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Current Commutators and Electron Scattering at High
Momentum Transfer*
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Sum rules for electron-proton total cross sections are deduced from the vanishing of various equal-time
commutators, and it is shown how these cross sections determine the (spin-averagedl proton expectation
values of all equal-time commutators involving components of the electric current and their time derivatives.
Mild restrictions on the asymptotic behavior of electromagnetic form factors are also obtained.

LKCTRON scattering on a proton at rest is Thus, all of these commutators are determined by the
~ described by the cross section (electron mass=0) coefficients C t(tl p, q', Po) occurring in

d2o'~ e2 1
P (2ftI2EEt 1qsf!I12)A (qs v)

dq'de 3f'8' q'
+o'A r (q', o)—q'A s(q', t )j, (1)

where cr=e'j4tr=(137) ', E(E') is the initial (anal)
electron energy, q„=e„—e„'=momentum imparted to
proton, o= (E E')M= q—p (P=p—roton momentum),
and the A; are the absorptive parts of the forward,
shell Compton amplitudes F; defined by

:polynomial+ P C'qo ' '.
lM

We wish to show how the C can be constructed from
the A;, and thus from the electron-proton scattering
data.

We assume that each of the F;(qs, t ) satisfy the DGS
representatiorP'

T"(q P)=s «~e "*&PlT(i.(*b.(0)) IP). , (2a) p,=
m=p

Mi
P .na

g n3;=p

co 1 &oth.m(& p)dP, (5)
o t q'+2Po+a

T"(q, P) = LC'P.P.+o(q.P.+q.P.)+"d"3~t
+ (q„q„—q'b„„)Fs, (2b)

where j„is the electric current, and a spin average is
implicit. The subscript c indicates the covariant time-
ordered product; thus T'„„divers from the ordinary
time-ordered product by a polynomial in q if the equal-
time commutator of jp and ji has a connected matrix
element.

Sjorken' has pointed out that for large qo and 6xed
tl, the coefficient of qo

' ' (l& 0) in an expansion of T„,
gives the matrix element of the equal-time commutator
of the electric current and its lth time derivative; in
particular,

qo-+ oo oO —$T„„—- polynomial in qo
—p — dsg e—ts'*

o=z qo

&& &P I I ao'i„(x,o),j„(0)jIp). (3)
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where, by crossing symmetry,

h. ttt(a p) ( 1)ttth. ttt(a p) (6)

Expanding this form of Ii; as in Eq. (4), we obtain
after some combinatorial calculation

C, t p ( q p)t I—2s+2n (tls) t—so t (P )ss—t+I—
n, s, t

s!(2n)!
X E;"t (7a)

(2s—l+ 1)!(l—1—2s+ 2n)!(s—2n —t)!
where

Mi 1
Q.at

n=o (2n —nt)!(t+nt)!

dp(2p)sn toat+eth ro(~ —
p) (7.b)

and where the sum over e, s, and t is restricted by
n) 0, s&0, and the requirement that the arguments of
all the factorials are non-negative. Thus, for example,
t&maximum (—nt, —2n).

' S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115,
731 (1959};M.. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151
(1960); N. Nakanishi, i'. 26, 337 (1961);Suppl. 18, 70 (1961).

'There also could be a polynomial in q~ in the numerator of
Eq. (5), but it could be eliminated in favor of polynomials in v and
in q'+2Pv+o. The latter contribute neither to the commutators
nor to the absorptive parts and hence are ignored.
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The absorptive parts A; of the F; can be read oG
from Eq. (5):

A, = Q A,"= Q dodP v"h;"!)(t7'+2Pv+o), (8)

and hence, for e= 1, 2, 3

Mi
A;= g (—1)"

p PV2n+1 ~ =0
2e-m) 0

(2p) en-m,p

do. dp h; . (9)
(~2+o)2tt+1—Nt

As indicated, the sum on m includes only terms for
which 2e—m&0.4 We will show in a moment that the
right-hand side of Eq. (9) can be expanded for large I7' in
terms of the E;"t occurring in Eqs. (7). However, to
complete this connection, we first must extend Eq. (9)
to v=0.

Assuming Regge asymptotic behavior of the A; for
large P, we guess that'

(1+o
—tt'~) 2vs ~ dv'

Fs—Fss=ifvv Q— f v +
slQtltz 7l p v (v —v)

X(As—As' —f,v' —P f.v' j. (12)

Let us now assume that the behavior of Ii2 for large v

is given entirely by the Regge terms, namely, that there
is no part of F2 constant in P in this limit. Then, since
both Fs' and. the brackets in the integrand of Eq. (12)
vanish as P —+ ~, it follows that'

dP
(&s——A ss f,v —P f.—vlf= 0,

V Q

which from (8) gives

8P 00

[As f—„v P—f.v—]=

(13)

hzP(o, P)
do dp . (14)

t7 +o'p

The right-hand side of this expression is the same as the
right-hand side of (9) with n =0 and i= 2. Thus Eq. (9)
can be extended to m=0 with no change in form for
i= 1, and with (9) replaced by (14) for i= 2. Summariz-
ing this result, and expanding the right-hand side of
(9) in a power series in (t7s) ', we obtain, for e=0, 1,

~ ~ ~
7

Ag(t7', v) .- 0, (10a)

st~ tO

A (V', ):f.R') +Z f-(V')", (10b)

where, in addition to the Pomeranchon, the sum on n
includes whatever other trajectories contribute with
0&n&1; for example, the A, and fp. Because of Eq.
(10a), the integral on the left-hand side of Eq. (9) exists
for Aq when tt=0, s and Eq. (9) holds for this case.
However, for As the left-hand side of Eq. (9) must be
modi6ed for m=0.

As suggested by the form of Eq. (5), we assume that
the Regge limit in Eq. (10b) arises only from the terms
with ttt& 1 in Eq. (8). That is, we assume that (10b) is
satisfied with A2 replaced by A2 —A2. Since F2—F2'
vanishes at P=O, a subtracted. dispersion relation for
this difference reads

2P dP
P2 P2P—

p P V —P

Xt As(t7', v') —Ass(t7', v')7, (11)

and if we add. and. subtract the right-hand sid.e of (10b)
to the integrand of this expression, and in the erst
case do the integral explicitly, we obtain

4 To show this: (a) Write a twice-subtracted dispersion relation
for Ii,™(m)2n&2) noting that both subtraction constants
vanish, since F;m ~ r for small v,' (b) expand the result for small
v and set the coeKcient of u'" (2m&m) equal to zero.

5 H. Harari, Phys. Rev. Letters 17, 1303 (1966).' For AI, m =0, and m = 1, the argument of Ref. 4 restricting
2N —m&0 is applicable if an unsubtracted dispersion relation
is used.

fA; 7);,7)„p—(f„v+p f.va) j
P2n+1 a

(2N+1)!= xz P (—1)' E"' (15)'
t (t7s) 2tt+1+t

with Z;"t given in (7b).
The connection between the commutators in Kq. (3)

and the integrals for n & 0 on the left-hand. side of (15)
can be read off from Eqs. (2)-(4), (7), and (15). In
principle, the integrals in Kq. (15), and thus the E;"t,
can be determined from the electron scattering data, and
from these results the C and the matrix elements of
all commutators in Eq. (3) can be constructed.

Rather than pursue the connection between com-
mutators and the integrals in (15) in more detail& let
us present some restrictions on the electron scattering
cross sections which follow from the vanishing of various
equal-time commutators. These restrictions can be
derived straightforwardly from our previous results.
Actually, there are many more restrictions [involving
higher values of tt in (15)] than the ones we list. How-
ever, all these others are implied from the relations that
we write explicitly, because of the conditions

0&Ay, (16a)
—M'Ay&As( / t'vAtt. (16b)

These inequalities follow from the definitions in Eq. (2),
or, equivalently, from the requirement of non-negative
cross sections for both transverse and longitudinally

~ Similar relations are the basis of the Gnite-energy sum rules.
See R. Dolen, D. Horn, and S. Schmid, Phys. Rev. Letters 19,
402 {1967);Phys. Rev. 166, 1765 {1967);L. A. P. Balazs and.
J. M. Cornwall, ibid. 160, 1313 (1967).,
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polarized photons. ~ Since 2P&q' when A;&0 in the
integrand of (15), these inequalities are useful in allow-

ing us to conclude that if

dP q&-+ eo

(q')v At ..0,
P2n+1

(17a)

(qs) v+2 17b)

(qr) v+1
d V qm-+ ee

A2 —- 0.
V2 ran+3

(lil) If (pI[j;{x),js(0)j!p)=0, then there are no
further restrictions if (i) and (ii) hold.

(iv) If (P! [r'iej;(x), js(0)j!P)=0, as well. as (i) and.

(ii), then for i= 1, 2

dP qm-+ eo

(q')' [~* &'s(f—vv+2—f-v )j :0, (20)

and because of (16a) this has the amusing consequence
that the nucleon charge and magnetic (Dirac) form
factors —fr and f~r respectively —must vanish for large
q2 according to

q&-+ oo

ft'(q') (20')
q&-+ oo

q'fs'(q')— (20m)

Similarly, from (19a) it follows that
q&-+ oo

q 'ft'(q') (19b)
q&-+ oo

fs'(q') (19c)

Thus, for example, the existence of a c-number Schwin-

ger term implies that the magnetic form factor fs
must vanish as q2 becomes in6nite. Although these
restrictions on the form factors are rather mild, to our
knowledge they are the 6rst to be obtained from general
arguments.

The conditions (18)-(20) for At can be expressed

simply in terms of high-energy high-momentum-trans-
fer sum rules for the electron scattering cross section in

Eq. (1). The amplitude As makes its presence felt for
s F.J. Gilman, Phys. Rev. 167, 1365 (1968}.
I M. Bander and J. Bjorken, Phys. Rev. 174, 1704 (1968).

-0,

'The restrictions listed below can be extended to larger
values of e by Eqs. (1'/). They are similar in form, and
a,iso in their origin, to relations discussed recently by
Bander and Bjorken. '

(i) If(P!Lje(x) je(0)PIP)=0 then«»=» 2

dP q&-+ uo

q' —A;(q', v) - 0. (18)
V3

(ii) If (pI [je(x), j;(0)jIp)=0, then fori=1, 2

dV q~~ OO

q' [A; mrs(—fvv+Q—f v )] -0 (19a)

g' d P +1(isoscalar) + 2~ ~

0

(23)

The second inequality, based upon quark commutation
rules for the space components of the isospin current, is

t' q&-+ oo

q' +p7l e

e k v I isoscaiar

It is clear that we have been optimistic in assuming the
existence of all moments of the h;" in Eq. (Vb). It is a
likely possibility that, for I, greater than some value, the
K;"'do not exist; that is, essentially, that for high-order
derivatives, the commutators in Eq. (3) are not d.ehned.
An interesting possibility" is that the integrals in

Eq. (15) exp[ —+(q')$. The Et"' determined 'from
scattering data according to Eq. (15) would then all
be zero, and the connection given in (7) between the
commutators and. the E;"' would break down. Except
for this kind of occurrence, conditions (i)-(-v) are
leveI'sible' that ls lf they are satisfied then the corre-
sponding commutators vanish.

Finally, we remark that radiative corrections and/or
multiple photon exchange would tend to decrease the
signi6cance of our results.

One of the authors (R.E.N. ) wishes to thank Professor

J. D. Bjorken and other members of the theoretical
physics group at Stanford Linear Accelerator Center
for a number of very helpful discussions.

'0 J. Bjorken, Sanford Linear Accelerator Center Report No.
SLAC-PUB-338, 19@' (unpublished); Phys. Rev. 163, 1767
(1967).

"See, e.g., Y. D. Lee, Columbia University Report, 1967
(unpublished).

'~ H. Sugawara, Phys. Rev. 170, 1659 (1968).
"C. Callan and D. Gross, Phys. Rev. Letters 21, 311 (1968);

D. Gross, Harvard University Report, 1968 (unpublished).
j4 J. D. Bjorken, Phys. Rev. Letters 16, 408 (1966).
'~ S. L. Adler, Phys. Rev. 143, 1144 (1966).
"R.Brandt and J. Sucher (Ref. 1).

backward scattering angles" and is relatively more
dificult to extract from the data. For A~,

dv d'o'v z 2tr' "dv (1)—~ +01 —I. (21)
v re dv q e v (El

Thus, for example, if the commutators (i)-(iv) are all
satis6ed, as has been suggested, " then it follows from
(20) and (21) that

dP d r'" q~~ ~
lim (q')' — —:0.

P dg dP

If only (i)-(iii) are valid, we would expect the right-
hand side of (22) to be a (nonzero) constant. In fact,
for the Sugawara model, " this constant can (almost)
be calculated exactly. "

To give some perspective to these results, let us
compare them with the inequalities derived previously
by Bjorken.""The first inequality, derived fromisospin
manipulations on Adler's sum rule 's reads (for all q')


