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7. POSSIBLE GENERALIZATIONS
AND CONCLUSIONS

One may also consider more complicated diagrams
with insertions in the simple Regge vertex [Fig. 5(a)7.
It is moderately plausible that the Regge calculus
will still hold, but the vertices will acquire additional
analytic structure. However, they still ought to be real
because their external momenta are spacelike and so
their Feynman denominators must be negative dehnite.
It follows that our discussion of signature could be
completely general. However, one needs to show that
the signature factor of the "odd" Reggeon is always
eliminated. This is a problem in multiparticle states and,
hence, dificult.

We may expect to retain analyticity in the l variables
of the vertex. This would mean that the only j singulari-
ties in q'~&0 are given by pinches between Regge
denominators. These depend only on trajectories and no
traces of "elementarity" are visible. We already know

that this result is true in detail for the two-Regge
intermediate state. 6

Similar comments may also be valid for n-Regge
vertices. We already know from examples' that cuts
behave in a similar way to poles. It is interesting to
note that any Regge graph contributing to 2-2 scattering
can be inserted in any of the blobs in our original graph.
The leads to various n-Regge vertices. Presumably the
detailed extraction of all these graphs is only a matter of
extra labor.

There remains the mathematical problem of justifying
the limitations (25). At present we have some under-
standing of this question but no proof (Sec. 4).
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The connection between three-particle resonances or bound states and the two-particle resonances or
bound states of their component pairs is examined. A simpler and more general derivation is given of the
Lovelace equations for isobar or bound-state scattering. As an example, a one-dimensional model of a
system of three identical particles, each pair of which interacts only through a single bound or resonant
state of energy v0, is constructed, and the corresponding oG-shell scattering integral equation is obtained.
By examining the analytic structure as a function of the oG-shell momentum at 6xed energy, an expression
is obtained for the oB-shell scattering amplitude involving explicitly known functions and the solution of a
much less singular equation. When v0 is the position of a resonance pole of the two-particle system, the
three-particle denominator function has a pole at an energy 4 va on the unphysical sheet where denominator
zeros are associated with resonances, provided that the two-body resonance has a smooth form factor.
This suggests the presence of a three-body resonance in this neighborhood if the two-body resonance is
narrow. That is not true for bound states. The relation of this to the expected behavior of more realistic
problems is discussed.

I. INTRODUCTION
'N this paper we study bound and resonant states of

~ ~ a system of three particles, at least one of which can
combine with each of the other two to form a two-
particle bound or resonant state. In such a system there
is an exchange force due to the existence of the two
alternative compound two-particle states. There is

nothing strange about this force; for example, in the
singly ionized hydrogen molecule, in which a single
electron can be bound to either of two protons, the
molecular binding is produced by exactly such a force.
Of course, the detailed structure also depends on the
Coulomb repulsion of the two protons and the distor-
tion of the wave function of the bound state due to the
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presence of the third particle, but it is the exchange
force which provides the attraction.

Our main concern here is with the possibility that
such an exchange force is itself capable of causing a
bound state or resonance of the whole system and with
the extent to which the properties of such a bound state
or resonance depend only on the parameters of the two-
particle resonant states, rather than on the detailed
dynamics of the problem. To this end we choose to
neglect any interactions between the particles other
than the postulated two-particle interactions and as-
sume that there is no distortion of the form factors due
to the presence of a third particle.

The motivation for this investigation is the fact that
among the short-lived "particles" produced in high-

energy collisions are many which decay into just such
a three-body system as discussed above, i.e., which can
decay via a quasi-two-particle state in at least two
alternative modes. Examples include the A~ meson

decaying to three pions with any one of the three pos-
sible pairs emerging as a p meson, the N*(1520) de-

caying into a nucleon and two pions, either one of the
two pions together with the nucleon emerging as an
N*(1238), and many others. There has been much dis-
cussion of the effects of this kind of overlapping inter-
action on the decay distributions of the system for fixed
total energy, but what we are concerned with here is
the eGectiveness of these interactions in producing a
resonant enhancement as a function of the total energy.
Some time ago' one of us pointed out the existence of
the exchange interaction in such three-particle systems,
and argued that the strong dependence of the strength
of this exchange force on the total energy might enable
one to predict quite simply the resonance energy. Since
then there has been a great deal of controversy" and a
considerable amount of misunderstanding about this
question.

The main part of this paper deals with a calculation
of a model problem which is su%ciently simple to treat
exactly. The purpose of this is to clarify the sugges-
tion' that there can be a simple relation between the
approximate position of a three-particle resonance and
the position of the two-particle resonance responsible
for the three-particle force, to show that such a con-
nection is possible, to say something about the condi-
tions under which it may reasonably appear, and to
understand the apparent contradiction with those
papers' ' which have argued against such a possibility.
In Sec. II we make some general remarks about the
description and special features of a three-particle
system. In Sec. III we formulate the model, using a

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.

' I. J. Aitchison and C. Kacser, Phys. Rev. 142, 1104 (1966);
R. D. Amado, ibid. 158, 1414 (1967). These papers contain
references to earlier work.

' R. F. Peierls, Phys. Rev. Letters 6, 641 (1961).' C. Goebel, Phys. Rev. Letters 13, 143 (1964).' C. Schmid, Phys. Rev. 154, 1363 (1967).

nonrelativistic interaction in one dimension, and show
how it reduces to an effective two-body problem. The
equations are essentially those of Lovelace' but the
deviation is simpler and more directly related to the
physical situation. In Sec. IV we describe the method of
solving the equations and give the solution. Section U
contains a discussion of the nature of the solution, its
relation to three-body resonances, and its connection
with other work, and in Sec. VI we discuss the relation
to other calculations.

are conserved. For rloeirlteractieg particles each four-
momentum k;„ is separately conserved. A real particle,
i.e., one which propagates over macroscopic distances„
must have

k,o=,(k,) =(ik;i'+ttt')'" (2.1)

where m; is the mass. This is the "mass-shell" condition.
For a system of S particles there will in general be

some operator Gt~&({x);{x')) relating the state vector
describing the particles at one set of space-time points
{x}to that describing the same particles at another
set {x').In field theory G arises as a vacuum expecta-
tion value of N creation and E annihilation operators;
in potential theory it occurs as the solution of the dif-
ferential equation with a 8-function source term, etc.
The Fourier transform of 6 gives the momentum-space
Green's function with which we shall be concerned here.

For a single isolated particle (a trivially noninter-
acting system) the conservation laws mentioned above,

' C. Lovelace, Phys. Rev. 135, 1275 (1964). Similar equations
were previously written without relating the operators in the
three-particle Green's function. See for example, R. D. Amado,
ibid. 132, 485 (1963).

6 M. Rubin, R. L. Sugar, and G. Tiktopoulos, Phys. Rev. 146,
1130 (1966); 159, 1348 (1967); 162, 1555 (1967).

7 L. D. Faddeev, mathematical Aspects of the Three-Body Problem
in the Qttantnnt Scattering Theory /Publications of the Steitlov
Mathematical Institute No. 69, 1963 (English transl. : Israel
Program for Scientific Translations, Jerusalem, Israel, 1965lg.

II. MULTIPARTICLE STATES

In order to argue that the results of the specific
model calculation are relevant to more realistic prob-
lems it is necessary to show that these results depend
only on general properties of three-particle scattering
rather than on the particular dynamics of the model.
Ke refer the reader to some of the extensive literature'
for a detailed discussion of the three-body scattering
problem, and summarize here the properties of the
various states and Green's functions with which we
shall be concerned, introducing them without reference
to any particular dynamics.

In the momentum representation a system of N
particles is specified by giving the 4N components of
the four-momenta k,„(i=1, , N, tt=O, ., 3). For
an isolated system the four quantities
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together with Lorentz invariance, require the matrix
elements to be of the form

g(k, o) 8(k;p)
(k;„'I Go&'&

I k;„)= 6&' &(k;„' k;„—) . (2.2)
k;2—m 2—ie

For an "elementary" spinless particle g(k') is simply a
normalization constant. The singularity in Go is neces-
sary to prevent the Fourier transform, or configuration-
space propagator, from being damped by oscillations at
large separations, i.e., to allow' macroscopic propaga-
tion. The fact that it is a pole corresponds to the most
characteristic feature of a single particle, namely, that
it has a unique mass, so that macroscopic propagation
is allowed for a unique value of k .

For an X-particle system the Green's function has
matrix elements (k&' k&o'IG'~&lk~ k~& (k, and k,'

are understood to be 4-vectors; we shall omit the ex-
plicit subscripts wherever possible without ambiguity).
For noninteracting particles we have

N

(k,' kp'I Gp&"&lkg k&v&= ii (k I
Go'"Ik;). (23)

For an interacting system the matrix elements of
G&N' no longer factorize. However, some simpliGcation
comes from the conservation of total four-momentum:

k;=Q k =E.

Ke choose X—1 linearly independent relative momenta
q& qN & and, correspondingly, qi'. qN &' and write

(k( ~ k&o'
I

G&&o& lk) ~ k&v)

c -'IG'"'(E)l~ "c -) (24)

The matrix elements of G&~&(E) will be singular for at
least some values of the q& and q&' whenever E„ is a
possible total four-momentum for a macroscopically
propagating system, i.e., the sum of E vectors k;„
satisfying (2.1). Relativistic invariance requires G&~&

to be a function of E' for Gxed q;, and the singularities
described above combine to produce a square-root-
type branch cut in G&N' as a function of E' with
branch point at E'= (P m;)'. The noninteracting
propagator Go~~&(E') has no singularities other than
this cut; when the particles interact, other singularities
are possible. If G&~&(E) develops a pole of the form
(E'—M') ', then we have an A&-particle bound state
if M'((P, m~)' and a resonant state if ReMP) (P m;)',
Im3f'&0. This corresponds to the empirical character-
ization of a multiparticle compound state as one which
remains localized over macroscopic distances (apart
from the usual wave-packet spreading).

For a nonrelativistic system the states are speciGed
by the three-momenta and the conserved total energy.

that for X noninteracting particles is

(1,' k~'I Go~+&(W) lira — irv)

t' &v kg
8"'(k —p;)

~

o'—x —i ), (2.6)
i=1 5 i 12m=~

while, in general, for X interacting particles

(1 ~'" 1 ~ I
G'"'(W) li ~" 1~&

=(ai'" a'N —llG' '(W, K) le qN —1) (2 ~)

As in the relativistic case, there is a connection between
singularities of G and the possibility of a real system
propagating over macroscopic time intervals. For the
single particle this is exhibited by the pole at o&= k'/2m.
The important feature of this singularity is that it is a
pole at a unique value of ~ for Gxed k'. There is always
an additive ambiguity in the definition of the energy;
in this case the zero point is deGned as the on-shell
energy of a single particle at rest. The X-particle
operator G(N' certainly has a cut starting at 8'=0 in
the frame K'= 0 and extending over all positive real 8",
and this is the only singularity of Go(N~. If there is, in
addition, a factor in G~~&(W, O) of the form (W+Wp) ',
then this corresponds to a single-particle-like structure
with energy scale shifted by 8"0, which is positive in
the case of a bound state. For a resonance, I/I/'0 is com-
plex with a conjugate pole at S'0*, both on the sheet
Im(Wp)'~'(0. If the nonrelativistic Green's function is
written in the usual form (W H io) '—

, wh—ere H is
the Hamiltonian for the system, then the above deGni-
tion is equivalent to the usual definition' of a bound
state as a discrete eigenstate of II with eigenvalue—8"0.

The necessary ingredients for a dynamical calcula-
tion for an interacting system are the form of Go and a
suitable numerical description of the interaction forces.
The latter is, in general, given as an operator V in
terms of which G~N~ can be expressed in the form

G= Go+Go VG,

corresponding to the perturbation expansion

G=G.+GoVGo+GoVG, VG,+ ".
(2.g)

(2.9)

For the usual nonrelativistic case V is simply the po-
tential V=H —Hp and (2.8) is just the expansion of
1/(W H) in terms of 1/—(W—Ho). For the relativistic
case V is the kernel of the Bethe-Salpeter equation ex-
pressed as the total contribution from irreducible
graphs. In a general Geld-theoretical case V represents

8 See, for example, R. G. Newton, Scattenng Theory of 8'aves
and Particles (McGraw-Hill Book Co., New York, 1966), p. 236,

The single-particle propagator is

(I'IG(~) ll&=S (1'—I) I
~——oo I, (2.5)

k'

2m
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+ Y V +

Fxo. 1. Graphical representation of the iterative
solution of a two-particle scattering equation.

the possible combinations of vertex functions and pro-
pagators, and since it can couple states of different
particle number, the operators Go entering in different
places may refer to different numbers of particles. The
important part of the structure of G for our purposes,
however, comes from those contributions with a 6xed
number of particles throughout. The expression (2.9)
has the form

G= Go+GOTGO. (2.10)

The matrix elements of the operator T between on-
shell states give the amplitudes for the corresponding
real scattering processes. T, like G, depends parame-
trically on the conserved total four-momentum. Since,
as we have seen above, Go does not possess the bound-
state or resonance poles, they must occur in T. The
operator T satis6es the equation

such a singularity in T can only develop as a failure
of the series (2.9) to converge.

For E&2 the structure of the equation for T is
formally the same as Fig. 1 except that the two lines
representing Go&'~ are replaced with E lines.

However, the argument given above does not hold,
since V, representing an interaction in which mo-
mentum is transferred, can have nonvanishing matrix
elements whenever at least two particles are close to-
gether. Even if all the particles are affected at once„
they can be in distinct, well-separated groups. For ex-
ample, a contribution of the form shown in Fig. 2 is
possible, in which 3E~ particles interact and subse-
quently diverge, as do other M2 particles (iV~+3f2= Ã).
One particle from the 6rst group approaches one from
the second until they are close enough to interact. In
this case the corresponding Go does give a singularity in
T, since it can be associated with macroscopically pro-
pagating on-shell particles. It is the nature and con-
sequences of these singularities that we wish to discuss.
It will be sufhcient to consider the case X=3 and an
interaction V involving only pairs of particles. Labeling
particles, a typical contribution to T is given by

T= V+VGOT (2.11)

generating the series (2.9). This is an integral equation
in 4 (7—1) variables [3 (7—1) variables in the non-
relativistic case) corresponding to q( q)(( (, with the
total energy 8' in the over-all c.m. system as a parame-
ter (5"=K').

Up to this point we have made no distinction between
different values of Ã) i. There are very important
differences between the cases X=2 and X&2. Consider
6rst the case E= 2, the usual two-body scattering. The
expansion for T can be represented graphically in the
form of Fig. 1, where the horizontal lines represent
Go('~, i.e., the propagation of the two particles between
successive applications of the interaction. For 6nite-
range forces, V has nonzero matrix elements only be-
tween states in which the two particles are close to-
gether. For two real particles, which must move with
equal and opposite momenta in the c.m. system, any
subsequent propagation will increase their separation
and they will never again come close enough together
for V to act again. Hence in the expansion (2.9) each
of the terms Go must describe off-shell, or virtual, pro-
pagation. In other words, the vanishing of the de-
nominators associated with the various Go cannot
yield any divergent singularity in T, since, as mentioned
above, this would correspond to on-shell propagation;

Y

FIG. 2. Example of a possible on-shell rescattering
contribution to a multiparticle process.

5 2
Yt

(a)

T3 2 T~

s (T, )

Fxo. 3. (a) Contribution to the three-body T matrix from the
expansion in the potential. (b) Corresponding contribution from
the multiple scattering expansion in terms of the two-particle T
matrix.

T(4)=p T'.(2)+p T.(2)G T.(2)

+ Q 2'4(&)GOT'. (2)602'~(2)+. . . (2 12)

This is the so-called multiple scattering expansion. The
operator T;&') can be written

(k~'k2'k4'I T~'"(IV) Ik~k2ka&= (v»'I &~(lV—ka')
I v»&

X HO(k4)b(4)(ka' —k4) (2.13a)
relativistically, or

(k,'k, 'k.'I W ) PV) Ik,l,l.)
= ((1)2'It)(W—k()2/2mB) I(1»&8(ka' —k4) (2.13b)

nonrelativistically, where t~ is the two-particle T matrix.

Fig. 3(a). It can easily be seen that by adding to any
such contribution others which differ only in the replace-
ment of any operator V; with V;GOV;, and repeating
the procedure, the expansion can be written in terms of
the two-particle T matrices. The term corresponding
to Fig. 3(a) is given in Fig. 3(b).

Algebraically, we write
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This can be expressed as

T(o) —P 2'. (o) g 2', (o)X, T.(o)

K,=Go%,+Z Gof)'o2'o&oy,
k

(2.14)

~here bg ——8g —1.
The expansion (2.1) in the form of the integral Eq.
(2.14) or equivalent ones has been extensively con-
sidered'' and forms the basis of quantitative treat-
ments of three-particle problems. These treatments
must take into account the singularities in T discussed
above, corresponding to multiple physical rescattering.
The crucial point is that there is an upper limit to the
number of possible on-shell rescatterings, depending on
the kinematics, so that these singularities only occur
in the first few terms of the expansion (2.12). Iteration
of the equation a sufhcient number of times removes the
singularities.

We wish to look at a situation where these singulari-
ties are overwhelmingly important. This is the case
when the two-body Green's function is dominated by a
bound-state or resonance pole. An "on-shell" rescatter-
ing in this case means that two particles must reseatter
at the bound-state or resonance energy. Three successive
realrescatterings is the upper limit in this case, for
equal-mass particles.

In the next sections we look at this in detail, going to
a fairly trivial model to enable an exphcit solution to be
obtained. However, it will be seen that the origin of the
qualitative features of the solution lies in these general
properties of three-particle scattering which are present
even in much more complex situations and that related
considerations can'be expected to apply in systems of
particles with E&3.

III. DERIVATION OF THE MODEL

In this section we derive the equations that we shall
use to discuss the unstable-particle scattering. They are
precisely those 6rst derived by Lovelace, ' but the
derivation given here is somewhat simpler and more
closely related to the interpretation of the equation. In
order to simplify the discussion, we shall work in a
world of one space dimension. All of the essential
features of the problem are still present, and in Ap-
pendix A we give the corresponding equations for the
more general case. We shall also assume that we work
with spinless particles and nonrelativistic kinematics
and will make other simplifying assumptions as we
proceed.

Consider 6rst the scattering of two particles. Let
k~ and k~ be their momenta in the c.m. system and let
sr~ and m2 be their masses. Removing the c.m. motion,
we work with the relative momentum p:

p= p(ki/mi —ko/mo), (3.1)
9 S. %einber, Phys. Rev. 133, 8232 (j.964); L. Rosenberg.

ibid. 135, 8715 1964).

&p'I&()I p&=&p'Io()lp&

„&p'I o(~) I
p"&&1"

I &(~)
I p)

(3.3)
p"'/2p —) —oo

The potential e is quite arbitrary for the moment and js,
in general, nonloeal and energy-dependent. In most
cases the problem will be reaction-symmetric, i.e.,
&p'Iol p) will depend only on the magnitudes and rela-
tive sign of p and p', so that &p'

I
i)

I p) = (—p'
I

w
I
—p),

etc. Equation (3.3) preserves this symmetry for /, and
so we can define

&p'I &'( ) I p) = l(&p'I&( ) I p&~&p'l&(~) I
—p&),

&p'I "(~)I p&=l(&p'lo(~) I p&~&p'l~( ) I
—p))

(3.4)

We can now write Eq. (3):

&p'I &"(~)
I p&= &p'I s'(~)

I p&

„&p'I s( ) I
p"&&I"

I
&'( ) I p&

(3.3')
p /2)i )'—zo

This is the one-dimensional analog of the partial-wave
expansion.

Let us introduce the operator Go() ),

(O'
I Go(~) I P) = ~(P' —P)(~—P'/2~+fo) ', (3 3)

the free Green's function for the two-body system, and
define the kernel E as

E())=s())Go()).

We can then formally write (3.3) as the operator
equation

t() )= i)() )+E())t() ), (3.6)

where the reduced mass)i= (mi '+ms ') ' The scatter-
ing is described by the off-shell t matrix,

&p'I&() Ip&

where v is the energy in the c.m. system. The primed
variables will always refer to the Anal state. The
physical scattering amplitude is obtained when the
energy-shell condition is satisfied:

~= ~(p) =~(p'),
(3.2)

p(p) =p'/2) .
Thus it is clear tha, t for a given value of v there are
four physical scattering amplitudes, correspondillg to
p=&(2)i))'", p'=&(2p))')', that is, transmission or
reQection of an incident wa, ve moving to the "right"
or to the "left".

The dynamics of the problem enter when we intro-
duce the equation which determines t. We take this to
be the Lippmann-Schwinger equation with a potential e:
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FIG. 4. Graphical representation of the
Lippmann-Schwinger equation.

graphically represented in Fig. 4, having the forlna
solution

t(v) =Li—E(v)) 'o(v). (3 &)

dctL1 —Z{v))=0.

Thc physical scattcr1ng aDlplltudc Is defined as

(3.8)

The structure of Go implies that t(v) possesses a square-
root branch point at p=o, the cut running along the
positive v axis, and poles at the points where E{v) has
unit eigenvalue, i.e., vrhere

p.= —(~-/m. )q-—qs,

Ps=q +(ps/m~)qo
(3.11)

The phase-space volume element is dq dp . The three-
body scattering is described by an OG-shell amplitude

&p'q'I 2'(ll')
I pq&

where W is the total energy of the three-particle system
We denote by lpq& a general three-particle state with-
out specifying which pair of monMnta is being used to
label lt. T1M energy-shell condition is

v(g= pN /2II gg ~ CON = q~ /2' ~ .
Any pair of the six vectors p and q, can be chosen

as independent, the transformation between them being
spcci6cd by

lim t(v+io), Imv'"&0.
&dgg+vN= W= Ngg +vo . (3.12)

The poles in t(v) occur on the physical sheet on the
negative real axis, corresponding to bound states of the
two-body interaction; on the unphysical sheet they
occur on the negative real axis or else at complex con-

jugate pairs of points corresponding to isolated two-

particle resonances when they approach the positive
real axis. Thus we may write

&p'l&(v) I p&=Z - +&1'If(v) I p&

«.(p', p)

" D-(v)
(3.9)

'=mo 1+m~ '

3E '=m '+(m+m ) '

(3.10)

Qpv belllg SonlC cyclic pC1'Illlltatloll Of ABC. W1tll tllls
de6nition, if we work in the over-aH c.m, system, —

g

is just the momentum of particle a, and p is the mo-
mentum of particle p in the c.m. system of p and y. ll
is the reduced mass of p and y, and M is the reduced
mass of u and the c.m. of p and 7. The energies cor-

Where D„(v) VanlShCS linearly at v=v and t(v) 1S

analytic except for the branch cut. The residue r (p,p')
factorizcs'.

r-(p' p) =g.(p')a.*(p)

g being real when v is real, corresponding to a bound
state.

Ke must next consider the scattering of three
particles. Let us label the particles A, 8, and C and
suppose that they have MoIQcnta kz, kp, and' kp. Fol-
lowing the notation of Lovclace, ' we then introduce the
six momenta

p =IJ, (kp/mp —k,/m, ),

Onc of the complications of three-particle scattering
is that if one pair possesses a bound state, it is possible
to have a transition from an initial state of three well-

separated particles to a 6nal state of the bound system
well separated. from the third particle, or a rearrange-
ment collision, in which one bound pair breaks up and
another is formed. AH these processes are contained in
the be»»» of (p'q'I 2'(~)

I pq) for different values of
the variables.

Suppose that particles 8 and C have a bound state
of blndlIlg cIlclgy —Pop~ 1.c.p

thcil scattering arnphtudc
takes the form

g(p~')g(p~)
(p~'I4(v~) I p~&= -+

Do(v~)
(3.13)

Then the three-body scattering may be written"

g(p~')
(p 'q 12(lf')Ip~q~& , F—(q~ p q~ ~-)

Do(p~"/2m~)

g(p~) g(p~')
+&~(p q~~', q~; ~) +-

Do(P~'/2I ~) Do(P~"/2p~)

g(p~)
Xr~~(q~, 'q~; ~')

Do(p~ '/2p~)

+~~~(p~', q~', p~'q~'; ~), (3 14)

~h~r~ ~, F, and ~ a«all «gu»»e» p, /2I ~ = vo~,
pz'o/2pz=voz. Figure 5 shows Kqs. (13) and (14)
graphically: g(p) is a vertex form factor for formation of
the state BC, and 1/Do is the propagator of the state
BC.

The figure immediately suggests, and it can be
proved, ' that the quantity r~~(q~', q~., w) should be
idcnti6cd with the off-shell scattering amplitude for
the two-particle scattering of particle 2 and the bound
particle BC, whicht is a perfectly well-dc6ned object
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we can then write

IA)(A I

tA(v) = +tA
&

Dp(v~)
(3.2O)

+ -
l RaA where t is orthogonal to IA). Similarly

Fxo. 5. Graphical representation of the expansion (3.14). T~(W) = dq~ +T~.
Dp(W —ppg)

(3.21)

independent of this discussion of the three-particle
scattering. The other functions Ii and P have cor-
responding interpretations as the amplitudes for forma-
tion or breakup of a bound state by interaction with
a third particle. Similar quantities Tg~ 7ggg ' ' ' can
obviously be introduced and will describe rearrange-
ment collisions.

Note that the same discussion can be carried through
when the vanishing of Dp corresponds to a resonance or
unstable-particle pole rather than to a bound state. The
only essential difference is that now there exists no
independent definition of v as a scattering amplitude,
since the absence of asymptotic states does not allow
such amplitudes to be constructed. We shall therefore
use Eq. (3.14) and similar ones to define unstable-
particle scattering amplitudes.

We now wish to obtain the equations satisfied by
~», v&&, etc. To do this, and again merely for sim-
plicity, we make two further assumptions. First, we
assume that for each pair of particles there is a single res-
onance or bound state, instead of a sum as in Eq. (3.9).
Second, we assume that the potential (p'q'I V(W) Ipq)
responsible for the three-particle scattering described
by T(W) consists only of the separate two-particle po-
tentials. The latter assumption allows us to work with
the one-dimensional version of Eqs. (2.13) and (2.14):

Now using (3.15), inserting (3.21), taking its matrix
element between states

I pg, q~& and
I
pg'qg'&, and com-

paring with (3.14), we easily see that

r»(q~', q~; W) = —&q~',A I X»
I q~,A&

Thus the matrix element of X~~ between states
I q&,A) and

I
qz', A& gives the off-shell scattering ampli-

tude of compound particle BC from particle A with
initial and final c.m. momenta q& and gz'. In general,
the scattering amplitude is

r-p(q-', qs; W)= (q-', ~—IX-s(W) Iqs,P&, (322)

where X is defined by (3.16).
From (3.21) we can. obtain the equations satisffed by

these amplitudes. Up to this point we have merely
assumed that the two-particle systems possessed the
bound-state or resonant poles indicated explicitly for
8 and C by the 6rst term in (3.13). We now make the
rather drastic assumption that only these terms are
important, i.e., that each two-particle scattering con-
sists simply of a single bound-state or resonant term,
and that therefore the three-particle interaction con-
sists purely of rearrangements between diferent com-
pound states. Equations (3.16) then reduce to a set of
coupled, one-dimensional integral equations:

where

T=P T PT X sTs,—

X p="p pGp+Q P,GpT, X,p,

(3.15)

(3.16)

r-s(q qs" W) =Z.s(q- qs" W)

Z, (q,q,";W) r„p(q~",qs'; W)ll 3 23
Dp(W (u~")—

where Z s is the matrix element of —GP s.

&p'q-'I T-(w) I p-q-&
=~(q-—q-') &p-' I &-(W—~-) I p-& (3 1&)

and

I p-q-&&p-q-I—Gp(W) = dp dq . (3.24)
pea+Pa W—pp—

Using the kinematic relations (3.11), we can write,
for nWP,&p«'q-'I Go(w) I p-q-&

=b(p ' p)8(q ' q—)(W pp —v+ip) —' —(3.18) —. pa p.py,
(p-q-I pp'qp'&=~ p-+ ps'+ 1—

We now recall Eq. (3.13) and deffne the state

and, correspondingly,

dp~g(p~) I p~& X8I q
—qp'+ qp' . (3.25)

m~

Also, since pi =q '/2M and v„=p '/211, , we can use
(3.11) to express

Iq~,A&= dp~g(p~) I p~ q~& (3.19)
9'a O'P 9'a/P

rda+va ppp+vp + +
2pp 2@a mg

(3.26)



snd thus, using the definitions (3.19) and (3.22), we
6nally obtain

Z.p(g. , vp, W) =4pg. l
— q.-gp gp*l g.+ gp

5$p Sty

&2pp 2p. Ia,

wllcl'c, Rs above, nip'r forIQ R cyclic permutation of ABC,
and g~, gg, and gg are the momentum-space form factors
coresp d gtoth '

glee p 1st teco p s' g
the scattering of particles 8 and C, C and A, and. A
and 8, respectively. These are precisely the Lovelace
equations, ' apart from a difference of normalization.

In the case of three ldcntlcal partlclcs of unit IQass,
this can bc 1'cduccd to thc slnglc equation

r(g, g', W) =Z(x,x'; W)

Z(x,x";W) r(x",x"; W)
dx"—,(3.28)

Do(W —ox"')

g(——,'x—x') g*(x+-',x')
Z(xx'W)= —2

x'+x"+xx'—W—io

It. grill be convenient to separate the symmetric and
antisymmetric parts as in Eq. (3,4); we write

r+(x x' W)=-'C.(x *'W)~.(—* *'W)j
(3.29)

Z+(x,x', W) =-,'LZ(x, x'; W)+Z(—x, x'; W)j,
so that

r+(g,g'; W) =Z+(x,x"; W)

"Z(x,x";W)r+(x",x'; W)
dx". (3.30)

Do(W--,'x"')

Equation (3.30) resembles the one-dimensional
Llppmann-Schwlnger cquatloI1 {3.3), wltll Z takIIlg 'tile

place of the potential and Do '(w —xx'") taking the
place of the propagator (x'"/2III —E)-'. The usual pro-
cedure for solving such an equation is via the Fredholm
expansion. However, for certain values of TV the kernel
develops singularities corresponding to the possibility
of multiple on-shell rcscatterings, as discussed in Sec.II,
which prevent the convergence. , of the Fredholm solu-
tion. These can be removed by iterating the equation a
sufBclent number of tunes, restoring lt again to Fred-
holm form, but even then the presence of nearby energy-
dependent singularities makes the convergence slow.

In a recent paper one of us" has presented an alterna-
tive technique for dealing with equations of this form
when the kernels have a reasonably simple (though

~0D, Brayshaw, Phys. Rcv. 167, j.505 (1968).

important) singularity structure, and applied it to
various problems of potential scattering. This method is
particnlarly suitable for the present problem; the
existence of thc rescattering singularities is not only
easy to take into account but also actually simpli6es
the interpretation of the solution.

To illustrate the method we outline herc the pro-
cedure in detail in the case of a simpler equation and
then quote the corresponding results for Eq. (3.30).
Consider the equation

dR
ao(S,II) =b(s,oI)+ —k(s,w)ao(w, e). (4.1)

„m—)

Herc I Rnd X Rl'e (coInplcx) pR1'RIIlcters, the w integra, -
tion runs Rlong thc rea1 axis& Rnd X 18 RssuIIlcd to llc
OB the real axis. The functions k(s,w) and b(s, w) are
known explicitly and, together with ao(s,e), depend, in
general, on the parameter X as well as on their explicit
arguments. The equation determines ao(s,l) as the
solution of an integral equation for s real. For s complex
and in the neighborhood of the real axis ao(s,N) is
therefore determined by the expression (4.1) in terms
of its values on the real axis, provided that the integral
exists.

%C wish to consider the case when k has R pole as a
function of s:

E.(s,w)
k(s, w) =-

s—4(w)
(42)

The residue and position of the pole depend explicitly
on 8r and parametrically on X. Wc consldcl 6rst the
case where p is a linear function, and assume where
necessary that

y(s) =nz+I'P, n, P real (4.3)

ao(so+ fR, I) ao(so o—o~ I)—
@ZC

— &(«,w) ~(«—4(w))ao(w, N)
m —X

b(w —go)= 21ro — A(so, w) a,(w,l)
w —K P'(go)

E{«,xo) ao(x„e)=2'
xo—X y'(xo)

(4.4)

where « Is some point on 4 and Q(xo)=«,
go= («-&p)/n Lct us now de6ne, for arbitrary s, the

but shall leave p as an arbitrary function in the for-
mulas. This maps the real axis into the line C a dis-
'taIlcc p Rbovc It, Illaps 4 111'to thc 1111c 41, ctc. (scc
Flg. 6). Wc Rssl1111c 'tllat tile 8111gulRI'I'ties of E RIld b
are khown and isolated and ignore their CGect.

Equation (4.1) deGQCS ao(s, oo) except on the line 4.
Bhas a discontinuity across 4 given by
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of the form s„—) do not contribute, since, when s,=),.

8 (s,)=0 for r (u.) We combine the latter contributions
with anY remainmg f«m the large-lsl integral into
some function B(t,u) and evaluate the former ones ex-
plicitly. The contribution of the uth term to (4.10) is

n.P,X)a(X,u),
where

F»G. 6. Singular lines associated rvith continuing Eq. {4.1).

quantities sq, I'(s,s'), and 8~(s):

(2~~)"R(y(X),X) -~ R(@~'(~)y (X))
n (t,X)= (4.11)

~-y-(x) .=~ y (x)-x

4(s~)=s
I'g(s, s') =27riR(s, s')/y'(s'),

8y(s}=0, for s below I
= I, otherwise.

Then the function

(4.5)

dm
ag(s, u) =b(s,u)+ k(s,w) ag(w, u)

„m—X

is identical with ao(s,u) below C, is continuous across
C, and is defined except when s» lies on 4, i.e., when s
lies on 4». The discontinuity across 4» can be removed
in the same way. After the eth step the equation picks
up an extI'a terTI1q

4'(~)=4(~), 4 "0)=4(4 '0)).
Thus we can write

a(t,u) =B(t,u)+ C(t, X)a(t, ,u),

C(~,X)=P n.(~,~}.

Setting 3= X and solving fol c~ we ind

B(lw„u)
aP, u) =

1—c{z,x)

(4.12)

(4.13)

D„(s,u) =8„(s)I'„(s,s„)a(s„,u)/(s„—X), (4.7)

4(s.)=s.-r
I'„g(s,s g) R(s„4s„)r.(s,s„)=2~z

y'(s„)

8„(z)=0, for s below 4„
= I, otherwise.

Thus, Gnally,

dR
a(s,u) =b(s,u)+ — -k(s,w) a(w, u)

„m—X

+ P D„(s,u) (4.9)

de6nes a function in the entire plane free from any dis-
continuities due to the pole of k. Ke can now write an
integral representation for a(t,u):

1 a(s,u)
a(t,u) = ds,

2%'$ jt
—8

(4.10)

where the integration contour surrounds all singularities
of a(s,u) and some suitably convergent region at large

lsl. The singularities of a(s,u) consist of the poles in D„
of the form (s„—X) ' together with all those resulting
from the behavior of b and R. LThe other poles in D„

C(~,X)B(z,u)
a(t,u) =B(t,u)+

1—C(X,X)
(4.14)

This is the central result that we need.
The procedure remains substantially the same for

more complicated equations of this general type. For
example, either or both of the poles Ls—4(w)) ~ and
(w—X)

—' may be replaced with a product of similar
poles, g, Ls—y, (w))-' and g; (w —X;) '. The first
simply increases the number of lines across which the
continuation must be made, these now being obtained
from the real axis by successively applying the diGerent
mappings tt;(W) an arbitrary number of times in all
possible orders. The second leads to the replacing of
(4.12)-(4.14) with coupled equations. If two of the
poles p, (X) coincide for some Xa in such a way as to
pinch the W' integration contour, then the corresponding
contribution to C(X,X) will develop a pole as a function
of X at the position Xo.

A further complication arises if the form of the
mapping P(w) becomes other than linear. For example,
if P=ns'+iP, then

so that each term D introduces a new square-root
branch cut as a function of s'. In this case the continua-
tion procedure must be carried out over all sheets of
the resulting Riemann surface.

Let us now return to Eq. (3.30). It has precisely the
form of (4.1) together with all the complications just
described. The denominator Do(IF—43x"') plays the
role of the denominator w —X in (4.1), but has two
roots. For the case of a bound-state denominator, with
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FIG. /. Singularity structure associated with
Eq. {3.30) for 5'&p0, pp&0.

Re x

tributions can be expressed as a contour integral along
the branch cut.

Carrying out this procedure in detail, we obtain the
following results. For convenience we recall some earlier
de6nitions. We are dealing with three identical particles
of unit mass and total kinetic energy 8'. The off-shell
amplitude for two-body scattering at energy v has been
assumed to be

t(p p 'v)=gg iDp(v).

Dp(v) vanishes linearly near v= vp..

Dp(v) = (v- vp)D, '(vp) .
The compound state corresponding to the zero of Do can
scatter from the third particle with off-shell amplitude
r(/7, q', 4E+vp), where E= 24 (W—vp) is the energy above
threshold for the quasi-two-particle system. The sym-
metric and antisymmetric parts of r are v~.

We now define the following functions, 8' being
understood to be a parameter where necessary:

1 1
&+(x,y) = egg*I

ky+x y —x

a zero at W—42x'"=vp(0, or x"2=E=P2(W—vp), the
roots are equal and opposite and the existence of both
is already taken into account by the symmetrization
procedure. The term Z(x,x'; W) plays the role of k(s, w)
but has a double-pole structure because of the quadratic
denominator:

P~(xA-(x))
B~(x,y) =a

(W 2 y2) 1/2

C+(x,y) =B~(x,y)+2
r&ivi (W—4X ')'"

(4.17)

x'+*"+xx'—W —i p= [x—y (x')][x—y (x')],
where

y~(x) = ——21x~(W——.'x2)»2.
(4.15)

In addition, it may have additional poles coming from
the form factors g(p). Let us assume these to be absent
and treat g as a constant for the moment, though we
shall return to this point in Sec. V. The mappings P+
are illustrated in Fig. 7, for the case when 8' is real,
negative, and less than vo, i.e., E&0. The lines C~ are
given by 2=p~(x) for x real. The branch points of the
mapping occur at &('2W)'/2, and the functions &~ have
the properties

the two alternatives corresponding to the two different
sheets linked by the branch cuts beginning at &(42W)'/'.

Continuation across the lines C~ gives the term
analogous to ni(t, X) in the above discussion. (The con-
tributions O.„ for e)1 all correspond to continuing
across the same lines, or across the real axis, but on
one of the other sheets. ) The only possible pinch of the
x" integration comes when /t/+(L~'/2) coincides with
P (—E'"). None of the contributions from the higher
iterations can ever pinch the contour, since they lie on a
diferent sheet, The sum of all these nonsingular con-

~.(,")=~[~.(~.( ),")+~.(~-( ),")1,
B+(4'+(x) y) B+(4'—(x) y)

V~(x,y) = & +
Do(W —44+'(x)) Do(W —44-'(x))

where p+ are defined by (4.15).
Then D+ satisfies the equation

(4.20)

D~(x,y) = V~(x,y)+2
(W 2 xI2) 1/2

XK~(x,x')D~(x', y) . (4.21)

XP,(x,x )D,(*,y) .
1'(W) runs along the cut from (22W)'" to +i~, and D+
will be defined below.

I,et

A+(x,y) =C~(x,y)
82riC(x, E'")C(E'"y)

(4.18)
3E'"Dp'(v p)+82riC(E'" E'")

Then
+(V,V', W) =~+(V,C')~~+(V, —V'). (4 19)

The functions D~(x,y) are defined as follows. Let

P~(x,x')
p~(x, x') =

Dp(W 4x')—



177 CONNECTION BETWEEN BOUND STATES OR RESONANCES 2549

The solution to (4.21) may be obtained by standard
numerical techniques.

Re%&0,
ImlV'I'& 0,

(5.1)

i.e., the physical scattering region. It was also assumed
that vo was a bound-state energy and hence real and
negative. In order to discuss the properties of our
result for other values of 8' and for the case when
s 0 is a resonance energy, we must analytically continue
it to the desired region of these variables. The form
that we had obtained for T+(q,q', W) does not represent
the correct continuation in all regions.

If we allow S' to vary, holding uo fixed, then as we
cross the curve

Im(-,'E'"—vIP Is) =0

our expression for A~(x, y) develops a discontinuity,
which comes about because of the appearance of an
end-point singularity of the integral over the con-
tour I'(W) in (4.17).This boundary curve is a parabola,
illustrated in Fig. 8(a). I As above, we use E=AG (W—vII).$
If we replace (4.18) with

A~(x,y) =Cg(x,y) —0(W)

STTiC+(x,E'")C+(E'",y)
X , (5.2)

3E DG'(.G)ys~iC, (E' E' )
where

0(W) = 1 if Im(GE'is —vG'") (0
=0 if Im(GE'~' —yP')) 0

then A+ is continuous across the boundary and (4.19)
is valid for all W on the physical sheet Im8"I')0.

To discuss the case when so is a resonance energy,
Redo)0, Imago'"(0, w|; must consider what happens
for 6xed 8" when we allow vo to vary. As we go from
the bound-state to the resonance value of vo, allowing
vo to pass above the origin and then down through the
square-root branch cut on to the second sheet, we
reach the situation shown in Fig. 8(b). In this case a
discontinuity would develop in our expression as the
boundary curve moves through the axed physical
value of S' with which we started. The curve moves
through the gW cut and the QE cut. Again the ex-

V. BEHAVIOR OF THE SOLUTION: THREE-BODY
BOUND STATES AND RESONANCES

In Sec. IV we have not yet "solved" the equations
for r~(q, q'; W) but we have written the solution in a
form which exhibits explicitly the sects of the im-

portant singularities of the k.ernel and which involves
the solution of a much less singular equation which
can be solved numerically. We now discuss the analytic
structure of the expressions (4.18)—(4.20).

We first note that these expressions'were derived
for Axed 8' in the region

i, Im W

BOUNDARY CURVE

4iv0

PATH OF CONT INUATION FROM
~PHYSICAL REGION TO BOUND

4 ~2 4 "o —j - STATE REGION
o go~ ID&

I Wi D/A' ==---:::::::-- - --- =Re W

LOCATION OF 3-BODY i
BOUND STATES

4i yo)

(a)

Im W

PATH OF CONTINUATION FROM
PHYSICAL REGION TO RESONANCE

REGION

Re W

X

"oNE
(2 3

—vo

vo-[Im /vo ] BOUNDARY
CURVE

(b)

x~4 y0

Fro. 8. (a) Singularity structure of the solution (5.2) for the
bound-state case v0&0. (b) Singularity structure of the solution
(5.2) for the resonant case Rev0)0, Im(~0'I') &0. The heavy lines
indicate the physical sheet, the intermediate lines correspond to
the sheet Im(B'"))0 Im(W'"))0, and the finest lines corre-
spond to the sheet Im(E'") &0, Im(W'~'} &0

pression (5.2) gives the correct continuation. In this
case, however, on the physical sheet we have

&+(x,y) =C~(x,y)

and the second term does not occur until we continue
as indicated in Fig. 8(b) through both branch cuts to
the sheet on which

ImW&~2&0, Imx»2&0,

and cross the boundary curve.
Having thus obtained an expression for r~(q, q', W)

which is valid for all the possible values of W and ~0

which are of interest, we can now discuss the analytic
structure of this expression.

A bound state or resonance of the three-particle
system will appear, as discussed in Sec. II, when

T~(q, q', W) develops a pole as a function of W independ-
ent of q and q'. Such a pole will certainly occur when
the denominator

A~(E) =3E'~'DG'(vG)+STTiCg(E'I', E'~') (5.3)

vanishes, unless cancelled by the terms

C(q,E'~')C(E'",q')

in the numerator. [As above, we have set E= As (W—uG).]
There are three sources of singularities in A~(E). First,
there is the square-root branch point at E=O. This
corresponds to the threshold for the quasi-two-particle
system of the two-particle resonance or bound state
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interacting with the third particle. C(E",E'I') con-
tains the term B(E'"E'I') and an integral. The latter
possesses a square-root branch point at H/'=0, cor-
responding to the three-particle threshold. If so&0,
corresponding to a bound state of the two-body system,
then the point E=O lies on the negative real axis for
8". Both square-root branch cuts lie to the right along
the real axis. The physical region for scattering of the
third particle by the bound state is reached by ap-
proaching the real axis from above in the sheet dehned

by
ImE'I'&0, ImlV'~'& 0.

A three-particle bound state, or bound state of the
quasi-tvro-particle system, occurs as a pole on the
negative real axis E=ED&0, reached from the physical
region by passing above both branch points, as illus-
trated in Fig. 8(a). If Revo) 0, Imvo'I'(0, correspond-
ing to a resonance of the tvro-particle system, the point
8=0 moves above the branch point 8"=0 and onto the
lower sheet Im'H/""&0, below the axis. A resonance of
the whole system novr occurs as a pole at Eo lying
below both cuts on the sheet ImE'"&0, Imt/t/'12&0,

as shown in Fig. 8(b).
The term B (E't'E'I') has poles when -'E'I'+vo't'

=~E'I'. The region of E in which we are interested
is the region where resonances or bound states may
develop. For both cases, discussed above, this can
be seen to be the sheet where ImE'" has the same
sign as Imago'I'. Thus only the pole corresponding to
the upper sign (i.e., to the point E=4vo) lies on the
relevant sheet. The pole at E= (4/9) vo is far away from
the physical region. Examination of the integral occurr-
ing in C(E'Ii E'") leads us to the conclusion that its
only singularity, other than the threshold cuts, is a
branch point at E= (4/9) vo which again is on the sheet
ImE'Ii/Imvo't'(0 and is therefore far from the physical
region. Thus in the neighborhood of E=4vo the de-
nominator 6+(E")contains the pole from B+(E'~' E' i)
together with a relatively slowly varying background.
Provided that the residue of the pole, which is pro-
portional to gg*, is not too large, A~(E'") will develop
a zero in the vicinity of the pole. Thus r+(q, g', W)
will develop a pole near the point E=4vo, or iV=4& 0,
if 0(4vg)00. The latter condition is crucial, since, as
discussed above, the denominator A~(E'") does not
appear in r+(q, q'; W) unless 0(4vo) NO. Considering the
definition of 0(W) given in (5.2), we see that the
8(4vo) vanishes when vo is a bound-state energy but
does not vanish when uo is a resonant energy.

We have thus arrived at the principal result of the
present paper:

?f the scattering of two identicaL spinLess particies
ssoeing in one dimension can be described by a single
separabie term corresponding to a resonance of energy

vo, with a siowiy varying form factor, thee the correspond

ing three particte scattering amp-Litude wiLL deeetop a

denominator poLe at an energy 4vo on the second un-
physical sheet F.or a narrow two bod-y resonance this
suggests the occurrence of a three body-resonance near
4vo. The corresponding statement in the case of a two

particte bound state is not true.

This result has, of course, been obtained in a highly
specialized model. Before we discuss its relation to
other v'ork. it is important to examine the special as-
sumptions of the model and enquire to vrhat extent the
result depends on them and to what extent it illustrates
a general connection between the positions of two- and
three-particle resonances. These assumptions can be
divided into essentiaHy kinematical and essentially
dynamical ones. In the former class are the assumptions
of one-dimensional motion, identity of the particles,
absence of spin, and nonrelativistic kinematics. These
assumptions are introduced to simplify the details of
the calculations, and similar behavior occurs even when
any of these assumptions is relaxed. In Appendix A
we shall give the explicit form of the equations and
their solutions when various of these restrictions are
relaxed. The dynamical assumptions, which we wish
to consider here, are the assumption of a single separ-
able term for the two-body amplitude and the con-
stancy of the form factors.

Clearly, in any real problem there will always be
background terms in addition to a separable-pole con-
tribution. Part of this background may consist of other
separable poles, in which case Eq. (3.30) is replaced
with a set of coupled equations, all the functions
discussed in this section become matrices, and the
denominator 6+ becomes a determinant. There will
now be a number of points corresponding to poles of
the matrix elements B,P (E'I' E'I') and if they are well
separated, the above argument will apply to each. If
the background is smooth, it can be regarded as adding
an additional slowly varying contribution to Eq. (3.30).
Since the argument of this section already assumes that
there exists a pole in the discontinuity of (3.30) across
the kinematic cut together with a slovrly varying back-
ground, nothing is changed in principle by the addition
of such a term.

The constant-form-factor assumption is certainly
not justified in practice; in general, the form factors
must be normalized and obviously cannot be constant.
In fact, typically the form factor g(p) behaves like
(p'+A. ') ' and develops poles when p=+iA. In Eq.
(3.30) the arguments of the form-factor terms are
q+iq' and q'+iq. The corresponding lines in the q
plane across which Eq. (3.30) develops a discontinuity
will be the straight lines parallel to the real axis at a
distance &A from it. Thus, provided that ~A ~

is large
compared with 2~Im(vo)'"(, this will not give rise to
any rapidly varying background to the discontinuity
across the lines 4+ in the relevant region, and thus the
conclusion about the occurrence of a pole near E=4vo
will be unchanged. The leading contribution of the
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form-factor singularities can, in fact, be explicitly
taken into account, " confirming the above conclusion.

We therefore argue that the only features of the
model which are crucial to obtain the result quoted
earlier in this section are the singularity structure
arising from the free three-body Green's function and
the two-particle scattering poles, which will be present
in almost any three-body dynamical scheme dominated
by a two-body resonance or bound state, and the as-
sumption of slowing varying form factors. This struc-
ture is illustrated graphically in Fig. 9.The denominator
will contain terms which result from the on-shell dis-
continuities of the various terms on the right-hand
side of Fig. 9 across the lines 4+, i.e., the lines where the
three-particle Green's function is singular. The first
term is itself singular but does not give rise to a singular
discontinuity. The second term, or "box graph" in
S-matrix language, is responsible for the singular term
in the denominator, in addition to possessing itself
singularities whose positions depend on the off-shell
momenta q and q'.

The requirement on the form factor ensures that
each successive two-particle interaction must be suf-
ficiently localized to be distinguished from the next,
so that the structure illustrated in Fig. 9 can have some

meaning. Mathematically, if g(p) has too close a
singularity in momentum space, then the lines C+
cease to be the most important sources of singularities
in the structure of v. The two dimensions which are
important are the size of the compound particle and
the wavelength associated with the three-body kinetic
energy. If the latter is large compared with the former,
then the three-particle intermediate states can really
be assumed to propagate freely, giving rise to the
structure of Fig. 9. Again this can be expressed in
momentum space as the requirement that the form-
factor singularities should be far away compared with
the Green's-function singularities.

VI. RELATION TO OTHER CALCULATIONS

In Sec. V we discussed in detail the denominator
occurring in Eq. (4.18). The numerator term contains
the dependence on the off-shell momenta and includes
the singularities of the first terms of the iterative ex-
pansion of Eq. (3.30). Although it is the singularities
of the term Z+(x,x', W) which are responsible, via the
kernel, for the analytic structure of the amplitude, the
denominator singularity is, in fact, a property of the
sum of the entire perturbation series. On the energy
shell (i.e., for x'=x"=E) the numerator has poles at
both W=4vs [from B(E'~'E'")7 and W=-s'vs )from
8(E'~' E'~') on the physical shee—t, where ImW'~'
ImE'I', and Imvg' all have the same sign7. Singularities
are also present in the other terms of the numerator.
However, the positions of these singularities are depen-

i'D. Brayshaw, Ph.D. thesis, Rockefeller University, 1968
(unpublished).

+ ~ ~ ~

FIG. 9. Graphical representation of Kq. (3.30}.

dent on the values of the variables x and x'. In any ac-
tual experimental situation a three-particle state always
occurs as a final state, and a three-particle scattering
amplitude always enters a calculation as a half-on-
shell expression integrated over the off-shell momentum,
e.g.,

dq f(q)r(q, E'";W), (6 1)

"P. K. Srivastava, Phys. Rev. 131, 461 (1963};F. S. Chen-
Cheung and C. M. Sommerheld, ibid. 152, 1401 (1966}.

where f(q) represents the amplitude for producing the
three-particle state. In general, this integration will
remove the numerator singularities but, of course, will
not affect the denominator zeros. The fact that the
numerator singularities, which themselves disappear
after integration, are responsible for a denominator
singularity, which remains, has been the cause of much
confusion. This confusion stems at least in part from
a previous paper by one of us' essentially pointing out
the existence of the singularities in the inhomogeneous
term Z for the mxX system and observing without any
explanation that a candidate for a three-body reson-
ance occurred nearby. Since then, many authors have
carried out calculations to study the question that we
have considered here, that is, whether there could be a
connection between the singularities of the on-shell
Born term and an observable three-body effect at a
near position.

These calculations have been of two kinds. On the
one hand, many authors have done calculations which
would correspond to looking at the first terms in the
expansion for 7.~ and effectively inserting them into
an integral of the type (5.1).Most of these calculations
have been done in the framework of S-matrix theory,
working entirely with on-shell amplitudes, but the
result is the same. A good summary of these calcula-
tions is given in a paper by Schmid, 4 and the conclusion
is correctly drawn that the direct effects of the num-
erator singularities will never be observable.

Another class of calculations has been to examine
soluble models and to examine their solutions for three-
body resonances or bound states. The present work is
in this spirit. However, most of the work has been done
on the framework of the I ee model, "which has the
complication of inextricably coupling two- and three-
particle channels and of limited flexibility in the
parameters of the two-particle state. More important,
it has usually been carried out for static kinematics.
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For static kinematics the singularity structure de-
generates. A good. example is discussed by Sawyer, "
where he shows that formally a resonance exists at
the expected energy but that the numerator vanishes
at the same time in the static limit.

A calculation by Hwa'4 looked, in the framework of
S-matrix theory, at the singularity structure in general,
and obtained a relation between the denominator func-
tion and the on-shell behavior of the three-particle
scattering amplitude. However, the only contribution
to the singularities of the amplitude that he considered
explicitly was that of the first term on the right-hand
side of Fig. 9. The principal effect in the off-shell

analysis comes from the singularity involving one in-

termediate state, i.e., from the "box graph, "Fig. 9.It is
likely that applying Hwa's procedure to the singularities
of this term would show a denominator pole on the
correct sheet and consequently a nearby resonance.

In the three-dimensional case, the singularity
analogous to the pole of B(E'"8'") is of a logarithmic
nature. At first sight it might seem too "weak" a
singularity to dominate. However, one can check. this

by direct numerical calculation. A calculation has been
done on the three-n system, using a separable form for
the two-n scattering amplitude which satisfies unitarity,
and which has the poles corresponding to the 0+ ground
and the 2+ excited state of Be'. We then have two
resonant energies v' and I ', and, according to the above
discussion, we expect singularities in the three-n ampli-
tude at the points 4v' and 4v'. If three-n resonances are
indeed associated with these points, they should appear
as excited states of C" with excitation energies 7.652
and 18.9 MeV, respectively. Furthermore, they should
correspond to the spin-parity assignments even-plus
and decay via the Bes+n channel. Experimentally, "
C" is known to possess such a 0 state at 7.656 MeV,
a 0+ state at 17.8 MeV, and a 2+ state at 18.34 MeV. It
is clear that the agreement is quite good. More detailed
calculations" of this system confirm that the correc-
tions to these values are small and in the right direction.

Another numerical calculation which has been done
is that of Basdevant and Kreps, " who looked at an
equation analogous to the three-dimensional form of
Eq. (3.30) but with relativistic kinematics, and applied
it to the three-pion problem, putting in the p-meson
pole as the sole pion-pion scattering. They obtained
various resonances: In a subsequent study" it was
shown that their solutions indeed had singularities
near the analog of the point -', vo on the unphysical sheet,
and they did not search high enough on the physical
sheet to investigate the vicinity of 4vo. If any case,

"R.F. Sawyer, Phys. Rev. 139, B151 (1965)."R. C. Hwa, Phys. Rev. 130, 2580 i1963l."W. C. Olsen et a/. , Nucl. Phys. 61, 625 (1965);V. V. Balashov
and I. Rotter, ibid. 61, 138 (1965)."J.L. Basdevant and R. K. Kreps, Phys. Rev. 141, 1398
(~966).

'~ J.L. Basdevant and R. L. Omnes, Phys. Rev. Letters 17, 775
(&966).

since the p width is already large, this point is rather
far from the real axis and would yield a very broad
resonance. The resonances that they did see where ob-
served to correspond to the w-p threshold. If one ex-
amines their kernel, it is easily shown that it contains a
threshold pole which induces a resonance by precisely
the same mechanism as the pole at 4vo in the present
example. It is not clear to us whether that threshold
pole should really be present. It does not seem to be
there in the kernel derived from the relativistic Love-
lace equations.

VII. CONCLUSIONS

We have examined in detail a highly simplified,
though consistent, model of the scattering process in-
dicated schematically in Fig. 9: the propagation of two
particles, held together by the successive resonant
scattering of a third particle from each in turn. In this
model it was found that a three-particle resonance
might be expected to develop near the higher of the two
energies determined by the singularities of the first
term in Fig. 9 interpreted as an on-shell process. This
conclusion stemmed basically from the kinematic
structure of the three-particle process and, in particular,
is associated with the possible singularities of the
intermediate-state propagator associated with the on-
shell rescattering. Such singularities are present in
more realistic situations and the corresponding neigh-
borhoods for seeking three-particle resonances can be
determined. The principal dynamical assumption made
is that the singularities of the momentum-space form
factors for the decay of the two-particle resonance are
far away; this ensures that the successive vertices in
Fig. 9 can easily be resolved. The occurrence of such
resonances is still a quantitative problem. An example
was given from the three-a particle problem in nuclear
physics. In the relativistic case, which is still further
removed from the simple model but contains the essen-
tial ingredients, it is clear that low-lying excitations of
three-particle systems involving a baryon isobar would
be good candidates to examine.
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APPENDIX A: EQUATIONS AND SOLUTION
FOR THE THREE-DIMENSIONAL PROBLEM

In order to gain some insight into more realistic
models, we consider a model identical in all respects
with the one discussed in the main body of the paper,
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excepting the restriction to one-dimensional motion. The integral equation for the amplitude 7» is then

We are thus dealing with the three-dimensional version

of (3.28), which has the form rg„~(q', q; W) =Zg„~(q', q; W)

r»(q', q; W) =Z»(q', q; W)
0'

p

"q'"dq" Z)„~(q',q"; W)r,„~(q",q; W)

D(W —4q"')
(A7)

where

Z»(q', q; W) =— 2gx*(p')gp(p)

q"+q' q+q' —W—i«

Z„.(q',q"; W)
+Q dq" r,„(q",q; W), (A1)

0' D(W 4q'"—)

g(P) = P'h(P') (AS)

We thus obtain a set of coupled one-dimensional
equations to which we can apply the same method of
solution discussed in the one-dimensional model. In
the latter calculation we assumed the g(p) to be con-
stant for convenience. Here we shall assume that g(p)
has the form

' « f»'(s; q', q)&*(p")&(P')
(A9)

q'+ q"+qq's W ~«— —
where

The above equation assumes a two-body bound state where h(p') is an entire function of p'. In terms of the

of angular momentum I, and the subscripts Xp refer to function h(p') we rewrite Eq. (A5) as

the initial and final magnetic quantum numbers of the
composite two-particle system, i.e., —i&p& I. The Z» ig'~9i
vectors p and p' are related to q and q' by

p=-', q+q',
P= 0 ~Q ~

The form factor g„(p) can be written in the form

(A2) f»'(s q' q) =——4~d»'(s) I'»(P q') I'~.(P q)(p'P)'

It is elementary to verify that fz„~(s; q', q) is a poly-
nomial in all its variables, and that

g.(P) =g(p) I'~.(P &)~'"', (A3)

where s= j' j, and we write similar equations for Z»
and Z»~. In fact,

in terms of some spherical coordinate system with the s
axis along the 4 direction. If we choose this direction
to that of q, the amplitude r»(q', q; W) becomes a
helicity amplitude. To remove the angular dependence
we project out partial waves of total angular momentum
J:

00

r»(q', q; W) =—P -', ( J2+1)r»~( 'q, qW)d»~(q' j),
2z' J

(A4)
1

r„„~(q',q; W) =2' ds d»~(s)r»(q', q; W),

f»'( —s q', q) =(——1)' 'f-»'(s; q', q)

=(—1)~ I'fq „~(s; q', q). (A10)

In solving Eq. (A7), it proves more convenient to
work in terms of amplitudes of definite parity. We
therefore define

f»"(s q', q) =f"'(' q', q) ~(—1)'f-~'(s, q, q),
»"(q',q; W)

= rg„~(q', q; W) a(—1)"r»(q', q; W), (A11)

Z»"(q'q W)
=Z„„(q',q; W)&(—1)"Z „(q',q; W),

from which it follows that

rg„+(q', q; W) =Z),„+(q',q; W)

"dq"dq"' Z),.~+(q', q"; W) r.„~+(q",q; W)

Z~»(q', q; W) = —4~
P D(W ——,'q"')

(A12)

' «d»'(s) I'~~(P' q') I'i.(P q)g*(p')g(p)
X

q"+qq's+ q' W i«——(AS)

From Eqs. (A9) and (A10) it also follows that

Z»~+( —q', q; W) = +(—1)~Z»+( ', qWq), (A13)

with

P'= (q'+qq's+ 'q")"', -
P= (lq'+qq"+q")"',

P' q'= (sq+ lq')/P', —

P q= (lq+sq')/P

and Eq. (A12) implies that r~+ has the same sym-
metry. This allows us to rewrite the integral in

(A12) as extending from —«o to +~. We obtain
a set of equations very similar to the one-dimensional
problem, the only difference being that the "potential
term" Z»~+ has logarithmic cuts in the complex q'

plane instead of poles. Applying the method developed
in Sec. IV, we obtain th|; following solution:
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1 (—1)~
P~+(q, q') =

q+q
qh*(W —~2Q2)h(W —4q')

~»"(Q,q) =
4D(W ,'q')——

(W—Q' —q'xf»"I;Q, q I,
qQ

V»~+(q, W) =—2&rih(1 p)
'" dx

q2M

3D'(vp) &/2«&+„p&/& g2~+'

XP~+(q, x)h*(W—&x2)f»~+

(W x' E- —
; x, A'"), (A&4)

gE1/2

-x3
2

A»"(q, x) =q2"I 1—
t'

(W Pg2)1/2j

'-dQ~"(q, Q)-: (Q,(W--:")'"+-:*)
X

Let M be the largest integer such that M&2 IJ—/I,
and de6ne the functions

and
X (x,q; W)+B/, .~+(q', g)W.„~"(x,q; W)j

(A17)

dx [A g.~+(q' x)4»~+(q', W) = Vi ~+(q', W)+p
r(S )

X&.„'+(x,W)+B),.'+(q', x)&.~'+(x W)j
The solution to (A12) is given by

r»"(q', q; W) =A."(q' q' W)

+2 &(W)4»."(q' W) r.p"(E"'q' W)

+ ', q',-W) and V» +((W—-'q") '"—-'q' W), respec-
tively. The functions U, 8', X, and I' are well defined by
these equations, which can be done numerically. They
are less complicated than they appear, and can be de-
coupled by a simple change of variables. Furthermore,
we shall not need their solutions explicitly for our
purposes here; it is suKcient to know that the functions
U, 8', I, and Y so defined do not have the singularity
at 8'= 4vo, which is easily established. Regarding these
functions as known, we can then define

A."(q',q W)

=Z/, „~+(q',q; W)+Q dx LA&,.~+(q', x) U,„~+
r(w)

B»"(q*)=q'"I 1+( —x

(W——,'x 2) '/2&

W»~+(q', q; W)
XW.„~+(x,q; W) j, (A15)

=Z»'+((W pq")'"+—2q'& q& W)+Z

XLA/&, +((W—pq")'"—2q', x)U.„+(x,q; W)

+B„J+((W Zq&2)1/2 iq& g)

XW.„~+(x,q; W)] (A16)

We also define additional functions X»~+(q', W) and
V»~+(q', W) which also satisfy (A15), but with the
inhomogeneous terms replaced with V»~+((W —~pq") '/'

'"
Q "(,Q) ."(Q ( -l ')'"-l*)

X
Q2M+1

In terms of the above we define functions Uq„~+ and
Sq„~+ to be the solutions of the coupled integral
equations

U/, ~+(q'q W)

=Z»~+((W —$q")'/2+2'q', q; W)+Q dx
r(w&

X LA g.~+((W—-'q") '"+-'q', x)U.„+(x,q; W)

+B/,.~+((W——,pq'2) '"+-,'q', x)

in terms of the half-on-shell amplitudes r „+(E' '&q; W).
The latter are to be determined by substituting the
value q'=E'/' into (A17) and solving the resulting
system of simultaneous linear equations.

A pole in the amplitude 2.»~+(q', q; W) will then
occur as the result of a zero in the determinant of this
system of linear equations; denote this by

S~+(W) =det
I
1—&II&~+(Ei/2 W) I

. (A19)

The quantity S~+(W) plays the role in the three-
dimensional problem that the h~(E) defined in (5.3)
played in the one-dimensional problem. In the latter
case we found that A~(E) contained a term which had
a pole at E=4vo. Examination of the functions in-
volved in the definition (A17) of &t//»~+ shows that
Vpp~+(E'/2, W) has a logarithmic singularity at W= 4vp,

no other terms are singular. This corresponds to the
X=/1=0 element of the determinant given in (A19)
being singular for the (+) case. The quantity S~ (W)
may indeed have zeros, but they are not connected with
the 8'= 4vo singularity.

To determine whether or not the singular term in
S~+PV) can give rise, to a zero, we must in general
know the magnitude and sign of the coeKcient of
Vpp +(E'",W) and of the background terms. To see
this we note that S~+PV) can be written in the form

S~+(W) =E~(W) a~(W) ln)
&

(A20)—
where $=('E'"+vp'")/(/&p"' 'E'/') is-dimensionless--
and ~~ as 8'~4vo.
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If, in a given problem, we find that

ReLR~(W)/~i~(W) l&&1, (A21)

this is suKcient to assert that a zero occurs for 8'=4vp.
If, however, Rea~/ReR~(0, a zero will certainly not
occur in this neighborhood. The third possibility is
that Rea~ and ReE~ have the same sign but are com-
parable in magnitude. In this case a zero may or may
not occur. It is therefore clear that the singularity may
induce a nearby zero in some systems but not in others.

If we consider the case where the quantities

P„J+(El/2 W)

are small Lexcept for &00~+(E'",W)j in the neigh-
borhood of 8'= 4vp, we can write

S +(W) = 1—Voo +(E'i' W)+small terms. (A22)

The quantity Voo +(E'i', W) will itself be small except
in the immediate vicinity of W= 4vo. A zero of S~+(W)
will then occur in that neighborhood, provided that
ReVOO~+(E'i', W)) 0. Examination of the explicit form
for Vpp + then shows that this will only be true if J
is even.

We therefore conclude that the singularity may give
rise to a zero in S~+(W), and hence a pole in the off-
shell amplitude, and that this is particularly likely
when J is even. However, the nonappearance of this
zero in certain cases is also compatible with our analysis.
In any case, the singular term is always important in
the vicinity of 4vp and dominates at that point.

APPENDIX B: SINGULARITIES FOR THREE
UNLIKE PARTICLES

In the case of unequal masses and different bound-
state (resonant) energies between two-body pairs, it is
necessary to work with coupled equations, even in the
one-dimensional problem. However, there is no dif-
hculty in applying the method of solution discussed in
Sec. IV, which results in an expression for the off-shell
amplitudes in terms of the half-on-shell amplitudes.
The latter are obtained by solving a system of simul-
taneous linear equations analogous to those discussed
in Appendix A for the three-dimensional problem. A

pole in the off-shell amplitude is then due to a zero in
the determinent for this system of equations. Ex-
amination of the elements of this determinant shows
that certain of them are singular at values of 8' which
are the generalizations of the points —', vp and 4vp which
arise in the identical-particle case. In terms of the nota-
tion developed in Sec. III we define

~.u= (i -i ti)'"/~. . (81)

The values of 8' for which singularities occur are then

i oa+i'Oy+2~ayi'oa i'Oy8'= t/Vg= (82)

2(M+1)
vp, lV =

3f

2(M+ 1)

M+2
(85)

for n/y.
From the derivation of (82) it can be shown that the

8'+ singularity is always on the physical sheet; in the
identical-particle case this reduces to 8'+=4vp. The
singularity at W may or may not occur on the physical
sheet, depending on the relative magnitudes of the
masses and bound-state or resonant energies. For the
case where vp and vp~ are resonant energies, the condi-
tion for 8' to be physical is that

Im(X.,vo, '"—vo '")(0. (83)

However, regardless of the status of 8' in a given
system, we know that at least three singularities occur
at physical values of 8', i.e., the three values of 8'+ as
n and y vary. From (82) it follows that

I o-I+ I o I(IW+I( (84)

If we imagine vp and vp& to be Axed and consider the
change in W+ as we vary m~, we find that

~
W+~ ap-

proaches the lower limit in (84) as my ~~, and the
upper limit as esp —& 0.

In conclusion, we consider the special case of one heavy
particle of mass M interacting with two identical light
particles of unit mass. If the two-body resonant energy
of the one heavy-one light subsystem is vp, and we as-
sume that there is no interaction between the light
particles, the formulas become


