
p —MESON ELECTROMAGNETIC MASS SPLITTING 2561

value for h'/47r less than 1.5 is in poor agreement with
experiment, it is highly likely that 3f,+—M, o~&—1.2
MeV for M~+o —M~++= 8 MeV, M, +—M po~&0 8 MCV
for M~+o —M~++= 6.3 MeV, and M~+—M, o~& —0.6
MeV for M~+o —M~++=4 MeV.
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Following a procedure proposed recently by Atkinson, we derive sum rules for the A and B amplitudes
for the reaction m +5+—& ~++X by equating unsubtracted dispersion relations at t=0 and at fixed I
or fixed backward angle. Combining these with the already known superconvergence relation for the B
amplitude, and assuming the sum rules can be saturated with known resonances, we obtain three equations
for two unknown coupling constants g gy, ' and g gyes. Choosing to fix u =0, one obtains values of the coupling
constants an order of magnitude larger than expected on the basis of, say, SU(3). We argue that this is
probably because of the large extrapolation to unphysical values of cos8 required in evaluating the fixed-u
dispersion relation for I=0. Taking u to be positive in such a way as to minimize the required extrapola-
tions in angle, or choosing fixed cos8= —1, one obtains results that are reasonably consistent with one
another and with SU(3), to within estimated uncertainties of 50% or more, resulting from experimental
error in the resonance widths, large cancellations between the contributions of different resonances, and
unknown nonresonant-background and high-energy contributions.

ECENTLY Atkinson has shown that one can ob-
tain sum rules in certain cases, by equating two

diferent unsubtracted dispersion relations, with differ-
ent variables held fixed, for the same scattering ampli-
tude. ' To summarize the procedure briefly, he considers
an amplitude that satisfies an unsubtracted dispersion
relation with either the Mandelstam variable t or I held
fixed. (We will work in the channel where s is the total
center-of-mass energy squa, red. ) One can then write

ImA (s', t, r s' t)ds'— —
A (s, t,N)=

S S

where

ImA(s ~
r s I) N)ds

(1)
S —S

r= P m;2=s+t+I (2)

s. +2+~ 5 +sr+.

* Supported in part by the U. S. Atomic Energy Commission.' R. Atkinson, III, Phys. Rev. 169, 1293 (1968).

and m; is the mass of one of the two incident or two
outgoing particles. Provided no subtractions are needed
in either dispersion relation, the second equality in

Eq. (1) then yields a sum rule for ImA.
In this paper, we are going to apply this technique to

both the A and 8 amplitudes for the reaction

(We use the standard notation, as given, for example,
in the paper of Frautschi and Walecka, ' for the in-
variant amplitudes in pion-baryon scattering. ) This
reaction corresponds to isospin 2 in the t (sn. —+ZZ)
channel. Since at large s and Q.xed t one has'

ImA (s,t) sn&'& ImB(s, t) s &'& '

where o(t) is the leading Regge trajectory in the t
channel, the usual assumption that no I=2 trajectory
reaches j=0 for t&0 implies that 8 is actually supercon-
vergent, while A satisfies a dispersion relation with no
subtractions, provided t is held axed at a value less than
or equal to zero. The superconvergence relation for 8
has been studied previously. 4 ' If one assumes that the
superconvergent sum rule is saturated by the h. and Z
poles and the known resonances in the Zm system, one
obtains a relationship between the mAZ and +ZAN

coupling constants and the experimentally measurable
masses and widths of the resonances. Since there is only
one equation, the superconvergence relation by itself is
not sufhcient to determine the values of the coupling
constants, unless one invokes SU(3) and a specific
value for the d/f ratio. The two additional Atkinson-
type sum rules we obtain here, combined with the

' S. Frautschi and J. Walecka, Phys. Rev. 120, 1486 (1960).' S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.
126, 2204 (1962).

4 P. Babu, F. Gilman, and M. Suzuki, Phys. Letters 248, 65
(1967).' G. Dass and C. Michael, Phys. Rev. 162, 1403 (1967).
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superconvergence relation, actually overdetermine the
coupling constants, so that we can obtain, in principle,
not only a value for the coupling constants in terms of
the resonance parameters, but also a check on the self-
consistency of the theory. As we shall see, there are
some problems in carrying out this program. These
arise both from the fact that the values obtained for the
coupling constants are sensitive to the values at which t
and I are fixed in obtaining the sum rules, and also from
the experimental uncertainties in evaluating them. We
shall make some arguments as to what are reasonable
values of t and I to select; using these values, we find the
sum rules are mutually consistent, and the values
obtained for the coupling constants agree with what one
would expect from SV(3) considerations, to within the
large estimated experimental uncertainties, of the order
of 50%, in evaluating the sum rules.

We now write down our three sum rules. The super-
convergence relation for the B amplitude of reaction (3)
has the form

80

ImB(s', t)ds',

—gx gz "ImB(s', t, r s' t)ds'— —

s —s

where so ——(1+A)'. We have set the pion mass equal to
1, and will use A and Z to stand for the masses of the
corresponding particles. The coupling constants gq and

gz are, respectively, equal to the xAZ and +ZAN coupling
constant g q and g q defined by Martin and Wali'
multiplied by (4s)'". The Atkinson-type sum rules for
the A and 8 amplitudes are

At axed I, the asymptotic behavior of both A and 8
is given by3 '

ImA (s'il) ~s~'"& '" ImB(syu) ~s~&"' "' (8)

where n(N) is the position of the leading Regge trajectory
in the I channel. For our problem, this will be either the
A trajectory or the Yz*(1385) trajectory. Clearly
ctq(N) (2 for u& A'. The situation as regards the
Y&*(1385) trajectory is much less certain. At least two
rather different forms for the E*(1238)trajectory have
been suggested' '. It seems reasonable to assume that
the Yq*(1385) trajectory is probably roughly parallel to
that of the cV*(1238). One would appear to be on safe
ground in saying that n(u) &~~ for the Yq*(1385) tra-
jectory when N=O; it is not clear how positive u may
be taken and have this condition continue to hold. This
question will be important to us later; for the moment
we simply remark that the foregoing discussion, com-
bined with Eqs. (8), indicate that our sum rules (6) and
(7) should certainly be valid for tt= 0.

We make the usual approximation that the integrals
in (5), (6), and (7) are saturated by pole terms and low-

lying resonances. One simpli6cation here, over the xE
case studied by Atkinson, is that the t channel, having
isospin 2, has no low-lying particles or resonances.
Hence, in accord with the spirit of our approximations,
we neglect the integral over the left-hand cut in the
fixed-I dispersion relation, since the discontinuity
across that cut is proportional to the 3-channel absorp-
tive part. We take the contribution of a resonance of
isospin I, total angular momentum j, and orbital angu-
lar momentum l to the amplitudes for reaction (3) to
be given by

'—'—'0 ImB(s', t, r s' t)ds'— —

s —s

"ImB(s', r s' u, N)ds'— —
(6)

f(, cr (I',q"/2)/(——M W ,'—iI'q"—+'-), (9)

f(, e'"~ sine(;/——q' (10)

where f~, corresponds to the elastic partial-wave
amplitude

and
80 s —s

(Z —A)gg ImA ($, t, r $ t)ds——

A,2—I s —s

~' '0ImA(s', t, r s' t)ds'— —

s —s

ImA(s
q
r $ I, N)ds

ls —s
(7)

where s, t, and I obey Eq. (2). The direct-channel pole
terms are absent from Eqs. (6) and (7), since they
cancel out when the difference of the fixed-t and Axed-I
dispersion relations is taken.

6 A. Martin and K. Wali, Phys. Rev. 130, 2455 (1963).

and the relations for A and B in terms of the f~; are
given, for example, in Ref. 2. In Eq. (9), W=s't',
cz=-,', and —-', for I=0 and 1 respectively, q equals the
magnitude of the center-of-mass three-momentum, and
F. and I' are the elastic and total widths. In most cases
we have used the narrow-width approximation. We
have, however, done an approximate integration of the
complete Breit-Wigner formula of Eq. (9) for the
Y~*(1385) whose position is quite near threshold, and
also, in most of our calculations, near the zero of the
dispersion denominator s' —s; the use of Eq. (9) reduced
the Yq*(1385) contributions, on the average, to about

7 D. Freedman and J.-M. Wang, Phys. Rev. 153, 1596 (1967).
D. Seder and J. Finkelstein, Phys. Rev. 160, 1363 (1967); D.

GriKths and W. Palmer, ibid. 161,1606 (1967);R. Ramachandran,
ibid. 166, 1528 (1968).

'A. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri, L.
Price, M. Roos, P. Soding, W. Willis, and C. G. Wohl, Rev. Mod.
Phys. 40, 77 (1968).
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agg'/4n = b, (7')

where the quantities u and b depend, of course, on the
value of I chosen. We designate the value of the xAZ
coupling constant resulting from (7') as g~i. The
superconvergence relation (5) does not depend on N.

Once we have decided to set t =0, we may evaluate the
right-hand side in the resonance saturation approxima-
tion. We take the resonance parameters from the review
of Rosenfeld et al.' with the exception of the ~Z decay
width of the I'i*(1660).It is pointed out in Ref. 9 that
this is very uncertain experimentally. We have chosen
to use the value of 21 MeV given by Armenteros et al."

"R. Armenteros, M. Ferro-Luzzi, D. Leith, R. Levi-Setti,
A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, E. Kluge, H.
Schneider, R. Barloutaud, P. Granet, J. Meyer, and J.Porte, Phys.
Letters 24$, 198 (1967).

70% or 80% of the value obtained using the narrow-
width approximation.

We note here one attractive feature of the sum rules
(6) and (7). In many of our calculations, we shall be
taking s rather close to threshold. In such a case, the
S-wave scattering lengths, being weighted by small
values of the dispersion denominators, might be ex-
pected to make appreciable contributions to the first
and third integrals on the right side of Eqs. (6) and (7).
The magnitude of these contributions would be un-
known. Fortunately, however, because of their inde-
pendence of angle, the S-wave contributions to the first
and third integrals cancel. There remains, of course, a
contribution to the second integral from the S wave in
the crossed channel, but since, for s&so, this is not
weighted by a large dispersion denominator it is
presumably reasonable to ignore it.

We turn now to the problem of choosing the values of
t and N. What we wish to do, of course, is to choose t
and I in such a way as to maximize the validity of our
assumption that the integrals in the sum rules are
saturated by the relatively low-lying resonances. As far
as t is concerned, we shall follow Refs. 1, 4, and 5, and
most other workers in the field, and consider forward
scattering, setting t=0 in the superconvergence relation
(5) and in the fixed-t integrals in Eqs. (6) and (7).
Besides being the most natural choice, this has the
great advantage of not requiring any extrapolations into
unphysical regions with

~
cos8~ )1. Unfortunately, for

the 6xed-I dispersion relations in (6) and (7), the
situation is more complicated. The natural choice to
make for u is again I=0, and this is what has been done
in general in considering fixed-I dispersion relations. '5'
However, such a choice here leads to highly unrealistic
results. We shall describe these briefly, and then
attempt to understand why I=0 is not likely to be the
optimum choice of I in this problem.

Equations (5), (6), and (7) may be analyzed in the
following way. Since the Z pole does not appear in A,
Eq. (7) by itself gives a value for g+'. We will write (7)
in the form

Ter.z I.The columns headed A (0), A {u1),and A (u2) give the
contributions of the resonances whose masses are listed in the first
column to the parameter b defined by Eq. {7') for u=0, 43.2, and
48.3 m ' respectively. The columns headed B(0),B(u1), and B(u2)
give the resonant contributions to h, defined in Eq. (6'), for the
same three values of u. The last five rows of the table give the
values of the indicated parameters, defined in Eqs. {5')—(7'), for
u=0, u=u1, and u=u2. Contributions left blank in the table, or
from known resonances not listed in the first column, are
negligible.

M
(MeV) A (0)

1385 2.97
1405 —0.25
1520 7.25
1660 —6.00
1690 4.50
1815 1.57
1830 —4.72

B(0) A (u1) B(u1) A (ug) B(up)

0.37
~ ~ ~

—2.91
1.67—1.25—0.38
0.41

4.21—0.22
7.58—6.77
5.08—0.23—2.81

0.55
~ ~ ~

—2.80
1.46—1.09
0.23
0.45

0.90—0.25
7.70—6.05
4.50—0.72—2.50

0.59
~ ~ ~

—2.90
1.53—1.15
0.36
0.37

0.113
5.37 —0.261—0.550—2.09

0.356
6.84 —0.210

1.34—1.20

0.533
3.60 —0.370

1.78—1.20

for F ~ for this resonance, largely in order to have a
number with which to calculate. The large uncertainty
in this quantity is, of course, still present, and is, in fact,
a serious source of uncertainty in our results, since the
contribution of the Fi*(1660) is large in all of our sum

rules. We write Eq. (5) in the form

gz'/4m =gp'/4m+ c. (5')

dgg'/4m +e=h, (6')

where d, e, and A, depend on the choice of N. We refer to
the value of g obtained from (6') as g&~. Clearly, if our
three sum rules are consistent, we should have gg~= gg~.

Moreover, if the assumptions which have gone into
deriving the sum rules are correct, and if the coupling
constants obey approximate SU(3), then the two con-
stants fz and fz defined by

(12a)

Upon calculating the contributions of the various reso-
nances to the superconvergence relation, we obtain for
c the expression

c=2.32 (1385)+1.64 (1520)—2.21 (1660)
+1.81 (1690)+0.54 (1815)—1.68 (1830)

+0.54 (2035)+0.28 (2100)=3.24, (11)

where the numbers in parenthesis give the mass of the
resonance to which a particular term in the equation
corresponds. Equation (11) includes the contributions
of all resonances for which the relevant parameters are
reasonably well known and which make a non-negligible
contribution to c. The 1690-MeV resonance referred to
is the one with I=O, the properties of the I=1, 1690-
MeV resonance having not been established. Substi-
tuting Eq. (11) into Eq. (6), we write the latter in the
form
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Tmzz II.The second and third columns give the values of gq'/4m. , the ~AX coupling constant, as obtained from the sum rule (7) and
from the sum rules (5) and (6) taken together when e is Axed at the values given in the erst column. The fourth column gives the value
of gz /4m-, the ~ZZ coupling constant, obtained from Eqs. (5} and (6) at the same values of I, while the remaining columns give the
values of the SU(3}parameter f obtained from gA&, F2, and gz using Eqs. (12a) or (12b) for m=43.2 and 48.3 m '. Values of f are not
given for I=0, since the results in that case are in such extreme violation of SU(3).

0
43.2
48.3

ggI'/4n-

47.4 &14.1
19.2 & 7.1
6.76& 4.0

gg22/4~

101 +20
11.4 ~ 5.0
8.05~ 3.1

gy.'/4m.

104 +21
14.6~ 5.,8
11.3& 3.9

0.01+0.18
0.41~0.17

0.24&0.15
0.36~0.11

0.50+0.09
0.44~0.07

gz =4f*g (12b)

"J.K. Kim, Phys. Rev. Letters 19, 1079 (1967).

with g'/4n. =14.7, should be roughly equal to one
another, and to the SU(3) parameter f defined by
Martin and Wali. ' Experimentally, the most direct
determination of f is perhaps that of Kim, "who finds

f=0.41&0.07. As f increases through this range, gz'/47r
ranges from 7.6 to 13.5, while gq'/4~ decreases from
10.7 to 5.3. The values corresponding to f=0 4are.
g~'/4n. = 7.05, and gz'/4~= 9.4.

If we choose N=O, the second and third columns of
Table I give the contributions of the various resonances
to the constants b and h, as well as the values of the
constants a, b, d, e, and h themselves. Substituting these
into Eqs. (6') and (7'), one finds the results listed in the
first row of Table II. As will be seen, one finds values
of the coupling constants an order of magnitude larger
than what one expects on the basis of at least some very
rough validity of SU(3).

Table II also gives an estimated uncertainty in the
results for the coupling constants. This estimate was
made in the following way. We have taken the errors in
each of the resonance contributions to be &15%,which
is consistent with the general magnitude of the errors in
the total and partial widths as given in Ref. 9, except
for the Fi*(1660), whose contribution we have rather
arbitrarily taken to have a 20% uncertainty. There is,
of course, no real way to determine the error due to the
neglect of nonresonant and high-energy contributions
to the integrals. For purposes of estimating the total
error, we took the nonresonant background contribu-
tion to be 15% of the largest resonance contribution,
and the remaining high-energy contribution to be equal
to that of the 2100-MeV resonance, the highest reso-
nance we have included explicitly. Following this pre-
scription, we find the parameter e, from Eq. (11), to
have an estimated uncertainty of &0.85=+26%.This
uncertainty in c is, of course, reflected in a correspond-
ing uncertainty in e in Eq. (6'). The errors in e and h

are, to a considerable degree, correlated, since they
receive contributions from the same resonances. In-
spection of Table I and of Eq. (11) shows that, for the
most part the resonances contribute with the same sign
to h and to —e. Therefore, in estimating the error in

g&2, using Eq. (6'), we have added the errors in —e and

h, rather than taking the square root of the sum of the
squares. Independently of the details of the procedure
for estimating the errors, we conclude that the results
for the coupling constants obtained when N=O are
unreasonably high.

In order to attempt to understand what has gone
wrong, we write down the formula for the center-of-
mass angle between the incident and outgoing pions,
which is given by

cos8(s,u) = 1+(r s u)/2v, —— (13)

~here v=q'. The resonance contributions to the third
integrals on the right side of Eqs. (6) and (7), the
integrals carried out at fixed I, involve, for N=O,
I egendre polynomials of argument cos8(s„,0), where s„
is the squared mass of the resonance in question. For the
low-lying resonances, this becomes very large because of
the unequal masses of the m and Z as may be seen from
the second column in Table III, where we give the
values of cos8(s„0) for the three resonances which make
the largest contributions to our sum rules. It is this fact
which results in the very large contributions of the 1385-
and 1520-MeV resonances to 8 and h at u= 0. LAlthough
cos8(s„,0) is larger for the Yi*(1385), the angle-de-
pendent term in that case is suppressed by kinematic
factors, whereas the angle-dependent term in the
Fo*(1520) case is kinematically enhanced, which ex-
plains why its contribution at 1=0 is even larger than
that of the Fi*(1385).]We feel that it is not realistic to
take seriously the idea of keeping only the resonant
terms in the partial-wave expansion at values of s and
I where these become anomalously large due to their
angular dependence, and that this is probably the reason
for the (presumably) poor results obtained from (6) and
(7) when u is set equal to zero.

If this diagnosis is correct, the question then arises as
to whether it is possible to extract useful information
from our sum rules. One way of proceeding is to go to
positive values of I in order to decrease the values of
cos8(s„,u), and, hopefully, bring them within the physical
region. It turns out not to be possible to make

~
cos8(s„u)

~
(1 for all of the resonances for any choice

of u. If one chooses u large enough so that cos8(s„,u) = 1
for the Fi*(1385), which requires u =48.3, then
cos8(s„,u) is between —1.5 and —2 for some of the
higher resonances. %e have considered two choices for I
which seem to us to be reasonable. The first is the one
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which we have just mentioned, of choosing N=-48.3; this
has the merit that

~
cose(s„,N)

~
(2 for all of the resonan-

ces. The values of cos8(s„,N) which result for the three
most important resonances are shown in Table III„
along with those for N=O and for our remaining choice
1=43.2. The latter was determined by requiring
cos8= —1, just at the negative edge of the physical
region, for the important and strongly angular de-
pendent contribution of the Ys*(1520).We will denote
thcsc two cholecs of I 43.2 and 48.3 by Qj and Q2

respectively. The choice of u~ leaves eos0=4.9 for the
1385-MCV resonance. As we have already noted, the
term in the Fi*(1385) contribution proportional to
Pi(cost|) is kinematically suppressed relative to the
constant term. This suppression is by a factor of the
order of (3f Z)/(3E+—Z) in A, and (M—Z)s/(M+X)s
in 8, where M is the mass of the resonance. Hence, one
might hope that the required extrapolation in angle for
the choice m=ul is not too serious, especially for the
ease of the B amplitude. Unfortunately, in going to
these values of I, questions arise as to whether the 6xcd-
I dispersion relations are still unsubtracted. This de-
pends on the unknown behavior of the Fi*(1385) tra-
jectory. If Barger and Cline" are correct as to the form
of the $*(1238) trajectory, and if the F'ie and E*
trajectories are parallel, then the 6xed-I dispersion rela-
tion remains unsubtractcd only up to I of the order of
40. (Tllell' i'esiilts, obtained from a 6't to backward grig

scattering data at high energies, are quite similar to
those obtained from a Chew-Frautschi" plot of the xE
resonances. ) On the other hand, if the I'i* trajectory is
parallel to the E* trajectory of Desai, Gregorich, and
Ramachandran, '4 which does have the advantage of
avoiding unobserved parity-doublet states, Eqs. (6) and
(7) hold out to I of the order of 60. In the former case,
there is the possibility, discussed by Bass and Michael,
that resonance saturation might be a good approxima™
tion to the dispersion integral of the amplitude with the
divergent Regge contribution subtracted OG, so that the
results of using (6) and (7) together with the resonance
saturation approximation could conceivably be valid
even if the amplitude itself, without the nonconvergent
Regge contributions subtracted off, does not satisfy an
unsubtracted dispersion relation. Dolen, Horn, and
Schmid" have shown that a necessary condition for
this to be true is that there be resonance contributions
of opposltc sign and comparable stlcngth which ls true
here as may be seen from Table I. However, Schmid"
has also found that, at least in some cases, the Regge
terms may contain a reasonable approximation to

'~ V. Barger and D. Cline, Phys. Rev. Letters 21, 392 (1968);
19, 1504 (1967).

~g G. Chew and S. Frautschi, Phys. Rev. Letters 8, 41 (1962).
'4 B. Desai, D. Gregorich, and R. Ramachandran, Phys. Rev.

Letters 18, 565 (1967); and R. Ramachandran, last paper in
Ref. 8."R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).

's C. Schmid, Phys. Rev. I,etters 2l), 689 ($968).

Tmxx IG. The columns headed cosg(N) give the values of
cos8(s,u), de6ned by Eq. (13), for the indicated values of I (in
units of m, '), and s equal to the square of the resonance masses in
the 6rst column.

M {MeV)

1385
1519
1660

co~(0)

32.3
5.73
1.40

co~(43.2)

4.90—1.00—1.47

cos8(48.3)

1.00—1.90—1.94

intermediate energy resonances. If this should be true
in general, then it seems unlikely that the resonance
contributions would be a good approximation to the
integral over the convergent part of the amplitude; in
that case our sum rules would be expected to be valid
only if the Fi*(1385) trajectory is such that the full
amplitudes, without any Regge terms subtracted o6,
obey unsubtracted dispersion relations. And of course,
even if the Axed I dispersion relation is, strictly, unsub-
tracted at N=Nl or N~,, its convergence will be worse
than at N=O, so that the error due to the neglect of the
large s contributions will probably be worse. %C choose
to investigate the results of taking e in the range of u~

or N2, despite all of these uncertainties, because the
results seem to indicate clearly that m=0 is not a
satisfactory choice. %C reject a choice of I in the range
O&N &e~ on two grounds. First of all, there seems to be
no physical argument for choosing one u in this range
over any other, so that, if the "correct" value of I lies
in this range we do not know how to pick it out, whereas
a choice of I near Nl or N~ can be justi6ed on the ground
of minimizing the required extrapolation to unphysical
angles. And as a practical matter, we have investigated
briefly the results of choosing u between 0 and Nl and
find that they OGer, in general, no improvement over
N=O. In fact, choosing 1=30 leads to a prediction of
negative values for the squares of the coupling constants.

The resonant contributions to b and h, and the values
of the parameters in Eqs. (6') and (7'), for I=Ni and Ns

are given in Table I, and the corresponding results for
the coupling constants and for fq and fs are given in the
second and third rows of TaMe II. 7Vhile the uncer-
tainties are very large, all of the results obtained with
N=N~ or N2, with the possible exception of the results
obtained from the sum rule ('T) at N=li, are compatible
with one another and with the results expected from
SU(3), namely, gss/4e. =7, ggs/4s. =9.5, f~0 4 As far. .
as the result for gg~' at I=N~ ls concerned, we note from
Table I that it is large mainly because it receives an
unusually large contribution from the Fie (1385).As we
have already remarked, cose(s„li) is appreciably larger
than 1 for this resonance, and this will have a more
severe effect in the sum rule for 2 than in Eq. (6) for B.
Therefore it is not a matter of too great concern that
Eq. (7) is not well satisfied at I=ui, indeed, it seems to
further support our hypothesis about the importance of
avoiding the application of the saturation approxima-
t;ion jn ca,ses where any of the rcsongnres ~a,kc @b-
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normally large contributions because of a large value of
cos8. In any event, if our error estimates are reasonable.
the discrepancy between the results of Eq. (7) at I=I&
and the other results is of marginal significance.

In addition to choosing u to be rather large and posi-
tive, there is another procedure by which one may
attempt to obtain sum rules of the general type of
Eqs. (6) and (7) while avoiding the difhculties resulting
from extrapolation to large unphysical values of cos8.
This is to make use of the fact that the amplitudes A
and 8 also satisfy dispersion relations at fixed cos0= —1,
as has been discussed by Atkinson. "Therefore, in place
of the fixed-u dispersion relations, one may combine the
dispersion relations at fixed cos8= —1 with those at
6xed t=0 to obtain sum rules analogous to (6) and (7).
Clearly, since cos8 is fixed at —1, no problem of un-
physical angles arises in this method for any value of s,
so that the use of fixed backward angle, rather than
fixed u, dispersion relations might well be advantageous.
Since, for large s, cos8= —1 corresponds to u=O, the
convergence of the fixed-angle dispersion relations
should be the same as those for fixed u=0 so that, from
our previous discussion, Regge pole theory indicates no
subtractions are required.

In Ref. 17, the discussion is carried out "dispersing"
in the variable v rather than s. In the general case
this is preferable, since the configuration of the cuts
of the backward amplitude is simpler when it is con-
sidered as a function of v instead of s. However, a
simplification arises in our case, since we have isospin= 2
in the t channel and so are neglecting the t-channel
absorptive part. As a result the analytic properties of
A(s, cos8= —1) in the s plane are very simple. The
singularities consist of the s- and u-channel pole terms
plus cuts along the real axis for 0&s~ sl. and $0& s& ~,
where s~=(Z' —1)'/sp' is the value of s at which
I= r s t=sp—w—hen cos8= —1, i.e., when t= —4v(s).
The discontinuity across the left-hand cut is, of course,
due to the u-channel absorptive part. In the general
case there is also a circular cut in the complex s plane,
as well as a cut along the negative real axis with dis-
continuities determined by the t-channel absorptive
part; since we are neglecting the latter discontinuity,
these cuts are not present in our calculation.

We now write down the analogs of Kqs. (6) and (7)
for the case that the fixed-u dispersion relation is re-
placed by a dispersion relation with cos8 = —1 or
t= —4v. %e find

gx ~xgx gz Czgz
+ +

A —u Sg—$ Z —u sg —$

s —sSQ

"ImB(s', 4v(s'), r s'+4v(—s'))
ds

"ImB(s', 0, r s')ds' —' 'pImB(s', 0, r s')ds'—
s —s

s' ™(s',4v(s'), r s'+4v(s'))—
ds', (14)

(Z—X)g,& C, (Z —X)g,&
SQ s —s s —s

A' —u Sg—$

"ImA(s', 0, r—s')
ds-

s —sSQ

' "ImA(s', 0, r s')—
ds

00 s —sI

"ImA(s', 4v(s'), r s'+4v(s'))ds'— s& ImA(s', 4v(s'), r s'+4v(s'))ds—'
(15)

SQ s —s s —s

The constant s~ appearing in Eqs. (14) and (15) is
defined, analogously to sz„as the root of the equation
r s 4v(s) = A.', an—d si—milarly for sz, the constants C~
and C~ arise because the A and Z in the cross channel
give rise to poles at A' and Z' in the variable u'= T s'
—4v(s'), rather than in s'. The values of these constants
are given by

sz= (Z' —1)'/A' sz= (Z' —1)'/Z',

C~=(—1+4dv/dsi, ") '= —(Z' —1)'/A', (16)

Cs= (—1+4dv/ds~, s')—'= —(Z' —1)'/Z'

"D.Atkinson, Phys. Rev. 128, 1908 (j.962).

'd'g/ vr4e+'=h',

a'g~'/6. = b',

(14')

(15')

The last integrals in (14) and (15) may be evaluated by
introducing the new variable u'=r s' 4v(s') and- —
making use of the antisy'nmetry (symmetry) of
ImA (ImB) under interchange of s and N.

Equations (14) and (15) are, of course, very similar in
structure to Kqs. (6) and (7); they share with the latter
the advantage that any large S-wave contributions at
threshold will cancel out. In analogy with (6') and (7'),
we write Eqs. (14) and (15) in the form
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where use has been made of (5) in (14'). Table IV gives
the contributions of the various resonances to b' and h',
as well as the values of the constants a', b', d', e', and h'.
Equation (15') leads to a value of 18.5&14 for gq'/kr ,'

in other words, because of the large cancellations among
the various resonance contributions, essentially no con-
clusion can be drawn from the sum rule (15) as to either
the value of gq' or the consistency of (5), (14), and (15).
From (14'), i.e., from the combination of Eq. (14) with
the superconvergence relation (5), one obtains g~'/4s.
=26.0+12.6. Combined with (11) this gives gx'/4r
=29.2+13.5. These two coupling constant values are
not in remote agreement with SU(3) for any value of f.

The large discrepancy between these last results and
thc morc ol less cxpccted value ls disappointing ln vlcw
of the fact that one would expect the use of the fixed
angle dispersion relations, avoiding, as it does, both
extrapolation and convergence problems, to yield the
most reliable result of any of our sum rules. In view of
the fact that the discrepancy is only about 1.5 tiInes the
estimated error, one need not, however, take it too
seriously, either as a reQcction on the assumptions which

go into the sum rules or the validity of approximate
SU(3) for the coupling constants. The most likely
conclusion would seem to be that we have been sta-
tistically unfortunate with respect to the tendency of
the various experimental errors and neglected back-
ground terms to reinforce rather than cancel one
another. It may be worthwhile noting that Eq. (14) by
itself is consistent with coupling constants close to the
SU(3) values. Inserting the numerical values, (14) can
be put in the form

g '/4 —g '/4 =0.2(g '/4 —7.0)a13. (14")

Taking gq2/4n. = 7.5& for example, (14") leads to gx'/4r
= 7.6&1.3, hence giving results consistent with SU(3)
with reasonably small symmetry breaking. Equations
(5') and (11),however, lead to the relation

gs'/4~ —gz'/4s =3.24&0.85,

and it is the requirement of the simultaneous validity of
(5") and (14") which forces a very large value of the
coupling constants. From Table IV and Eq. (11) one
can see that most of the resonances contribute with
opposite sign to (gx gg )/4T ln —(5 ) and {14 ); hence
it is quite possible for the errors in the resonance terms,
if they have the proper sign, to reconcile the simul-
taneous validity of (5) and (14) with a value of gq'/4m. of
about 7.

It is, of course, possible that the discrepancy between
the results of Eq. (14) and the expected values of the

TsME IV. Contributions of the indicated resonances to the
parameters b' and h'. Contributions left blank, or from known
resonances not listed in the 6rst column, are negligible. The last
five rows of the table give the values of the parameters c', b', d', e',
and h'; the parameters in question are defined in Eqs. (15')
and (14').

m (MeV)

1385
1405
1520
1660
1690
1815
1830

6

df
@I

h'

1.68—0.16
4.50—5.10
3.80
0.28—2.78

0.12
2.22

031
0 0 ~

—1.01
0.64—0.48
0.04
0.21

—0.033—0.57—0.29

coupling constants is real, and that either the saturation
approximation fails badly or the coupling constants are
actually much larger than SU(3) would suggest. Earlier
results" on the EE coupling constants had indicated
deviations from SU(3) by factors of 2 or so, though
Kim's results" seem to indicate that the deviations in
that case are, in fact, small. In any event, the un-
certainties are too large, at the present time, to allow us
to make any definite statements on the basis of (14).

In conclusion, then, all that one can say is that,
following Atkinson's procedure, ' one can obtain several
sum rules for the mAZ and ~ZZ coupling constants.
Kith the exception of those involving fixed N=o and
requiring large extrapolations to unphysical angles, all
are consistent with values for these coupling constants
corresponding to SU(3) with little or no symmetry
breaking. However, the uncertainties which result from
the summation of several resonance terms of both signs
and each with appreciable experimental error, coupled
with the presence of unknown nonresonant background.
and high-energy contributions, are too large to allow one
to dI'aw any 6rm conclusions cltlicr as to thc vahlcs of
the coupling constants or the mutual consistency of thc
various sum rules and the approximations used in
evaluating them. It may also be worth emphasizing
again the sensitivity of our fixed-u results to the value
of m chosen, which suggests that considerable caution
may be required in using fixed-@ dispersion relations at
m=0.
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