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Lower Bounds on Phase Shifts for Three-Body Systems:
n-d Quartet Scattering*f
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The Faddeev equations are used to provide a variational-bound formulation of the three-body scattering
problem. The present method has the distinct advantage that the Feshbach projection operators, which
enter into previous formulations and which are generally difBcult to construct, do not appear. The method
requires the calculation of a variational approximation to the exact effective potential for the scattering of
a particle by a bound two-body system. A reaction matrix is determined by using this effective potential
as input to a two-body Lippmann-Schwinger equation which is easily solved numerically. The eigenphase
shifts thus obtained provide lower bounds on the true eigenphases for energies below the three-body breakup
threshold. To test its practicability, the method is applied to the problem of neutron-deuteron scattering
in the quartet state. The results are in agreement with previous calculations and with experiment.

I. INTRODUCTION

HERE has been a considerable amount of research
done in recent years' 4 in an effort to develop for

three-body scattering problems a calculational method
analogous to the very powerful Rayleigh-Ritz method
which is available for bound-state problems. That is,
one seeks a variational method which provides a
rigorous bound on the scattering parameters. One
method, which involves the use of the projection
operators introduced by Feshbach' in his development
of an effective potential formalism, has been given by
Hahn, O' Malley, and Spruch. ' For those three-body
systems in which the mass ratios are finite and in which
rearrangement collisions can occur, the projection
operators are dificult to construct in practice, and other
methods must be sought. The approach we describe
here is based on the fact that with the aid of the
Faddeev equations' an effective-potential formalism
can be derived without the use of projection operators. 7

The effective potential is defined in terms of the solu-
tion to a set of Faddeev integral equations having as
input two-body subsystem scattering amplitudes whose
bound-state pole contributions have been subtracted
out. It was shown in Ref. 7 that a variational principle
of the Schwinger type (i.e., based directly on the
integral equations) can be set up which is in fact a
minimum principle under certain well-defined circum-
stances. A variational lower bound on the elastic scat-
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tering phase shift then foIlows from the well-known

monotonicity theorem which is proved, in a form
particularly convenient for our purposes, in Ref. 7.
In Sec. 2 of the present paper we develop the minimum

principle for the effective potential in a different, more
practical form. This method requires that we construct
expectation values of a Hamiltonian which is defined

in terms of energy-independent two-body potentials.
The essential idea of this method appeared previously
in Ref. 4 but was worked out there only for the special
case of three identical particles. ' A numerical appli-
cation of the minimum principle to the problem of
elastic scattering of neutrons by deuterons in the
quartet state, with the assumption of local, central
two-body potentials, is described in Sec. 3.

2. MINIMUM PRINCIPLE

A. Two-Body Preliminaries

In the derivation of the effective-potential formalism'
it is necessary to express the scattering operator for a
two-body subsystem as the sum of two parts; one part
must be free of pole singularities arising from two-body
bound states, while the other part, which contains
these singularities, must be a sum of terms, each sepa-
rable in momentum space. Of course, this decom-

position of the scattering operator is not unique. In
this subsection we define a particular decomposition;
the reason for this choice will appear in the subsequent
application. For simplicity we assume that only one
two-body bound state exists. The generalization to the
case where a finite number of bound states exist is
straightforward.

According to the familiar "two-potential" theorem, '
the scattering operator t associated with the potential
v= vs+vs can be written as t= ted+tv. The operator tg

See the discussion following Eq. (3.24) of Ref. 4. A simpler
method, described in Sec. 3A of Ref. 4, is unfortunately restricted
to single-channel scattering.

9 R. G. Newton, Scatter&kg Theory of 5'aves and Particles
(McGraw-Hill Book Co., New York, 1966), p. 194.
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satisfies the Lippmann-Schwinger equation

tA = VA+8AgotA ) (2 1)

where go is the Green's operator for the unperturbed
system. The operator t& is given by

tB= (1+tAgo)tAB(1+gotA),

where tg~ satisfies the integral equation

tAB VB+0BgAtAB 1

with g~ defined as

gA go+ gotAgo ~

(2.2)

(2.3)

(2.4)

i&I x)(xI0
'Vg =

(xI0Ix)

It follows from the relation

(2.5)

0A IX)—= (0—0B) Ix)=0 (2 6)

that BB supports the same bound state
I X). Since BB is

separable, Eq. (2.3) can be solved algebraically, with
the result

0
I x)s(E)(x I

0
tAB(E) = (2.7)

Here, E is the total energy and S(E) is given by

Now suppose that the potential e supports a single
bound state with state vector IX) and energy —0. We
choose

T(n; E)= TA(n, ; E)+TB(n.; E) (2.13)

such that T~ is free of bound-state poles. The coupled
Faddeev equations with the TA(a; E) as the input give
rise to nine operators & &TA&t» (n, p=1, 2, 3) corre-
sponding to the nine distinct combinations of initial-
and final-state pair interactions. Matrix elements of
these operators are used in the construction of the
effective potential. Ke wish to state these results
explicitly for the case where TA(n; E) is the three-body
counterpart of the operator tA(n; E) defined in the
previous subsection.

Let IX; k ) represent a state in which the bound
pair n and the third particle move freely with relative
momentum k . The state Ix (E—fi'k '/2p ); k ) is
now defined as that obtained from Ix„k,) (in any
given representation) by the replacement

I
x )~

I
x (E—fi'k, '/2ti )) Lsee Kq. (2.9)].The state

B. Effective-Potential Formalism

In order to state our definition of the effective
potential, we must first introduce some notations. Con-
sider a three-body system with total energy E. Let
T(n; E) represent the scattering operator for sub-

system a (m= 1, 2, 3) in the presence of the third non-
interacting particle. We use the upper-case symbol to
distinguish between the three-body operator T and the
two-body operator t. Matrix elements of T and t di8er
in that the former contains an additional 5 function
expressing momentum conservation of the noninter-
acting particle. We consider a decomposition

S '(E)=(xlx(E)) (2.8) (x i—&(E—&&i'k '/2p );k~I
where we have defined

The relation
I x(E))=gA(E)0

I
x).

t, Ix)=0

(2.9)

(2 10)

Lwhich follows from Eq. (2.6)j and the eigenvalue
condition

is obtained from (x; k
I

in a similar way; the super-
script (—) indicates, as usual, that the energy is to
approach the real axis from below rather than from
above. With TA(n; E) defined as above, the form taken
by TB(n; E) is most conveniently expressed as

Go(E) TB(~; E)Go(E)

imply that
go(—)0I x)= I»

Ix(—0))= Ix)

(2.11)

(2.12)

k'k ' S(E—k'k '/2p )
d'k. x™.E-;k.

2p E k'k '/2P +0—
and, since

I X) is normalized to unity, S(—0) = 1. Thus
tg has the correct residue at the pole.

We remark that the significant feature of the above
decomposition of the operator t is that the component
tg which is free of the bound-state pole is obtained from
a potential vz which is energy-independent. The advan-
tage gained will be apparent when we set up a vari-
ational principle for the e6'ective potential in the
three-body problem. In the following we will assume
that the potential ~~ is too weak to support a bound
state. This assumption is .. easily checked by direct
computation. It turns out to be valid in the particular
application we have made (see Sec. 3).

X x.'' E——
2p~

Here, Go(E) is the Green's operator for the unperturbed
three-body system, i.e.,

Go(E) = (E—&.)-', (2.15)

where IIO is the total-kinetic-energy operator.
Let T 0(k,ko, E) represent the amplitude for scat-

tering from the initial state Ix», kt&) to the final state

IX; k,). The physical amplitude is obtained when the
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energy-shell conditions

A'kp'
(2.16)

operator is then a bounded two-sided inverse, "i.e.,

Gg(E) (H„E)=—(H~ —E)G~ (E)= —1. (2.21)

A variational principle for G& may be obtained from
the identity~ "

are satisfied. The basic result of this subsection is the
statement that T p satis6es the integral equation

T p(k. ,kp, E)= V.p(k. ,kp, E)

S(E k'k—'/2p~)
+P d'k, V, (k.,k, ; E)

E h'k '/2p—,+e,+irI

X T,p(k„kp, E), (2.17)

where the effective-potential matrix is defined as

k'k. '}'.y{k.,kp; Z}=(x.' '~ E—;k.
2p.

X[(E—H,)(1—~.,)+ P P {»2',{.}(E)]

GA =GA {++GA (2.23)

on the right-hand side of Kq. (2.22), the identity takes
the form

G&=G~„+error,

where the variational estimate is

Gg„=Gg{+Gg,[1+(Hg —E)G~g]. (2.24)

The error is expressed explicitly as

Gg —G~,= &Gg(Hg —E—)&Gz. (2.25)

Ga=Gx, +GO[1+ (Hg E)Gg—{], (2.22)

where Gg~ is some trial resolvent operator. If we
introduce

pgu asap

X xpIE
l

These results, when combined with Eq. (2.18), lead to
a variational principle for the effective potential. The

(2 18) expressions take on a convenient form when written in

2@{}) terms of the trial functions

C. Minimum Principle for the Effective Potential I f{}~)=G~~(E)[V~ V~(P)]—
{}' k'kp'

x xyl z—;tp),{2.26}
2p{}

In order to establish a Rayleigh-Ritz type of con-
struction for the effective potential, we first observe
that, since the operators &»Tg&' are solutions of the
Faddeev equations, the sum which appears in Eq. {{' k'4'
(2.18) can be expressed in the form Q, I= x.I

E ;k-
2p~

2 Z "}2'~{'}(E)=Z V~(v)
pea Ogp yea, p

+[V/ Vg(n)]Gg(E)[Vg Ug(P)]. (—2.19)

Here, Vz(n) is the modified potential for subsystem n,
and V~ is the sum of the three pair potentials. G~(E)
is the resolvent operator for the Hamiltonian

H~=HO+ V~ (2.20)

We observe that the continuous spectrum of II~,
corresponding to states in which all three particles are
free asymptotically, begins at zero energy. Negative-
energy scattering states, in which a pair is bound and
the third particle is free asymptotically, do not exist
for Hg as they do for the original Hamiltonian
H=HO+V, since the pair potentials V~(u) are too
weak to support a bound state. In the following, the
energy E will always be taken to be negative. We shall
assume that the resolvent operator Gg(E) which
appears in Eq. (2.19) can be obtained by analytic
continuation from the region just above the real posi-
tive E axis to the negative 8 axis." The resolvent

' R. G. Newton, Ref. 9, p. 207. There will of course be simple
poles in Gg(B) at the bound-state eigenvalues of B'g.

X[V.—V.(~)]G.,(E). (2.»)
In using this notation we have assumed that Gg~~= Gg~,
a relation satisfied by Gg and one which guarantees
that the variational expression for the effective potential
and its error are separately Hermitian matrices. Note
that the distinction between Ix&+})and Ix{ })vanishes
for E&0; we have simplified the notation accordingly
in Eq. (2.27). We f'{nd that

V p=V p,+AV p,
where

V-s = &x-I (E—Ho) I xs)(1—&-s)

+5-I Z V~(v)lxs&
yea, p

+(x.I V~—V~(~) I A~)+ Q.~I V~ V~(P) I xs&—

(2.28)

+Q ~IH~ Elye& (2 29)—
"R. G. Newton, Ref. 9, Sec. 7.3.1. With regard to boundary

conditions in a configuration-space representation of Gg, we would
interpret the above statements as implying that the outgoing
waves for E)0 become exponentially decaying waves, for any
interparticle distance extending to in6nity, in the negative-energy
region."See also S.Aran' and J.Percus, Phys. Rev. I66, 1255 (1968).
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If we define ~Alta) and (d,f ~
by the replacement

Gg&~ AGg in Eqs. (2.26) and (2.27), the error term
can be written

A V.,= —(Aif. ~a, —L~Ait, ). (2.30)

Let us suppose that there is no bound state of the
Hamiltonian Hg with energy below E. Then diagonal
elements of the error matrix, given by Eq. (2.30) with
ot=P, will be negative. This result, which holds for
arbitrary (normalizable) functions ~Af ), is a direct
consequence of the Rayleigh-Ritz principle. We now
invoke a monotonicity theorem which states that, if
the error in the effective potential matrix is negative
(i.e., diagonal elements, in any representation, are
negative), the eigenphase shifts, obtained by solving
Eq. (2.17) with V,p replaced by V s„, will lie below
the true eigenphases. "The variational calculation can
then be supplemented by a rigorous validity criterion:
The optimum choice of variational parameters in the
trial function is the one which maximizes the
eigenphases.

With the aid of a theorem derived previously, " the
above minimum principle for the effective potential (or
maximum principle for the eigenphase shifts) may be
generalized to the case where H~ has M eigenvalues
below the energy E. For completeness we restate the
theorem as follows. Suppose we have constructed M
linearly independent trial bound-state functions ~Q;&),

i=1, 2, M, which are accurate enough so that the
matrix D, with elements

(2.31)

is negative. Then

&& Q»i(&~ —~) I (2 32)

is a positive operator in the space of square integrable
functions. It follows that if we adopt as our modified
variational expression the matrix

V-s.'= V-s. 2(A~i—-1(&~-&)0')(D ')'

&&(4J~(&~—~) lA4P) (2 33)

then the modified error matrix takes the form

(2.34)

"After an angular momentum decomposition Eq. (2.17) is
replaced by a one-dimensional integral equation. It is more con-
venient to work with the reaction matrix rather than the T matrix.
This amounts to re]&lacing the +ig prescription by the principal
value prescription. tThe function S in Kq. (2.17) is nonsingular
for E(0]. The standard discussion of the reaction matrix for-
malism, as well as the proof of the monotonicity theorem, has
been generalized in Ref. 7 to take into account the function S
which modifIes the kernel of the integral equation.

L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.
118, 184 (1960).

Since A'g —E is positive, the minimum principle is
established, just as in the previous case M=O. Note
that while Ags P——s P—s, in Eq. (2.33) is unknown, the
variational expression is calculable, since the unknown
function if s appears in the form

(&~—&)6= (&~ &—)G~LV ~ V—~(P)j17fs)
=-LV.—V.(e)hlx, ), (2.»)

which is known.
In the n-d quartet calculation described in Sec. 3, the

modified Hamiltonian H~ has no negative eigenvalues.
This follows from the fact that Hz is constructed by
removing purely attractive potential operators from the
Hamiltonian H which supports no bound quartet
states.

The short range of the two-body interaction has been
an implicit assumption in the preceding discussion. We
now wish to point out how (screened) Coulomb inter-
actions can be handled in a fairly simple way. "Con-
sider, for example, the problem of proton-deuteron
scattering. If particles 2 and 3 are the protons, then, in
the notation established above, the potential V~(1)
contains a Coulomb contribution V'(1). According to
Eq. (2.29) the symmetrized effective potential V»—Vss
will contain the direct-scattering term (xs~ V'(1) ixs).
We can extract the long-range Coulomb contribution
to the effective potential from the above term by
performing a multipole expansion of V'(1) Dn con-
figuration spacej about the center of mass of the
deuteron (particles 1 and 3) and isolate the monopole
term. The symmetrized effective potential may then
be thought of as the sum of two parts, the above
monopole term and a remainder Vg arising from
nuclear and shorter-ranged Coulomb forces. With the
aid of the two-potential theorem (Sec. 2 A) we may
express the scattering amplitude as the sum of a pure
Coulomb amplitude plus a remainder which is obtained
by solving a two-body Lippmann-Schwinger equation
with Vg as input. " Such a calculation, while compli-
cated by the distortion effects due to the Coulomb
monopole potential, nevertheless still seems quite
feasible.

3. APPLICATION TO n dQUART-ET SCATTERING

As a test of our formulation, we now consider elastic
neutron-deuteron scattering in the quartet state. The
two-body potentials are taken to be central, with a

"One way to do this, which is different from the method we
suggested above, is to replace the free Green's function which
appears in the Faddeev equations by a modifIed Green's function
which takes into account the Coulomb interactions. This method
has the disadvantage that one must solve a three-body problem
to determine the input to the Faddeev equations. Approximation
methods for overcoming this difhculty are discussed by J. V.
Noble, Phys. Rev. 161, 945 (1967)."While this statement is correct, there are some subtle points
which arise due to the long range of the Coulomb potential. See
G. B.West, J. Math. Phys. 8, 942 (1967), especially the discussion
leading to Eq. (C7).
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symmetrical exchange mixture, and with the radial
form

where
V(r) = Vp exp( —r'/b')

Vo= —86.4 MeV, b= 1.332 F.

(3.1)

We use the Christian-Gammel approximation'~ to the
deuteron wave function for this interaction, which is
in the form of a sum of three Gaussians. We shall con-
fine ourselves to scattering in the L=O state.

In order to construct the variational approximation
V p, to the effective potential, we must first determine
the vertex function

~
x(s)). It follows immediately from

Eq. (2.9) that this function satisftes the integral
equation

I X(s))= gs(s)s I »+as(s)» I X(s)) (3.2)

This equation was solved numerically. To allow an
analytic evaluation of the integrations occurring in
V s„, the numerical solution for

~ x) was matched to a
sum of three Gaussians. Since the energy of the two-
particle subsystem described by the state ~x(E—ts'k'/

2p); ir) varies over the continuum (—&e, E) in inter-
mediate states, Eq. (3.2) had to be solved for many
values of s. The function 5 was then determined from
Eq. (2.8).

The symmetrized effective potential V, = V», —V/3,
is now specified by the choice of a trial Green's function
Gg&. We work in configuration space and take, for the
present calculation, the simple separable form

G~,=c exp[—(P n, (r'+r"))XotXoj, (3.3)

where r; is the distance separating the ith pair, Xg is
the quartet spin function, and c and n; are variational
parameters which may be redetermined for each choice
of the total energy E.

According to the minimum principle for the eGective
potential the optimum choice of linear variational
parameters is that given by the usual Kohn' pre-

'r R. S. Christian and J.L. Gammel, Phys. Rev. 91, 100 i1953l.
'8 W. Kohn, Phys. Rev. 74, 1763 (1948).

scription, which in our case is just

av„/a. =O. (3 4)

"To obtain the principal value, @re use the method described
by D. Y. Wong and G. Zambotti, Phys. Rev. 154, 1540 (1967).

"For example, J. W. Humberston, Nuclear Phys. 69, 291
(1965); R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev.
140, B1291 (1965).

"W. T. H. Van Oers and J. D. Seagrave, Phys. Letters 24$,
562 (1967).

A more cumbersome procedure is required to determine
the best set of nonlinear parameters. We have calculated
the phase shift 6, for a range of values of the parameters
n; and have searched for a maximum. (Recall that the
variationally determined phase shift gives a lower
bound on the true phase shift. )

The Born term, i.e., the first term on the right-hand
side of Eq. (2.29), is the major contribution to the
effective potential. The second term in Eq. (2.29) is
ten percent of the Born term. The remaining vari-
ational contributions are one percent of the Born
term. These variational contributions should contain
the intrinsic three-body effects. It is not surprising
that they turn out to be small, since the two neutrons
are spatially well separated in the quartet state.

The reaction matrix satisfies an integral equation of
the form shown in Eq. (2.17) where the effective po-
tential is now V, and where the principal-value pre-
scription is used to avoid the pole in the propagator.
This equation reduces, after an angular momentum
decomposition, to a one-dimensional equation and is
solved, in the usual manner, by replacing it with a set
of algebraic equations. "Using a 50X50 Gaussian mesh,
the solution was found to be stable to within 1% with
respect to mesh variation.

In view of the dominance of the Born term we have
confined our calculation to a single energy, E=—1.2
MeV, for which we obtain the result

k cot 8,= —0.136,

in close agreement with previous calculations" and with
experiment. "The doublet state is now under consider-
ation, and the preliminary results indicate that the
variational terms play a more important role here.


