmetry between s and u channels
imposes on M the restrictions

Mpg, (oo,,h) =Mp, t,( , (o',—X).

It wiB be convenient to divide M into parts symmetric
and antisymmetric in the pion isovector indices a, b:

Mpg, &+&((e,X)=—-,'LMpg, ,(oo,X)+Mp. ~(co,X}j, (2.15

Mpg, .& '((v, X)=—((v+~') 'I Mp|, ,„,((u,X)
—Mp, g(oo, X)j, (2.16)

M, ...(,X)=M„..+ (,x)+-;( +„}
XMpp, J '(~,X). (2.17}

Equation (2 14) lets us w~ite (2.15) and (2.16) as

Energy and momentum conservation then yield the
relations

lyl+p'= ly'I+&"-=h, (2.9)

~'=~+ (m.' m—p')/28, (2.10)

s=——(p+q)'= m, '+2k(o, (2.11)

m=——(p' —q)'= m p' —2'), (2.12)

and angular-momentum conservation tells us that the
helicity is conserved. We will be concerned with the
behavior of 3f as a function of ~ and X, with the target
four-momenta p&, p'& held 6xed, and so we shall write

q'=q"=0.

By "forward" we mean only that

(2.2} M»,,~+~ (~,~)= 2LM p, .,(~,),)
+M pp, ,(—co', X)$, (2.18)

~—=—(p—p')'= —4—C')'=0 (2 3)

H in addition m =mp then pI'= p'» and g"=g'~. The
I'cynman amplitude M for this process is dchned by the
formula

Mp, .,~-~(~,» = (~+~')-
I M„„(~,~)

—Mpg, ,(—co', X)j. (2.19)

Both M&+} and 3f& ~ are then even under interchange of
~ w1th —(v'.

Mpg, .&+&(~,X)=Mph, ~+~(—oo', X). (2.20)

lnl =—I'—=1,
y= —nlyl P'=(Iyl'+~ ')"'

y'= —nly'I p"=(Iy'I'+~ ')"'

(2.5)

(2.T)

(2.8)

js S. Fubini and G. Furlan, Ref. 10. For a general discussion,
see S. L. Mler and R. F. Dashen, Curry& AIgebm (%'. A. Ben-
jamin, Inc. , New York, 1968), Chaps. 4 and 5. The method of
"lightbike" changes of J. Jersak and J. Stern (to be published}
avoids this problem but requires that we know commutators on
the bght cone.

ID ordcI' to simplify our calcUlatlons, wc will adopt a
coordinate system in which all momenta are collinear:

III. ASYMPTOTIC BEHAVIOR OF TREE
GRAPHS

We shall now calculate the a,symptotic behavior of
the forward-scattering amplitudes Mpq, J+&(a&,X) as
co~oo. We Use for this purpose a general chiral-in-
varlRQt LaglRQglan RIll I'ctRlQ only tlcc graphs - 1Q-

volving a 6nite (though perhaps large) set of virtual
particles. Of course, we do not in this way expect, to
reproduce the true asyIQptotic behavior of the forward-
scattering amplitude. Rather, as discussed in Sec. I, we
will be interested precisely in those contributions of the
tree graphs to M'+& which behave morse at high energy
than would be expected from Regge-pole theory; all
such contributions must cancel, and it is from this



177 ALGEBRAIC REAL IZATIONS OF CH I RAL SYM METRY 2609

cancellation that we expect to derive the algebraic
consequences of chiral symmetry.

The tree graphs that contribute to the Feynman
amplitude are of two diferent kinds. First, there are
diagrams arising from a direct interaction of both pions
with the target, or with a virtual meson exchanged in
the f channel. (See Fig. 1.) Second, there are diagrams
with a virtual particle y exchanged in the s or u chan-
nels. (See Fig. 2.) The contribution to the Feynman
amplitude of all graphs of both kinds is then

M pb...(b&,X) =Ppb...(b&,&)

+P(m '—m '+2b&8) 'QPb. ag'&'(b&, X)

+P(m '—m '—2~'$) 'Qp, , b&»(—b&', X). (3.1)

The first term arises from the graphs of Fig. i, and is
just a polynomial in co. The second and third terms
arise from the graphs of Fig. 2; the denominators are
respectively just s—@i~' and u —m~', and the numer-
ator Q is a polynomial arising from the numerators of
the p propagator and from any derivatives in the pion-
target interaction. [Note that (3.1) satisf&.es the cross-
ing-symmetry requirement (2.14) if P does.]

What does chiral symmetry tell us about the poly-
nomials P and Q P First, the direct pion-pair interactions
of Fig. 1 must involve one or more covariant derivatives
acting on each pion 6eld, except that we must also in-
clude in the Lagrangian the interaction

2F.-bV' (~Xa„), (3.2)

where Vg is the conserved phenomenological vector
current, normalized so that J'V'd'z is twice the iso-
spin T. [See Eq. (1.3).]Hence the contribution to M
of the graphs of Fig. 1 is proportional to

g
~g'"=~~'n~n" (3.3)

except that (3.2) gives a term proportional to qg+q'g
= (~+a&')e". The contribution of the Fig. 1 graphs is
thus of the form

PPb ag(b&, X)=b&b&PPb, ( &agog)b&

+4iF '8 (b&+co') b.b, (T—,)p, (3.4)

where P is an unknown polynomial, possibly just a
constant. Second, the interactions of single pions with
the target in the graphs of Fig. 2 must be of the form'

—F.-'A~D„~, (3.5)

where Ag is a phenomenological axial-vector current [a
sum of terms like (g&/gv)N~ygpbN]. The polynomial Q
in (3.1) must then also contain the factor (3.3), i.e.,

Qpb, .&»(co,X) =cob&'Qpb, .&»(b&,X), (3.6)

"The exact axial-vector current A& is equal to —Ii 82/8(8pc)
plus terms of Grst or higher order in the pion Geld. This connection
between single-pion couplings and the axial-vector current is of
course just the Goldberger-Treiman relation written in a Lagran-
gian language.

P ~Vb g Vb
r

PbO; OtC.

~O

FIG. 1.Tree graphs which contribute polynomials to the Feynman
amplitude for the forward scattering 7i-+a ~ ~+p.

+(mab m~b—2(u'—g) 'gpa ab&»( —(O', X)]. (3.7)

This result for the forward-scattering amplitude dis-
plays all the information we can hope to derive from the
chiral symmetry of the phenomenological Lagrangian.
Evidently chiral symmetry" does not put very strong
constraints on the asymptotic behavior of M as or -+~.
The polynomials P and () can (and for high spins gen-
erally will) contain high powers of b& with unknown
coeKcients, so nothing very much is learned by de-
manding that these rapidly growing terms cancel. How-
ever, Eq. (3.7) does put strong constraints on the
loves) powers of co in an asymptotic expansion of M,
so it is to these lowest terms that we must look for our
algebraic results. "

To make this more specific, it will be convenient to
decompose M into parts symmetric or antisymmetric
in the pion isovector indices a, b. Using (3.7), (2.18),
and. (2.19), these are

Mpb, ag (b&&~) = 2b&b& [Ppbag(~q~)+, Ppbag( b&
q ,~)

+p(m ' —m '+2(oh)-'gpb g&&+&(bb X)

+Q(ma' —m '—2(O'8) 'QPb ag&»+&(—bb' X)] (3.8)

Mpb, o& &(b&,X) =giF 'Sb, b,(T,)p
+—[b&b&'/(b&+b&')]

X[Ppb, .(b&,X)—Ppb, .(—b&', X)

+Q(ma' m„'+2—CO8) 'QP b ag &&-—& (&b,& )

—Q(m '—m '—2b&'8)—'Qpb g&&
—

&(—&o', X)], (3.9)

P . mb

a
0

P
Pb

y r
0 0

FIG. 2. Tree graphs which contribute pole terms to the Feynman
amplitude for the forward scattering ~+0.~ m.+P.

"This conclusion has been reached independently by J. W.
Wess and B. Zumino (private communication). They have used
this method to derive algebraic relations which are special cases
of our general results.

where Q is again an unknown polynomial in co. The
forward-scattering amplitude is thus of the form

Mpbag(b&)X) = b&b& Pp bag(b&)X)+4iFg 8(b&+b& )bgbg(Tg) pa

+b&b&'P [(m '—m '+2a&8) 'gpb, ag&»(b&, X)
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M p&. . .&+& (&e,&&) =2 pe. ,&+& (&0,X)+Ape, ,&+& ((a, 'A), (3.11)

Ape„.&+&(&e,&&)=0(N ') for &o-+00. (3.12)

The term in A (+) of seroth order in co may then be picked
out by a contour integral

where

gee,.&&+&(&d,&&) =Qpe .'»(&d, &i)+Qp. e,&»((o,X) .(3.10)

By expanding the denominators in (3.8) and (3.9) in
inverse powers of ~, we may split 3f(+) into a poly-
nomial A(+) plus a remainder E,(+) which vanishes as
(g ~ &X&

[Recall that a factor ni'n" is contributed by (3.3).j By
studying the behavior of this matrix element with re-
spect to boosts along the direction of n, we can easily
show that X(&&) is ind, ependent of 8; the conservation of
helicity follows of course fram invariance with respect
to rotations about the n axis. Using (3.16) and (3.10)
in (3.14) and (3.15), we see finally that the terms in
M'+) that go like cP as ~ —+ ~ are

& pe, .'+&(0,&) =4F, '{[Xe(&&),[m2,X,(&&)j]

+[X.(& ),[m', X~(&)Z)p-, (3 18)

A p&, ,
' &(0,&&) =8F '8{ie,&,.T,

—[x.(~),»(&)l}p. , (3.»)
1

Ape, .&"&(0,&&) = ape, „.&+&(co,X)&o 'd&0,
—(3.13)

2~$

where re ls the mass matrix

78P~ = fee&t tlgrx ~
2— 22 (3.20)

the contour of integration being taken about a very large
circle in the complex ~ plane. For A(+) the pole at, co =0
is killed by the factor co in (3.8), and the integral is
given by the residues of the poles at s =m~2 and I=m~"

Ape .&+&(O,X) = —P(2m„' —m, '—mp')

fmqe me-
&&Qp~,-""I &

I
(3 14)

28

For A( ' the pole at co= 0 survives only in the 6rst term
of (3.8). The pole from the factor (&e+co')—' is killed

by the antisymmetry of its coeScient under the inter-
change of ~ with —a)', so the second term contributes
only its residue at the pole s=m„' and u= m~', and we
6nd

Ape...& &(O,X)=8iF. '8e.e.(T.)p
1 m, '-m. '

+—ZQpe, -" ' » I
(315)

28 v 28

Terms in A(+) of 6,rst and higher order in ~ are of less
interest, both because the unknown polynomial I' does
contribute to these terms, and because they depend on
values of the polynomial Q off the y-mass shell.

By inspection of Fig. 2 and the interaction (3.5), we
find that the value of the polynomial Q on the y-mass
shell is

m„2 m„e—
0„„.& &,X ~=16F.—8[X,(&,)j„

28
X[X.(&)]... (3.16)

where X(X) is the Hermitian axial-vector coupling
matrix for helicity &&, defined (see Sec. I) by the state-
ment that for p' and y antiparallel to n:

48[x(&&)fp b&, &&

u„(p', &',P~A ~y, ~,u)= . (3.i7)
(2~)&&(4pDp&0)lie

[T.,Te]=ie.e,T, . (4.4)

Taken together, (4.2)—(4.4) tell us that the particles
we iuclude in our tree graphs must for each helicity furnish
ae irreducible or reducible represeutatiott of SU(Z)
xsU(z).

The amplitude M(+) has both isospins T=0 and T=2
in the I, channel; the part with 7=2 may be isolated as

3fpe, ,&r 2&
(&e,l&)

—=Mpe, .&+& (u, &&)

—-', be,Mp„,&+& ((o,)&) . (4.5)

IV. CHIRAL RESULTS PROM TREE GRAPHS

Ke now demand that the asymptotic behavior of 3f
that we have calculated for the tree graphs of Figs. 1
and 2 not be worse than wouM be expected from Regge-
pole theory.

The amplitude 3f( ) has pure isospin T= I exchanged
in the t channel, and is normalized so that

Mp» ' &(&d &&)~M "'& ' for &0
—&~

1 (4.1)

where ni(0) is the value of the dominant T=1 tra-
jectory at t =0 )The ex. tra factor co-' arises because we
divided by &e+cv' in defining HIE ', see Eq. (2.16).j
Presumably ni (0) =n, (0) =0.5, so (4.1) shows that M&—

&

vanishes as au —+~. Hence we shall demand that the
term (3.19) in M& & which behaves like &d' as &a —+~
must be zero, i.e.,

[X,(&),xe(X)j=ie.b,T, . (4.2)

(Of course we must also demand that terms in 3f& &

which behave like higher powers of ~ must also vanish,
but. chiral symmetry does not relate such terms to
interesting mass-shell matrix elements. ) The applica-
tion of isospin conservation to the defining formula
(3.17) tells us further that

[T.,x, (& )g = ie.„r,(X) (4.3)

and of course T, obeys the usual commutation relations
for the isospin matrix
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A eb. '+, '(O, X) ~ bb. (4.7)

If (4.2) is valid then we can use Jacobi s identity, and
the commutativity of m' with T„ to write (3.18) as

A eb ...'+'(O, X) =SF —'[Xb(X),[m', X.(X)]]p (4.8)

and (4.7) may then be written as

[Xb(X),[m', X,(X)]]= —m4'(X) b,b. (4.9)

In order to put this in group-theoretical terms, we may
define an isovector matrix m'(X) by

[X.P ),m']=—im. '(X)

and write (4.9) as

[X,(X),m. '(X)]= —im, '(X)b.b.

Using (4.11) and Jacobi's identity, we have then

[X.(~),mP(~)]b, .—[X,(~),m, b(~)]L,
pabd[Td, mc (~)]= ipabd p—dceme (~)

= —18«mbt (X)+bbb, m P (X)

and therefore

(4.10)

(4.11)

It is normalized so that

Mob i ~i(pp X)~co~" & for id~~, (4.6)

where nb(0) is the value of the dominant T=2 trajec-
tory at t= 0 T.here are reasons to believe'4 that up(0) (0;
if this is true then we must require that the term (3.18)
in M&+' which behaves like co' as co —+ao must not have
any T= 2 exchange part, i.e.,

as ip-+~, then mbp(l~) and hence mpp(li) will be helicity-
independent. If we believe" that M(+) vanishes as
pt ~~ for all inelastic processes, such as tr+m. ~ tr+A i,
then (4.15) must commute with the mass matrix m',
and therefore

0= [m4P(X),m']= [m4'(X),mP(X)]. (4.16)

We shall see that this does seem to agree with observed
masses.

The value of our results lies in the algebraic con-
straints they impose on observable parameters, the axial-
vector coupling matrix X(X) [which as shown in Sec.
V determines all one-pion transition rates] and the
mass matrix m'. These constraints may be obtained
either of two ways:

(1) We may write each physical particle state of
definite helicity as a sum of irreducible representa-
tions of SU(2)@SU(2) [for instance, $(X=-', )= (-'„1)
g3(0, pb)g ]. The matrix elements of X(X) are then
entirely determined by the mixing angles which define

the coeKcients of the representations in this sum, while

the physical masses are determined by these mixing
angles and by mass parameters which specify the ele-

ments of neo' and m4' between the irreducible repre-
sentations in the sum. This approach will be applied in
Sec. VI to the X=0 states of m. , p, 0., and A~.

(2) Alternatively, we may apply our results directly
to the physical particle states. The Wigner-Eckart
theorem allows us to define T,-independent reduced
matrix elements (pIIX(X)IIn& by the formula

[X.(~),mbb (~)]= im. '(~) . (412) (pt IXi'i(&)Iat)=CT 1(Tet";t't)&pllX(~)ll~&, (417)

Equations (4.11) and (4.12) tell us that m'(X) and
m4'(X) together form a chiral four-vector, with regard
to their commutation relations with X(X). Finally, note
from (4.10) and (4.12) that

m'= mp'(X)+mpp(X)

where mp (X) is chiral-invariant, i.e.,

(4.13)

[X.(~),mP(~)] =0. (4.14)

Hence the mass matrix m' behaves as the sum of a chiral
scalar mpb(l~) and the fourth comPonent m-4'(X) of a chiral
four vector. We emph-asize that (4.13) is not an approxi-
mation based on some assumption of weak chiral-sym-
metry breaking; rather, it is an exact consequence of our
assumptions about the asymptotic behavior of the tree
graphs, and we do not in fact expect that A&4' is smaller
than mo'.

We may also entertain conjectures about the struc-
ture of the remaining T= 0 exchange term which goes
as pP for ip ~~, given by (4.8) and (4.9) as

Aeb, aJ+i (O,X)= —SP '[m4p(l~)]e b.b. (4.15)

If for example we believe that differences of the for-
ward-scattering amplitude for different helicities vanish

where t" and t' are the T, values of p and o, and

Xt+'&—= +(v2) '(Xi&iXp), X"~—=Xp. (4.18)

The Hermiticity condition on X,(X) now reads

t 2T.+1q '"
&pllXP)lla&*=( —)" 'I

I &allX(~)lip& (4»)
(2Te+1)

while (4.2) becomes, for To= T &0,

be. =Z&pll XO ) Ilv&h IIX(~)Ila&

1 p2T 1~'» —1
X -—

I I
b.„,. b+

T (2T +1j T (T+1)
1 p2T +3~'"

+
T.+'1&2T.+1)

and, for Te=T +1,

0=g&p IIX(&)Ilv&&~IIX( & Ila&

X[(Ta)'"brt, T (Ta+2) brt, Tp] ~ (4 21)
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The condition that [X (l1),[X/, (X),m2]] not have a
T= 2 part may be met by requiring that

[X&+&(X),[X&+'(X),m']]= 0. (4.22)

This approach will be applied in Sec. VI to the ) =~
states of the nonstrange baryons. Needless to say, both
approaches are entirely equivalent.

V. PROPERTIES OIj' X(X): PION DECAYS)
SELECTION RULES

We have shown that elementary particle states and
their masses must furnish representation of the chiral
algebra formed by the isospin T and the axial-vector
coupling matrix X(l1). Both in order to determine
empirical values of the matrix X(l1) and to appreciate
its general properties, it should be kept in mind that
[X (X)]s has a direct physical significance as the
matrix element for the pion transition process

(p,~) ~(p', l )+ (q,o)

in any reference frame in which the decay is collinear,
including not only the p= ~ frame bit also the center-

of mass p=o-frame. The Feynman amplitude M for
this process may in general be defined by

(p'&'p, q/2
~

S
~
pl1n) = (22r)'/»'(p'+q p) (2 )-2»'/'—

X (8q'P'P") "~ (P'~'O' P&~) (5 2)

Ke recall that the one-pion interaction is given' by
(3.5) as —F 'A»'8„22, so

(22r) '(4p'p") —'/'M (p'l1»p Phn) =F '(p —p')
X(p'~'~l~. (0)IW ). (53)

In a general collinear frame we have

p
— «p PO —(P2+.m 2)1/2

p» — «p» p»0 —(p»2+m 2) 1./2

p+ (p2+m 2)1/2 —p»+ (p»2+m 2)1/2= h

n'= 1
and so

computed for zero pion mass, but we must take into
account the eGect of the finite pion mass on phase-space
and centrifugal barrier factors. If the pion is emitted
with orbital angular momentum / then we should supply
in (5.6) a correction factor

[p (true)/p, (m =0)]"+' (5.7)

where p is the center-of-mass pion momentum:

p =[(m ' m//'+m —')'—4m 'm ']'/'/2m . (5.8)

Thus the rate for n —+ p+2r when mj22))m ' is given by

ma 3

I'(n~2. +2r)= ~[X.(0)]. ~'
4n.F 2(2J +1)

4m 2) 1+'»2

X ~— . 5~0
m. ' )

The identification of X(71) as the pion transition
amplitude provides an easy path to the derivation of
exact and approximate selection rules. If we apply to
the process n -+p+2r a space reflection times a rotation
of 180' about some axis perpendicular to n we get
back. the same process, but with spins reversed, and with
a sign factor coming from the rotation

( )J»»-1( )1—»
and another sign factor from the intrinsic parities of
2r, n, and P: —II IIp.

(m '—m/j2)2
I'(n ~ 8+m", X)=

~
[X (/1)]/j

~

'
42.m 'F 2(2J +1)

2(m 2+m 2)m 2) 1+1/2

X 1-
~

. (5.9)~ ~

(m, '—m/j2)'

If P is a pion then we should replace (m '—m/j2)2 in
(5.6) with just m ', and the rate becomes

t'm»»2 —mj2 )
(p —p')~=

i
i/2~ (22'—= 1).

2a
(5 4)

It follows then that X(X) is related to X(—X) by

[X,(—71)]j2 = —11.11/j(—)s.-»[X,(lj.)]/j . (5.11)

Thus using in (5.3) our definition (3.17) of X(l1), we
find the Feynman amplitude for the process (5.1) in

any collinear frame as

M, (PVjg, pXn)=2F '(m '—mp2)[X (lj,)]p 8), 1. (5.5)

For XWO the significance of (5.11) is that it ensures
that the fundamental commutation relation (4.2) will

be satisfied by X(—lj,) if it is satisfied by XP,). For
lan=0 Eq. (5.11) tells us that [X,(0)]/j must vanish
unless n and P satisfy the selection rule

It is now a simple matter to show that the rate for
the process (5.1) [with n at rest and unpolarized] is

Ii (—)'= —IIs(—)" (5.12)

(m. '—ms2)'
r( p+;&)= I[X.(l)]s-l' (56)

4n-m. 2F.2(2J.+1)

This is of course only true for zero pion mass. In the
real world we can presumably use the X-matrix elements

Thus in building each vector in an irreducible repre-
sentation of SU(2) XSU(2), we never mix ),=0 particle
states with different values of II(—)s.

Further information about the helicity dependence
of X(l1) may be obtained by performing a partial-wave
decomposition of the Feynman amplitude for the process



177 ALGEBRAIC REALIZATIONS OF CHIRAL SYMMETRY 2613

The parity rule (5.11) is then satisfied if (X,/)o obeys
the familiar selection rule

IIpII = —(—)'. (5.14)

In itself, (5.13) tells us nothing, but if n and /9 are nearly
degenerate then the contribution to M of the lth
partial wave will be of the order (m '—mo')', and hence
(5.5) gives

(X./) p. (m.' mp—')' i- (5.15)

This allows us to discard high partial waves, and (5.13)
then does provide useful information about the helicity
dependence of matrix elements of X(X) between close-
lying states. In particular, if n and P are states of equal
mass and equal parity, then only the p-wave term can
contribute in (5.13), and the helicity dependence of X
is given exactly by

tX.( )],. C», (SJ;OX)
tx:g,
~ (J 2 yb)i/b

~ (j 2 Qb)1/2

ocP,

for
for
fol
for

J =Jp
J =J//+1
Ja—Jp

(5.16)

o/ —b p+ v. with o/ at rest:

LX.(X)]// =Q C/g, (J.X; 0/~)(X. ,)p. . (5.13)

matrix elements

(vb~x.
~
vb) = —(vb(X.

~
vb) = is.b„

(vb[ X.[ v.)= (v4[X. ) v4) =0,
«b I

X.
I t4~) = —(t4~1 X.

I
tb )= i(~.b&"—&-&db)

(tb. IX.I «")= (t4b I X.
I
t4.)=o

(vr, (X.[tbrb/) = (tbrb/fX. fv, )=0.

(6 1)

v, = t4, cosp+v, sinlt,

Ai, —— t4, sing—+v, cosP, (6 2)

(We omit the helicity label X=0.) The reader can easily
verify the commutation relations (4.2).

As discussed in Sec. V, the matrix X anticommutes
with the G parity, so the states v4 and v, must have
opposite G parity, and the states t4 and t & must have
opposite G parity. There is no loss of generality in
assuming that t4, has the same G parity as v„ for if this
is not the case then we can just replace tl.~ with its
dual 61,~~plop. Hence our representation vlf contains
two isotriplets with the same G parity, described by
linear combinations of v and t4, one isosinglet with
opposite G parity, described by v4, and one isotriplet
with the same G parity as the isosinglet, described by
t, q. We therefore make the tentative identi6cations

g=v4) 1
Pa g Gabcfbc ~

VI. EXAMPLE: THE PION AND ITS
CHIRAL PARTNERS

To see how we can use the algebraic results derived
in Sec. IV, let us apply them to the pion and its chiral
partners. According to the selection rules discussed in
Sec. V, the pion will in general belong to a reducible
representation of the chiral algebra containing the X=O
states of all nonstrange mesons with GII(—)~=+I,
i.e., the p, o, Ai, f', etc. None of these have isospin T= 2,
so this big reducible representation must consist of those
irreducible representations of SU(2))&SU(2), or equi-
valently of SO(4), containing T=O and T=1 only.
There are just four of these, the scalar s, the four-vector
vt. , and the self-chiral and anti-self-chiral parts of the
antysymmetric tensor tl.~= —t~r.. We want the meson
masses to contain a chiral-symmetry-breaking term
m4', but the representation v to which it belongs occurs
only in sav and vt, not sss, vsv, tat, or sat, so we
had better include at least one v and one I, or one s.
The simplest reducible representation with mass split-
ting is therefore sv, but this only includes the pion and
a pair of 0- mesons, and is therefore too simple for our
purposes. We shall explore the possibility that the pion
and its chiral partners can be joined in the second-
simplest representation with mass splitting, which is

vent.

The matrix elements of X,(0) in this reducible repre-
sentation may be obtained by using ordinary SO(4)
tensor analysis to compute the effects of in6nitesimal
chiral "boosts" on vt. and t&~. In this way we find the

Using (6.1) and (6.2), we may calculate the pion-decay
matrix elements

(v'b
I
X,

I p&) = bb, b& c—os&,

(7rb
I
X

I
o) = zS, b sing,

(pbIX, IAi, )= ie, b, s—ing,

(o )
X.( A lb) = i4b cosP—,

(6.3)

and the decay widths are then given by (5.10) and (5.9)
as

mp' 4m ' '~'
I'(p ~ v+v.) = 1— cos'P,

12xF~' mp'

3m.' 4m 'q '/'
I'(o -+ v+v) = 1—

~
sing,

S~F ' m(2 l

(mg, '—m. ')'
r(Ai~o+v)=

12m P~'ma, '

(6.4)

(6.5)

2m. '(mg, '+m, ')
X i

1— cos'f. (6.6)
(mph' —m ')'

(We cannot calculate the rate for Ai~ p+ vr without
knowing X, for X=&1 as well as for ii=0.) Using
F =190 MeV and m, =760 MeV, we 6nd from (6.4)
that/=50'if I', =100MeV audit =45'if I', =135MeV.
The rates for o —+ v.+v and Ai-+o+v. could thus be
calculated if we knew the 0. mass.
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(lr ~mo'~orb) =(mp cosQ+m„' sin'f)5, b,

(Alo ~mo'~ Alb) = (mP sin'P+m„' cos'f)8 b,

(Al, I moo
~

orb) = (m„o—m4o) cosp sing b, b,

(o ~mo'~o)=m. ',
(~.l

mo'I I b) =m4o&. b,

(or. ~m4'~orb) =2m" COSQ Sing g, b,

(Alo~m4 ~Alb)= —2m cosp sing b, b,

(Ala
~

m4'
~
orb) =m" (cos'f —sin'p)h, b.

(6.9)

In order that moo+m4' be diagonal, we must have

(m„' —mP) sin2$= —2m" cos2$ (6.10)

and in order that the pion mass shall vanish, we also
must have

(m '+m ')+(m, '—m„') cos2$= 2m" s—in2$. (6.11)

The physical masses are

m '=m, ' m '=m. '
p 5 y

0' v

m~ '= ', (mP+m-. ') ', (m ' ——m-') cos2$—m" sin2$.

Equation (6.11) then gives, independently of the value
of

mg4o=m '+m '

and (6.10) gives m, '/m, ' in terms of P:

m '/m. '= tan'f.

(6.12)

(6.13)

As already remarked, the p width gives a value of

P in the range 45'—50'. If we adopt the value /=45'
then (6.13) gives

(6.14)mg fgp

in apparent agreement with experiment. "Using (6.14)

~'A general analysis of all peripheral pion-production data
has been performed by L.J. Gutay, D. D. Carmony, P. L, Csonka,
F. J. LoefBer, and F. T. Meire (to be published). (I am grateful
to R. Arnowitt for informing me of this work. ) They find three
solutions for the T=J=O phase shift, one going through 90'
at about 700 MeV, one going through 90' at about 900 MeV,

Let us now compute the mass matrix. Its chiral-
scalar part has matrix elements of the form

(oL ~moo ~oM) = bLMm„',

(f'LM
~

mo'
~
tNP) (~LNSMP 8LPSMP)m, ', (6.7)

(tLM~mo'~oN)=(oN~m, '~tL )=0,
while the chiral four-vector mI, ' has the matrix elements

(oM~mL'~oN)=(t ~m '~t o)=0,
(vM [

mL'
( tNP) = (tNP [

mL'
[
o M) (6.8)

= (&LN&MP 4—P»MN)m"

Note that a possible term in (oL
~
m M'

~
tNP) proportional

to &g ~~p is excluded here by 6 parity. From Eqs.
(6.2), (6.7), and (6.8) we see that the nonzero elements of
mo' and m4' for physical particle states are

in (6.12), we further find

mg 2m (6.15)

With m, =m, and tan'/=1 the r. fio of the o and p
widths is given by (6.4) and (6.5) as

I',/I', =', (1—4m„'/m, ')-l (6.17)

so F, should be of order 600 MeV. With the 0. this
broad, our treatment of it as a narrow resonance must
be regarded as at best a rough approximation. In par-
ticular, it does not really make sense to compute the
widths for the processes Al-+ p+lr and Al —+o.+m",
rather, we should take our formulas (6.3) for (p~ X~ Al)
and (o ~X

~
Al) as inputs to a dynamical calculation of

the decay A& —+ 3x actually observed.
Unfortunately the result given by Eq. (6.3) for the

A l —+ p+ lr amplitude with X= 0 does not agree with that
given by the "hard-pion" method2' or by an equivalent
gauge-invariant phenomenological Lagrangian. " (The
same disagreement occurs again for X= &1.) There are
many possible ways to resolve this discrepancy, but at
present I do not know which is the right way.

VII. EXAMPLE: NONSTRANGE BARYONS
WITH Z=-,'

We shall now apply the algebraic results derived in
Sec. IV to the nucleon and its chiral partners, using for
this purpose the direct approach described at the end

of Sec. IV. A glance at the compilation of Rosenfeld

and one remaining negative, Of these three solutions only the
first, with m, =700 MeV, is in agreement with a phase-shift
solution found in the analysis of backward mN scattering of C.
Lovelace, Conference on m-N Scattering at the University of
California at Irvine, 1967 (to be published)."S.Weinberg, Phys. Rev. Letters 18, 507 (1967).

~ H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828
(1967);R. Arnowitt, M. H. Friedman, and P. Nath, ibid. 19, 1085
(1967); S. G. Brown and G. W. West, ibid. 19, 812 (1967); S. L.
Glashow and S. Weinberg, ibid. 20, 224 (1968); L. Gerstein and
H. Schnitzer, Phys. Rev. 175, 1876 (1968); L Ger stein,
H. Schnitzer, and S. Weinberg, ibid. 175, 1873 (1968); etc.

'4 J. Schwinger, Ref. 3; J. W. Wess and B. Zumino, Ref. 3;
B. W. Lee and H. T. Nieh, Ref. 3.

in agreement with experiment (if the A l is real) and with
the spectral-function sum rules. "Except for some signs,
all these results have already been obtained by Gilman
and Harari '4

However, we still do not know why P should have the
delightful value 45'. This can be understood if we are
willing to assume that there are no T=O Regge tra-
jectories with n(0) & 0 that can contribute to the forward
inelastic scattering process"

or+lr-+ x.+Al.

If this is the case then, as discussed in Sec. IV, the
matrix element (lr, ~m4'~Alb) must vanish. But m'

cannot vanish if we are to avoid complete degeneracy,
and so according to the last line of Eq. (6.9) we must

tan'P = 1. (6.16)
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e$ al." shows that there are no known nucleon isobars
with isospins higher than ~, so the whole axial-vector
coupling matrix may be specified in terms of the re-
duced matrix elements

&pllxll~)—=A~-
=—Bp,
=—Cp~,

for

for

for
(7.1)

The Hermiticity requirement (4.19) tells us that A and
8 are Hermitian, and that As =a(gf)[bp. +,Cgs*Cg.j, (7.12)

so that g~/gv ——Wxn. The mass-matrix constraints (7.8)
and (7.9) now just give mdiv ——mq. This solution corre-
sponds to putting the X= 2 E and 6 in a (1,i~) or (-', ,1)
representation.

Finally, we can begin to get an interesting model if
we suppose that there is one T=-,' state 6 and two

T=~ states X and E'. Then 8 is a number, C is a
2-vector and A is a 2)&2 matrix. There is now a family
of solutions with C/0, defined by

(PIIXlln) = —v2Cs, t for Ts= ,', T -= ,'. (7.-2) B= W+(5/12), (7.13)

In this notation, (4.20) gives for T„=Ts=—', and for
T =Tp=~ the two relations

Ic.~lm+ Ic.~, (7.14)

1=—,'A' —-'CtC

1= (4/15) B'+-',CCt,

The 1lt', 1P, and 8 now form a reducible (i~, 1)g(0,—',) or
(1,—',) (—'„0) representation, with a mixing angle 8

(7 4) defined by

while (4.21) gives for T =-', , Tp
', the relati——on—

CA = (+5)BC.

I Cgivl = (Q-', ) cos8,
I
Cgiv.

I

= (g3) sin8, (7.15)

(7.5) and (8.6) and (8.7) now give26

For the purposes of orientation we note that the axial-
vector coupling g~/gp 1.25 of the nucleon is given here

by

I g&/g v I

= 1+s cos'8,

I &n I
X'(4)

I
~')

I
= (1/K2) cos8.

(7.16)

(7.17)

g~/gv= (P I Xi(k)+—&X2(k) In) = —(v'3) A &N

while the amplitude for 6' ~n+s' is

&nlX'(!)
I
~')=-(1/~2)C"*

(7 6)

(7.7)

With g~/gv ——1.18 we would get 8=59', and with the
newer value g~/gv= 1.25 we have 8=52'. (Both results
yield adequate results for the 6 width. ) The mass-
matrix constraints (8.8) and (8.9) now tell us that

The mass-matrix constraints (4.22) here read
(mdiv.

'—mq')/(mq' —m ') = tan'8 (7.18)
2Bm3'C —m2'BC —BCm~'

= —(+5)(2CmPA —m~'CA —CAmP), (7.8)

2' 2g—m 2&2—+2m, m

= (5/4)(2CmPCt —m 'CCt —CCtm ') (7 9)

where m~' and ms' are the diagonal mass matrices,
respectively, of the T= ~ and T=~& states.

Equations (7.3)—(7.5) may be solved with C=0 and

A'=4, B'= 15/4. (7.10)

I For instance, if the nucleon is the only T= ', state then-
(7.10) and (7.6) give Ig~/gvl =1, as in the 0 model. ]
Here (7.8) is empty, while (7.9) tells us that only B is
diagonal, i.e., that there are no pion transitions among
T=+~ baryons. This solution corresponds to putting all
T= ,' baryons in (-,',0) or (0,——,') representations and all

T=2 (X=-,') baryons in (-,',0) or (O, s) representations.
In the real world there are one-pion transitions

between T=-,' and T —,'baryons, so we must look for
solutions with C/0. For instance, if there is one T= ~

particle X and one T= ~ particle 6 then A, 8, and C are
simply numbers, and we can find a solution of Eqs.
(7.3)—(7.5) with

A = &+(25/12), B=&+(5/12), ICI =Q(4/3), (7.11)

~' A. H. Rosenfeld et a/. , Rev. Mod. Phys. 40, 77 (1968).

I
-', (AmPA —A'mP)+-', (CtmPC —CtCm ')

+ (Ctm 'C—mPCtC)js, ——0 for P&a. (7.19)

Thus in our model the requirement that the sum of the
tree graphs for s+1lr —& n+S' should vanish as + ~~
gives

and therefore
m~ +mpp = 2m'

8=45', lg~/gvl =
3

(7.20)

(7.21)

The agreement between theory and experiment is again
encouraging, if not precisely spectacular.

'6 These relations were obtained by Gilman and Harari, Ref. 12,
and under somewhat different assumptions by I. Gerstein and
B. W. Lee, Phag. . Rev. Letters 16, 1060 (1966).

With 8=52' this gives m~. =1600 MeV, which is in a
mass region thickly populated with T=-,' states.

We can use this model to test our idea that the sum of
tree graphs for an off-diagonal process m.+n —+ s+p
should vanish as ~ —+~. According to Eqs. (4.5) and
(4.9) this requires that

(PIIX (-,'),LX (-', ),m']]In)=0 for nWP.

In general this gives for T=-,' states the requirement
that
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VIII. HIGHER SYMMETRIES: SU(4)
AND SO(7)

(P) '~ J,~n&,)=b,.b,.„ (8.1)

(P) 'i J,~iJ, ia) )—=bs„bb, bggf(J +X)(J w)+1)]'",
and write the pion-decay matrix as

(P) 'ix. ia) )=—b,.,LX.() )], (8.2)

Our assumption that (8.2) involves p waves only can
be formulated by requiring X to transform as the third
component of a 3-vector isovector:

X,—=D~3)

[J',D.,]= ie*,b Deb, .

LT„Db;]=b , De„b,

(8.3)

(8 4)

(8.5)

We have already remarked in Sec. V that the helicity
dependence of the matrix X(X) can be determined if
we assume that only a few partial waves enter the
important pion decay processes n +p-+v. In particular,
transitions between states of equal mass and parity
involve p-wave pions only, and the corresponding matrix
elements tX(X)]o must have the well-defined helicity
dependence (5.16). How is it possible to construct
matrices X()I.) with a given helicity dependence so that
they satisfy the fundamental commutation relations
(4.2) for each helicity? This problem is difficult to attack
directly, and we shall instead approach it by finding an
enlarged simple Lie algebra which contains the X,(X)
for all helicities.

Just to get started, let us see what Lie algebra is
implied if we assume that all pion decay processes
involve p-wave pions alone. We define an angular-
momentum matrix J which acts on helicity indices
alone:

m'=m '+m ' (8.10)

where mo' behaves under commutation with D;, J;,
and T, as an SU(4) singlet and m4' behaves like an
isoscalar 3-scalar member of a 20-dimensional represen-
tation, i.e., the totally antisymmetric SO(6) tensor of
rank 3. Note that we prove here what was conjectured
in Sec. IV, that both the chiral-scalar mo' and the
chiral-vector m4' are separately independent of helicity,
so that the tree graphs give a forward-scattering ampli-
tude which becomes helicity-independent at high energy.

It follows from the above that if the commutation
relations can be saturated with a set of particles, such
as 1V and A or p, &e, and v., between which only p-wave
pion transitions are allowed by parity and angular-
momentum conservation, then these particles mgst
furnish a representation, usually reducible, of SU(4).
However, we certainly wish to include other particles,
such as a, A &, and negative-parity baryons, which decay
by s, d, ~ ~ wave pions, so we must enlarge our algebra
even more. For instance, suppose we wish to allow
s-wave as well as p-wave pion transitions. We can
include an /=0 term in X„without losing the SU(4)
structure of the /= 1 term, by writing

X,= sing S,+cos8 D,b, (8.11)

Our commutation relations (8.4), (8.5), and (8.7), plus
the usual commutation relations for J;and T„may then
all be summarized in the single formula

1 Jr.ee) JN p] ebs—ii Jeep»r, pJ~N
&4r—~Jr, i+&4rr Jr', (8 9)

where I., llf, X, I' run over 1, 2, ~ ~, 6. We instantly
recognize this as the algebra of SO(6), which of course
is the same as that of SU(4).

We further show in Appendix C that the mass matrix
has the form

and the fundamental commutation rule (4.2) now reads where S is an isovector 3 scalar

LD,b,Dbb]=ze b.T, . (8.6)

We shall also assume that the commutators ttD„,Db;]
do not contain any terms carrying isospin T=2, so as
not to be forced to introduce particles of high isospin.
We show in Appendix 8 that these assumptions imply
that

[DaiyDbj] = ibij eebcTc+iba beijb Jb ~ (8 7)

Therefore D„, T„and J;form the algebra of SU(4).
To see the algebraic structure of these commutation

relations more clearly, it is very convenient to introduce
a six-dimensional notation, with ordinary vector indices
i, j, . ~ running over the values 1, 2, 3, and isovector
indices a, b, ~ running over the value 4, 5, 6. We
define an antisymmetric 6X6 array of matrices Jl,~ by

LT„Sb]= ie, b,S„
LJ;,S ]=0,

(8.12)

(8.13)

Jsj 6'bjPJIs (8.15)

and D„is as before. We also again assume that no T= 2
terms appear in the algebra generated by S, and Db'.

With these assumptions, we show in Appendix D that
S„D„,T„and J, all belong to the algebra of SO(7).
That is, we have the commutation relations

Pl ~,JNI ]= »I ieJbrs »rzJbrN—
i4sir Jzp+ih~r—Jzx, (8.14)

where I., M, S, I' now run over 1, 2, ~, 7, with

Jij= &ij kJIt; )

J; =——J;—=D„,
Jab= fabcTc ~

J;,=——J„—=D„,
Jab= &bc~c p

J7 =——J,7=5„

(8.16)

(8.17)

(8.18)
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and J7;—=—J;7 is an auxiliary element of no known
physical signi6cance. (We are again letting ordinary
space indices i, j, run over 1, 2, 3 and isospin indices
a, h, run over 4, 5, 6.)

The algebra of SO(7) has an irreducible represen-
tation, the antisymmetric tensor of rank 3, which seems
to furnish a promising scheme for the nonstrange
mesons; it consists of states with the quantum numbers
(spin, parity, isospin, and G parity) of the m., p, o, A&,

co, and 8 plus a state with the unobserved quantum
numbers J=1, II=+, T=O, G= —1. In particular,
the states with X=O and GII(—)2=+1 are just those
(ir,o,p, A 2) considered in Sec.VI, so for these states SO(7)
will yield the same reasonably successful results as
before LHowever, SO(7) does not give m„~m, .] Un-

fortunately, the lowest representation for the nonstrange
baryons which contains the 6(1236) is already probably
too big, consisting of one I'33 and one S33 resonances,
plus tmo resonances each with the S3j, E3~, S~~, P~~,
F'», and D» quantum numbers. A few of these states
seem to be missing, though it is not clear to me whether
they would have been seen.

The lesson to be learned from all this is not that the
axial-vector matrix X, does or does not belong to an
SU(4) or SO(7) algebra. The point is, rather, that the
diKcult problem, of constructing matrices X(X) which

satisfy chiral-commutation relations for all helicity
states of a finite set of hadrons, can be solved by enlarging
the algebra to include J; as well as X, and T . It hardly
needs to be said that this mixture of spatial with internal
symmetries is very limited, applying as it does only to
axial couplings and masses, so that no convict arises
with various no-go theorems. '7 However, perhaps it
should be stressed that the higher symmetries en-

countered here have not been hypothesized on the basis
of a quark model or by a free act of intuition, but have
been derived from chirality and from our assumptions
about the partial waves which enter in pion transition
amplitudes.

IX. FURTHER APPLICATIONS

Aside from the determination of a few signs and mix-

ing angles, our detailed predictions have generally not
been new. Rather, as explained in Sec. I, we have aimed
at establishing a point of view and a general algebraic
formalism which can serve as a basis for future appli-
cations of chiral dynamics. We therefore close with a
brief list of some of these further applications:

(1) Other massless particles. We may ask what alge-
braic restrictions follow from the assumption of good
asymptotic behavior for the tree contributions to a
forward scattering process B+a—& B'+P, where B
and/or B' are photons, gravitons, massless E mesons,
or massless pions. For pion photoproduction the result

~7 S. Coleman, Phys. Rev. 138, 81262 {1965);M. A. B. Beg
and A. Pais, Phys. Rev. Letters 14, 509 {1965);14, 577(K) {1965);
S. Weinberg, Phys. Rev. 139, B597 (1965).

appears to be that

ti'(X)X,(X)=X,(X+1)ti'(X), (9.1)

ACKNOWLEDGMENTS

I am very grateful for valuable discussions with I.
Gerstein, S. Fubini, B. W. Lee, and H. Schnitzer. I

'8 S. Iubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
1171 {1965).

where ti'(X) is the matrix element of the anomalous part
of the magnetic moment Ii;+i@2, evaluated between
states with helicity X+ 1 and X. This is just a generalized
form of the Fubini-Furlan-Rossetti sum rules, " satu-
rated with single-particle states. Note that (9.1) and
Schur's lemma require that all elements of the matrix
p, '(X) vanish if X,(X) and X,(X+1) are irreducible and
inequivalent.

(2) Finite pion mass. It is not easy to extend our
approach to pions (or X mesons) with nonzero mass,
because the condition that g'=(q'+m ')'I' prevents
our being able to count powers of g& as we did here in
Sec. III.Perhaps it will be possible to solve this problem
by expanding in powers of m '.

(3) Finite momentum transfer. This problem is even
harder. For instance in the elastic nonforward scattering
of massless pions we have

q
—Q+ + q

—Q + g0 —
g

0—($2++2) 1/2

with ck —=—', (p —p') and ir 4= 0. It is difficult to see how
to count powers of k as k —+~ with 4, axed, as we did
in Sec. III with 4= 0. Again, the solution is perhaps to
be found by expanding in powers of d.

4 Forward scattering on general states. We also might
consider the forward scattering of massless pions
ir+n —+ir+p where n and/or p are general several-
particle states. The requirement of good asymptotic
behavior for such processes will perhaps tell us about
the commutation properties of X(X) with the matrix
element for u~P.

(5) Mglti pion processes Possibly w.ith greater promise
of success, we may explore the consequences of the
assumption of good asymptotic behavior of the tree
contributions to the process ir+n —+nir+P, where n
and p are single-particle states with zero invariant
momentum transfer. Presumably this will yield further
algebraic restrictions on the axial-coupling matrix X(? )
and the mass matrix m'.

(6) Og Mass Shell B-ehavio-r. Finally, what relation
is there between the on-mass-shell asymptotic behavior
discussed here and the assumptions of good asymptotic
behavior o6 the mass shell, which are used in deriving
spectral function sum rules" (and which underly the
"smoothness" assumptions of Refs. 23, 24, and also
Ref. 5)? Both approaches lead to m& /m, =i&2, but they
yield diferent results for the A& decay amplitudes. At
present this peculiar blend of agreement and conflict
appears entirely mysterious.
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In this Appendix we shall rederive our chief results,
Kqs. (4.2) and (4.9), by saturating the sum rules de-
rived from soft-pion theorems and dispersion relations.
Of these sum rules, some are already fanliliar as
the general Adler-Weisberger relations, " (including
"type-I" supcrconvcrgcnce relations, ") for elastic
scattering, while the others are the corresponding sum
rules for inelastic pion scattering.

Our first step is to write down the general low-energy
theorcrns for tt+a-+~+p with m =mp ot m )mp.
These are

Mpb, ,&
—}(O,l&) = SbF '8p, b,(T.)p

+SF 8 p'{[Xb(l&,)]p,[X.(l},)],
—[X.(X)]„[xb(X)]„.} (A1)

Mpb, ,&+}(O,l&)=2F —'Q'( 2m,
' m„'—mp'—)

x{[xb(X)]p,[X,(l})],y[Xo(l})]p,[Xb(l})],}, (A2)

where X(li) is the general axial-coupling matrix intro-
duced in Sec. III, and the primed sums run over on@-

particle states y with m~=m or m~=mp. (If m &mp
then these formulas hold for co'=0.) In the current-
algebra derivation of (A1) and (A2), the first term in
(A1) arises from the equal-time commutator, while the
sum terms arise from the "gradient coupling" poles. In
order to show that (A1) and (A2) give the correct values
for these terms, it is convenient to recall the form given

by Eq. (3.7) for the pion forward-scattering Iieynnian
amplitude in any chiral-invariant theory:

Mpb, ,(&0,X}=b}b}'J'pb, ,(b},X)+4iF '8(b&+b}')~ b.(T.)p

'P [(m. —m, +2~8)- gpb...& }(~,))

+ (m '—m, '—2&a'8) 'Qpb &» (—(o', l},)]. (A3)

%c RI'c not using thc tlcc Rpploxln1at1on now so P RIll

g will no longer be polynomials, but nevertheless M
will in general have the form (A3), with P and g
analytic at be=0. By inspection of (A3) we immediately
obtain the low-energy theorem for elastic scattering,

Mpb, eo(&}pe})~ StFr 8b}&abc(2 c)pa

OP

+—Z LQp ...&»(O,l)-Qp. .. & &(O,l)]
2h, ,m,-~

+0(aP) for bt=co'~ 0 (A4)

'9 S.L. Adler, Phys, Rev. 140, 8736 (1965); W. I. Weisberger,i'. 143, j.302 (l966};and earlier letters quoted therein.

3Ep~. ' '(,}} fd,y'( —=)
P —S p, —N

28
&& [ppb, -(p', &)—pp. .-b(» ',l)]I I (A7)

E2p,' m.' —mp') —'

M pb, ,&t='}(&p,l})=—M pb, o&+}(&0,)&)—-,'l}b.M p. . .&+}(bu,l})

1
2

( 1 1
+ I[ppb, -(p', ~)+pp. ,-(p', &)

E}&i'—s p' —NP

+bb. bpp. ,-(p',&)], (AS)

where ppb, ,(p', X) is the absorptive part of Mpb, ,(&p,l}),
cvalilatcd a't s= p, i.c., at (d= (ti —m~ )/28. [Tllc last
factor in (A7) is just the quantity (co+&a') ' appearing
in the definition of M& }.] We can always write
ppb, ,(tb2, li) as a formal suni over states:

ppb .(p}',&) =4. F ' p(m, ' mp')(m. ' m—')[Xb(X)]—p

X[X.(~)],.S(p —m, ), (A9)

where 2F '(m '—m, ')[X,(X)]„ is the Fcyninan
amplitude for the transition &}.-+ y+tr. Using this in
(A'/) and (AS) gives

Mpb, ,& &(&0,l},)
(m '—m, ') (mp' —m, ')S8F—

v (m '—m, '—28b0)(mp' —m~'+28bt)

X{[X()&)] ,[X.(&)],.—[X.(~)]„[X,(X)],.},
(A10)

for co-+0, &0'~ (m '—mp')/28. (A5)

Furthermore, the pole residues Q &» are given on the y
mass shell by Eq. (3.16):

(m~2 m—b
Qpb...& &I,x I= 16F;&8&[X,(x)]„

28
X[X.(X)]„.. (A6)

To compute M( ) we must antisymmetrize M in a and
b and divide by the quantity &0+&v', which for elastic
scattering is just 2' and for m &my approaches
co'=(m '—mp')/28. In both cases we get (A1). To
compute M(+) wc symmetrize 1n 8 Rnd 6 Rnd note that
2m~' —m '—mp'equalsm '—mp'form~=m and equals—(m '—mp') for m~= mp. This gives (A2).

The next step is to invoke our assumption that M( '
and the T= 2 part of M H ) vanish as co —+~. They then
satisfy the unsubtracted dispersion relations
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Mpb...&r "(bl,X)

(m. ' —m, ') (m p' —m„') (2m, ' —m. ' —m p')
2F—

v (ma' m—,' —2hbl)(mp' m—,'+2h 4)p

&&([X () )]p [X.(~)5.-+[X.() )]p [Xb())5-
—3h.b[X,()I)]p,[X,(X)],.}. (A11)

States y with m„=m or m~= my do not contribute to
these sums because of the factors (m '—m„') and
(mp' —m„'), even though these factors are cancelled

by the denominators as ~ —+ 0. However, the states p
which are missing in (A10) and (A11) are just those
which appear in the "gradient coupling terms" in (A1)
and (A2). Hence the consistency of (A10) with (A1)
and of (A11) with (A2) requires that

ib.b,(T,)p. Q([——X.(z)]p,[Xb())],.
—[Xb(X)]p [X,(X)] }, (A12)

0=+(2m, 3—m '—mp')([X. (X)]p,[Xb(X)]„

+ [Xb(X)]p,[X,p,)], ——3b.b

X[X,(X)]p,[X,(X)], }, (A13)

the sums now running over all states y. These are the
desired results.

APPENDIX B: DERIVATION OF SU(4)

By taking the trace on i and j, we see that [D«,Bl]
vanishes, and hence

[D„,B,]=i3;;kD,k. (86)

This result may in turn be used to compute the last
commutator we need:

L A~j] 6ikckl[Biy[Dbk)Dbl]]

3 &jkl&ikm[DbmyDbl]

', [D—b;—,Db;],

and using (81) again, this is

[B;,B,]= Zp;, kBk. (87)

Equation (81), (82), (84), (86), and (8/), together
with the commutators for T and J, with D„,B;, and
each other, show that D„,B,, T, and J;form a complete
Lie algebra. However, this algebra will in general con-

tain an invariant Abelian subalgebra spanned by B,—J;,
for (86) and (87) and will show that

[B'—J'~ D.c]=LB'—J', Bj—Jj]=o (88)

while of course B;—J; also commutes with T„and
transforms into itself under J,, and hence also under B;:

[J';, B, J,]=i p,,k(B—k Jk), —(89)

[B;,B, J;)=ic;,—k(Bk Jk) . — (810)

But these are all supposed to be finite matrices, so we

must require their algebra to be semisimple, and thus

We have assumed that D; is an isovector 3-vector,
so the most general possible form for the [D,D] commu-

as was to be proved.
tators is

B,—J;=0 (811)

[DaciDbj] i&abcc4ci j+&&ijkBabk c (81)

where A is an isovector symmetric 3-tensor and B is a
symmetric isotensor 3-vector. Our assumption that this
commutator not contain T= 2 terms implies that

APPENDIX C: SU(4) PROPERTIES OF THE
MASS MATRIX

The result of Sec. IV tell us that

Babk ~abBk (82) [D,3,[Dbb, m']] ca il, b. (Ci)

Ac33= Tc ~ (83)

and the fundamental chiral commutation relation (4.2)
or (8.6) now reads

Furthermore the mass matrix must obviously be
helicity-independent and conserve isospin, so

[J,,m 5=[T.,m']=0. (C2)

Since T, is a 3-scalar, it follows immediately from (83) We may therefore define an isovector 3-vector m„by
[formally, by taking repeated commutators with J,]

L a&)~ J NS
that A„, is also a 3-scalar, i.e., with

A„,= Tcb;, .

Our remaining task is then to prove that BI.=JI,.
From (81) and (82) we have

B,= bi3, kl [Dbk—,Dbl]
and therefore

[Da',Bj]= bi&jkt [Dc—i~[Dl k&D bl]]
3 &jil&abc[TicyDbl]+ 3 &jk lkikm[JmqDal]

333ijkDak 3hij[DalqBl]+3[DabcqBj] ~

(84) [J,,m.ck]=i e,,km. kk,

[Tacm bj ]=&&a bcmcj

(C4)

(CS)

[Daicmbj ]= &&ab@jm4 +~&abc&ijkjkck (C7)

By applying Jacobi's identity to the double commutator

[D„,[Db, ,m']] and using (C2), we easily see that

[D„,mbjk] = [Db, ,m, ,ik]. (C6)

Hence, since this commutator is an isotensor and a
3-tensor, (C1) and (C6) force it to have the form
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[Da,)nzzz] = inz. ,.z ) (CS)

where nz42 is an isoscalar 3-scalar, and p, I,
2 is an isovector

3-vector. The Jacobi identity for [D„,[Db),nz.k']] can
then be used to show that

be separately valid, so

[Sa)»]= zpabcTc )

[S„Dk,]=[Sk,D„].
(D3)

(D4)

[Dai)tkz ] Ztkck (C10)

Equations (C7)—(C10) show that nz, ,z, nz4', )M, ,z, and tz4'

form a 9+1+9+1=20-dimensional representation of
SV(4). Furthermore, since tz4' and nzcz are isoscalars
and 3-scalars, this representation must be one of the
ordinary tensor representations of the locally isomorphic
group SO(6). The only tensor representation of SO(6)
which is 20-dimensional, and contains two isoscalar
3-scalars and two isovector 3-vectors, is the totally
antisymmetric tensor of third rank T~~~, with

Tabc ~ ~42&abc Tijk ot- „2&ij7c
) zz4

Tabi ~ ~ .2&abc Tija ~ „&2&sgkCt ) I'ak

It is easy, by using the SO(6) notation for D„, to verify
that (C7)—(C10) are indeed satisfied in this way.

Just as in Appendix 8, we now complete our argu-
ment by noting from (C3) and (CS) that nzz nzaz com-—
mutes with D„, i.ec)

[Dai)tzbj ]=Zhabhi)tie Z&abczijknZck ) (C9)

where @42 is another isoscalar 3-scalar. Finally, the
Jacobi identity for [D„,tz, kz]] gives

We again exclude the possibility of T=2 terms in our
algebra, so the symmetric tensor (D4) must be a pure
isoscalar, i.ec)

(D5)[S„Dk,]= ih, kK, ,

ihk, [S„K;]—ih„[Sk,K,]=i p, kp[Tp, D.;]
= ~bcaai —~acDbi

and therefore
[S„K;]=iD„.

The Jacobi identity for D„, D», an.d S, gives

(D6)

Zh kc[D—ai)K;]+Zhac[Dk, )K,]= Zhi) Pa kg [Te)Sc]
+Z&akzijk[&k)Sc]= &ij[hbcSa &acSk]

and therefore
[D„,K;]=ih,)S,. (D7)

Finally, the Jacobi identity for S„Db;, and K; gives

zh, k[K;,K;]=i[Dk,,D„]+i[S„Sk]h,)= h, kp, )kJk-
and therefore

[K,,K;]= ip, ,kJk.

We identify the SO(7) generators as

(DS)

with K; an isoscalar 3-vector. The Jacobi identity for
S„Sb, and D„gives

where

nz'= nzpz+nzcz,

[D.;,nz p'] =0.

(C10)

(C11)

Jig—= e'gk JI ) Jab= eabcTC

Further, m' and m4' both commute with T, and J;,
and therefore so does mo".

[J;,nzP]= [T„nzp']=0. (C12)

Thus, (C10) gives nzz as the sum of two SU'(4) repre-
sentations

nzz= 1+20 (C13)
as was to be proved.

APPENDIX D: DERIVATION OF SO('7)

With I, given by (8.11), the fundamental commutation
relation (4.2) reads

sin'8 [S.,Sb]+sin8 cos8 {[S.,Dkz] —[Sk,D.z]j
+cos'8 [Daz, Dkz] =zpakcTc (D1).

We are assuming that D„still obeys the SU(4) commu-
tation rule (8.7), so the last term on the right is given by
(8.6), and (D1) reads

sin8 [S,Sk]+cos8 {[S,Dkz] —[Sk,D z])
=i sin8 p, k,T, (D2).

The 3-scalar and 3-vector parts of this equation must

Jza=——Jaz=—Sa)

Jz =—Jz=——E
so that our results (D3), (D5)—(DS) verify the SO(7)
commutation rules (8.14) for LMNP = 7a7b, 7aib, 7a7i,
7iaj, 7i7j. The commutators (8.14) with I.MNP=7abc,
7ai j, 7iab, 7ijk merely express the facts that S, is an
isovector 3-scalar and E, is an isoscalar 3-vector, while
the commutators (8.14) with none of L, M, N, P equal
to 7 are just the SO(6)—=SU(4) commutation relations,
which we assume are still valid. Thus we have verihed
that Jr,kz obeys all the SO(7) commutation relations.

Note added in proof (1) Despit. e the remarks made in
Sec. IX, there is in fact no difficulty in deriving dis-
persion relations for the forward scattering of a mass-
less pion on general multiparticle states (This wo. rk is
being readied for publication. ) (2) The elastic-scattering
sum rules discussed by Gilman and Harari'4 are not
actually sufhcient to allow a derivation of all algebraic
consequences of chirality, even apart from signs. For
instance the study of elastic px and Dx scattering leaves
undetermined one mixing angle X, which Gilman and
Harari determine to be close to zero by comparison with
experiment. By studying the inelastic process cozt. ~ A &zt.

one can derive the value X=O.


