
P 8 VSI CAL REVI EW VOLUME 177, NUM 8RR

Phase-Band Analysis —a Tool for Particle Reactions at High Energies~
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A modi6cation of the traditional phase-shift analysis is suggested which is aimed at greatly reducing the
number of parameters needed for the phenomenological description, and thereby making it possible to
analyze a complete set of scattering data at energies which previously would have proven impractically
high. Although devised with elementary-particle physics in mind, the new method might also 6nd applica-
tions in nuclear physics.

A LTHOUGH in high-energy reactions many an-
gular-momentum states are involved, and each

of these must be parametrized by two real numbers, the
phase-shift analysis as a phenomenological tool in. the
interpretation of such reactions has continued to be
popular. The reason for this is simple: Such analyses
have persisted in supplying interesting information by
establishing particle resonances at quite high energies.
As long as these resonances continue to appear pre-
domlnRQtly 1Q slDglc iso'topic RQd angular momentum
states, the concept of partial-wave decomposition will
remain useful.

At the same time, the difhculty of carrying out such
RQRlyscs lnclcascs vcI'y fRst Rs the energy I'iscs, slncc
the number of parameters to be determined from the
data grows rapidly with the energy. This fact has
dlscoUl aged extensive Rlld complete cxpcx'1Illcnts R't

higher energies, since it appeared doubtful that enough

experimental information can be accumulated within a
finite amount, of time to yield a determination of such
a large number of parameters.

The purpose of this paper is to suggest a new modi6ca-
tlon of thc traditional phRsc-shift RQRlysls which CRD

drastically reduce the Dumber of parameters, and might
thereby Inake feasible an analysis of reactions at an
energy which previously was felt to be impracticablc.

The new scheme is based on some simple and plausible
remarks. It appears both from general knowledge wc
have on particle reactions, as well as from speci6c
analysis of certain reactions that if we follow a given
partial-wave amphtude as a function of energy, its
phase will 6rst rise and contain no absorption. Then it
will pass through an energy region where the amplitude
might resonate, perhaps even repeatedly, while at the
same time picking up more and more absorption. Finally
it will "die down" again, becoming strongly absorptive
and its real phase will change only slowly. The higher
the angular momentum is, the larger the energy will be
at, which thc pcr'lod of I'csoQRDt glory hRs pRsscd RQd

where the amplitude begins to settle down to a slow
Rbsolptlvc death.

Furthermore, it seems that the main interest in the
phRsc shift pRI'RDMtl ization of R I'cactloQ 11cs ln thc
study of resonances. Thus, wc arc primarily interested
in determining those phases which are in the position
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to resonate, and the search for the values of the other
phases is, at the present stage of our knowledge, in
most part just a tool to accomplish this aim. If, there-
fore~ lt tUI'ns out to be possible to get information orl thc

interesting" phases without having to face the arduous
task of determining also all the "uninteresting ' phases,
the analysis is drastically simpli6ed without losing any
csscntlRl Information.

I would like to suggest, therefore, R mod16cd v«»on
of the usual phase-shift analysis, in which the partial
waves from j=0 to j=j are divided into two groups
The 6rst group, from j=o to j=j0, contains those
partial waves whose amplitude has entered thc highly
absoI'ptlvc and UDinterestirlg region, while thc top
band of partial waves, from j=j0 to j=j,„,contains
the "interesting, " potentially resonating, Rnd no't too
absorptive states. In this modified version of thc
phase-shift analysis (the "phase-band" analysis) the
second group will be treated as usual, but the combined
contribUtion of the first, group will bc calculated
"collectively, " assuming, fox instance, a smooth rise
in absorption with decreasing j, and a random distribu-
tion of the real part of the phase shifts. This collective
description could itself contain some parameters, if
~ceded, but many fewer than the total number of
phases one would have to determine in the 6rst group
when using a conventional phase-shift analysis.

To give the above considerations a bit morc quantlta-
tlvc bRsls, lct Us consider' thc scattcx'lng of splnlcss
particles at such an energy that, the conventional
phRsc-shift RDRlysls woUld bc based 0Q thc cxprcsslon

f(O,E)= g (23+1)(2ik) '(g~e"'& 1)P~(cos8)— (1).
In this analysis one would have to determine 42 real

numbers. In the phase-band analysis, this expression
would be replaced by, say,

f(e,E)= P (2l+1) (2ik)-'(g)e"» —1)P((cose)

20

+ Q (2E+1)(2ik)-'(g~e"'& —1)P~(cos&) (2)

in which the 6rst sum on the right-hand side would be
calculated collectively, containing perhaps 3—4 param-



2588 M I CHAEL J. MORA VCSIK

eters, while the second term would contain 10 real
numbers to be determined from the data. Thus the
total number of unknown parameters is reduced from
42 to 13 or 14. Such a reduction could easily represent
the difference between what is practically feasible and
what is not.

In order to explore some of the features of the method
in the above example, a set of data was simulated by
calculating the real and imaginary parts of the scattering
amplitude from a set of tabulated "Gedaekee" param-
eters b~ and g~, and adding to it an appropriate "experi-
mental dispersion" to simulate experimental errors.
The method was then applied to this set of amplitude
"data" to recover the parameters which generated the
"data" in the 6rst place.

The results of these runs are given in Table I. The
runs themselves are described in Table II.

As it is evident from the description of the runs, they
were aimed at testing the following features (for
nomenclature, see the caption of Table II):

(a) Dependence of the analysis on l&. (Runs No. 1,
2, and 3.)

(b) Dependence of the analysis on the presence or
absence of the small-scattering-angle region. (Runs
No. 1 and 4.)

(c) Dependence on the input form of the 8~'s. (Runs
No. 1, 2, 5, and 6.)

(d) Does the success of the phase-band analysis
depend on our singling ot the highest angular momenta
for individual treatments (Runs No. 1, 7, g, 9, and 10.)

The comparison of the relevant runs yields the
following conclusions:

(1) The separation into an upper, individual band
and a lower, collective remainder cari be done success-
fully, and the values of the parameters of the upper band
can be recovered to a quite satisfactory degree of
accuracy, particularly if one remembers that what in
a conventional analysis would have been described by
32 parameters is here described by only four.

(2) The procedure appears fairly stable with respect
to small changes of lj. The broader the phase band is
within the small range tested, the better the output
parameters in it approximate the input. There is also a
tendency for the lower edge of the band to be less well
determined than the rest.

(3) The functional form of the output 8 in the
collective range does not seem to matter very much,
except that when the output and input functional forms
are the same, the determination of the parameters is
more accurate. This point, however, was not tested
thoroughly.

(4) The presence or absence of data at small angles
does not seem to have a serious effect on the accuracy
of the 6t.

(5) The success of the analysis does depend on the
fact that we singled out the highest angular-momentum

states. The two properties of these states which play
a decisive role in the success are the weighting factors
of 2l+1 and the g~ values which are large compared to
those of low angular-momentum states.

The above runs also showed that partial-wave-by-
partial-wave comparison of the output with the input
of the collective part does rot show good agreement.
This makes the success of the procedure in a sense
more striking.

If looked at from a different point of view, the
feasibility of this analysis is quite plausible. If we had
indnitely accurate data in the whole, continuous range
of angles, and these were decomposed in terms of an
infinite number of angular momentum states, it would
be possible to obtain each partial wave amplitude with
infinite accuracy, indePeedeutly of the other Partial wawe-
amplitudes. In practice, however, the discrete set of
data with errors, plus the truncated partial wave series,
introduce complicated couplings among the ampli-
tudes. What we have shown is that under certain
circumstances, general physical considerations can par-
tially undo these couplings.

Since this proposed scheme depends on certain
assumptions outlined above, it might be useful to discuss
them in a little more detail. We saw that the success
of the method depends mainly on the fact that we
separate out the high-angular-momentum states (i.e.,
the 2l+1 factor), and that the low partial waves are
fairly absorptive. The assumption that there be no
resonances in the low partial waves is not essential for
success. Thus, if Regge daughters or any other cause
give rise to low-angular-momentum resonances at
high energies, the scheme will still work as long as these
resonances are quite absorptive.

The assumption that at high energies the low-
angular-momentum states are, oe the average, absorptive
can be considered a model, although there is no known
counterexample to date. Whether this model will
persist to be valid in the future can be decided by the
success or failure of this scheme. It seems unlik, ely that,
using this scheme, one could get a statistically excellent
6t by a collusion of false parameters and invalid assump-
tions. But, as in ordinary phase-shift analysis, certainty
can never be guaranteed.

There are a number of internal checks that can be
used within the scheme. Independent analyses at
neighboring energies should "connect" fairly smoothly.
The analysis should be stable under a variation of the
boundary between the collective and individual bands.
Also, eventually, there might be an experimental set of
data on which both the conventional and this type of
phase analysis can be tried out, thus offering a direct

comparison between the two methods.
There are a number of ways the present scheme can

be used as the initial stage of an approximation method
to obtain the precise phases. For example, once the top
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ALE I. Comparison of input (in parenthesis) and output for A~=—q~ sining and Bg—=q~ cosh~ for the ten runs described in Table II.
For run No. 3, the values for /=14 are —0.03(0.04) and —0.61(—0.73); and for i= 15 are 0.68(0.61) and 0.59(0.51). For run No. 6,
the values for k =15 are 0.71(0.71) and 0.36(0.36).
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A)
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A)
B)
A)
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16

0.70 (0.79)
0.38 (0.30)

~ ~ ~

o.78 (o.79)
o.s4 (o.so)
0.74 (0.79)
0.23 (0.30)
0.74 (0.74)
0.41 (0.42)
0.78 (0.78)
0.33 (0.33)

0
—0.04 (0.002)
—0.21 (0.10)
—0.03 (0.02)

0.82 (0.92)
—o.oo2 (o.oo1)

0.026 (0.033)
O.58 (O.66}

37.8 (s7.8)

0.23
0.95
0.25
1.07
0.15
0.94
0.05
0.85
0.79
0.48
0.86
0.30

0.17
0.35
0.92

—0.08
0.026
0.004

11.2
—2.45

(0.13}
(o.9o)
(o.13)
(o.9o)
(o.1s)
(o.9o)
(o.1s)
(o.9o)
(o.79)
(o.46)
(o.86)
(o.so)

1

(o.12)
(—o.os)

(o.85)
(—0.19)

(o.o23)
(—o.oo5)
(11.o)

(—2.54)

0.27 (0.30)
o.82 (o.77)
0.25 (0.30)
0.87 (o.77)
0.29 (0.30)
0.80 {0.77)
o.22 (o.so)
o.74 (o.77)
o.72 (o.72)
O.41 (O.41)
o.8o (o.8o)
0.22 (0.22)

2

0.11 {0.16)
—O.28 (O.82)

0.68 (0.74)
—o.27 {0.38)

o.o2o(o.o2s)
0.003 (0.012)
5.36 (5.47)
2.84 (2.79)

0.67 (0.61)
0.67 (0.63)
0.68 (0.61)
o.71 (o.6s)
0.63 (0.61)
o.67 (0.63)
0.50 (0.61)
0.59 (o.6s)
0.75 {0.75)
0.44 (0.44}
0.85 (0.85)
o.17 (o.17)

3

o.16 (o.o5)
O.81 (O.19)
0.41 (0.24)
1.03 (0.88)
o,o12 (o.oo6)
0.036(0.022)
1.53 (1.18)
4.49 (4.4O)

20

0.55 (0.57)
0.77 (0.73)
o.54 (o.57)
0.80 (0.73)
O.56 (0.57)
0.75 (0.73)
0.49 (0.57)
o.7o (0.73)
o.8o (o.8o)
0.45 (0;46)
O.91 (O.91)
O.11 (O.11)

4
—0.01 {0.11)
—0.47 (0.20)

0.26 (0.41)
0.03 (0.74)
0.004(0.011)
0.004(0.018)
1.17 (1.51)
2.88 (2.72)

TABLE II.Description of the various runs whose results are tabulated in Table I.Nomenclature: l, = the highest angular momentum
considered; l&=the lowest angular momentum treated noncollectively; l&=the highest angular momentum treated noncollectively;
"sc incr" denotes scattering around a curve increasing from about 0.1 at l=o to about 0.95 at 1=20; "sc deer" denotes scattering
around a curve decreasing from about 0.95 at 1=0 to about 0.1 at i =20. All collective g~ outputs were of the form a+bl+cP, and all
8~ of the form nl. In all cases l, was 20. "Rand" denotes random. Unless otherwise indicated, the full angular range 0'-180' was used.

+Run No.

l,
lg

g~ input

2 3 4

15 16 13 15
20 20 20 20

sc incr sc incr sc incr sc incr

16
20

sc incr

14
20

sc incr sc incr

8~ input rand rand rand rand

Angular range full full full

=20', l= 0—9 {4t+3)' rand
=60') l =10-20

12'-180' full full full

0 0

sc deer (2l+3)-'
Xsc incr

rand rand

full full

10

0
4

L(43—2))/(2/ —i)g
Xsc deer

rand

full

band of phases are determined by a phase-band analysis,
they could be held fixed in a second phase-band analysis
in which the next, somewhat lower band of phases are
determined, etc. Again, internal checks are available
by releasing the top phase-band after the second
analysis to see if they change much. In general, even if
the phase-band idea does not furnish very accurate
information, it might be used to obtain plausible initial
values for a complete phase-shift analysis, thus saving
much computing time that would be spent on random
searches in a complete phase-shift analysis.

The success of the method also depends on the
assumption that the collective band contains enough
partial waves to be able to be treated statistically.
What "enough" means in this context must also be
determined by actual analysis of real data. I would
guess, however, that the collective band would have to
contain at least of the order of ten values of l before

the method will work. Thus, for instance, pion-nucleon
scattering would be relevant roughly around 10 BeV,
although perhaps one could try it even at, say, 7 BeV.
The method could be applied to the scattering of pions
on nuclei. For example, it should work for medium light
nuclei even below 1 BeV, especially for zero spin where
only differential cross section would have to be meas-
ured. There are a host of other nuclear reactions at
medium energies where this method might come into
consideration.

To the best of my knowledge, there is no elementary-
particle reaction at present for which a suflicient
amount of data is available at a high enough energy so
that it would be possible to try out a phase-band
analysis. High-energy measurements have been aimed
primarily at checking special models for some aspects
of high-energy reactions. Perhaps the method of analysis
proposed in this note will contribute to providing an
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incentive for more extensive measurements in pion-
nucleon, kaon-nucleon, and nudeon-nucleon reactions,
in high-energy photoproduction, as well as in a number
of interesting nuclear reactions belonging to what has
come to be called intermediate-energy physics.

The idea of a phase-band analysis occurred to me
while attending the Conference on Pion-Nucleon
Scattering at Irvine. I am grateful to the University of

California at Irvine, and to Gordon Shaw in particular,
for organizing this stimulating meeting. I had a number
of very valuable discussions about this problem with
Paul Csonka. I am also grateful to David L. Bridges for
a rapid and imaginative performance of the numerical
computations, and to the Statistical Laboratory and
Computing Center of the University of Oregon for

cooperation.
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to Elastic pp Scattering*

E. SHRAUNER, L. BENOPY, ) AND D. %. CHO

Arthur Holly Compton Physics laboratory, Washington University, St. I.ouis, Missouri 63130
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We discuss a viewpoint for interpreting elastic scattering of hadrons in terms of a picture in which the
hadrons behave as if they are comprised eGectively of A distinct subparticles Q which contribute essentially
individually to multiple-internal-scattering processes within the hadrons. The formalism of this multiple-
internal-scattering picture is developed and applied to the analysis of elastic pp scattering. The discon-
tinuities in the slope of the pp differential cross section at large momentum transfers are interpreted as
transitions between domains of momentum transfer that are dominated by successively higher-order
multiple-scattering contributions. The structure of the pp cross section is 6tted in good detail with a self-
consistent analysis that circumvents the necessity for conjectures about the wave functions of internal
motion of the subparticles Q within p by exploiting simpler and more direct conditions and conjectures on the
effective generalized form factors and scattering amplitudes. The higher-order multiple-scattering contribu-
tions are self-consistently calculated in terms of the effective QQ scattering amplitude determined from the
region of the 6rst slope. The analysis distinguishes among subparticle models to yield an essentially exclusive
6t to the experimental data with the value of the quark number of the proton A =3, thereby aBording
corroborative evidence in favor of the SU3 quark model from a non-group-theoretical, dynamical basis. Our
results are compatible with quarks of very small, or even pointlike, spatial extension as compared to the
effective electromagnetic radius of the proton.

I. DTTRODUCTIOH

LASTIC pp (proton-proton) scattering experiments
~ indicate that the differential cross section at suK-

ciently high energies tends toward a characteristic struc-
ture that is more or less energy-independent, suggestive
of a semiclassical regime where diffractive effects are
perhaps dominant. The structure of the differential
cross section shows, in addition to a narrow forward
diQ'raction peak, several succeeding domains at larger
momentum transfers in each of which the cross section
decreases at a successively slower rate. ' The transitions
between these successive domains are rather abrupt,
suggestive of contributions from different orders of
physical processes. All hadron elastic-scattering cross
sections share these principal characteristics to some
degree and our analysis should apply generally as well

~ Supported in part by National Science Foundation, Grant
No. GP-8924. Computer facilities supported by National Science
Foundation, Grant No. G-22294.

t National Science Predoctoral Fellow.
A. D. Krisch, Phys. Rev. Letters 19, II49 (1967}.Further

references to pp experiments and analyses may be found from this
reference.

as to the pp case. We discuss here a viewpoint for inter-
preting these elastic scattering data in terms of the pro-
ton, or other hadron, behaving as if it were comprised
electively of A internal subnucleonic particles Q which
contribute effectively individually to multiple-scatter-
ing processes within the proton. The successive domains
of the differential cross section are to be identihed as
contributions of successive orders of multiple internal
diffraction scattering of the Q's.

Antecedents of the Multiple-Internal-Scattering Picture

Several antecedent analyses have contributed to the
suggestion of the multiple-internal-scattering picture:
(i) The differential cross sections for elastic scattering
of high-energy protons from light nuclei also exhibit
breaks in the angular distributions that are similar to
those in pp scattering, and recently these data have
been successfully analyzed in terms of multiple internal
nucleon-nucleon diffraction scattering within the nu-
cleus. ' (ii) Analysis of several hadronic total cross sec-

~ R. H. Bassel and C. Wilkin, Phys. Rev. Letters 18, 87I (I967};
W. Czyz and L, Lesniak, Phys. Letters 248, 22l' (1962).


