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A phenomenological Lagrangian for a theory of nucleons and scalar, pseudoscalar, vector, and axial-
vector mesons is constructed on the basis of linear representation of chiral SU(2) X.SU (2). The Lagrangian
for this extended ¢ model is used for a study of strong interactions of the particles involved and for the
derivation of threshold theorems for pion-nucleon and pion-pion scattering, photoproduction of pions on
nucleons, and the production of an s-wave isoscalar resonance by pions on nucleons.

I. INTRODUCTION

N the last few years a number of people have used
the SU(2)XSU(2) ! commutation relations and the
hypothesis of partially conserved axial-vector current?
(PCAC) to derive interesting formulas for low-energy
parameters of various scattering processes and for strong
meson-decay constants.®* Recently it was noted by
Weinberg® that for soft-pion processes the same predic-
tions can also be derived from the lowest-order graphs
calculated from an effective Lagrangian partially
invariant under chiral-symmetry transformations. The
invariance is exact only for zero-mass pions.

Chiral symmetry is a dynamical symmetry. In the
formulations discussed so far, it leaves the total
Hamiltonian but not the free Hamiltonian invariant.
Since the explicit form of the interaction Hamiltonian
between the different fields is not known, this require-
ment does not uniquely define the chiral transformation
properties of the fields associated with known particles.
The discussion becomes more definite if one requires
that the axial-vector current is generated from the
free Lagrangian of the nucleon and has the form
Yiysyuwp. This places the nucleon field in the (3,0)
+4(0,3) representation of SU(2)XSU(2). The trans-
formations of the mesons are then determined after an
appropriate form of interaction Lagrangian is chosen.

The first model of this kind is the so-called ¢ model
introduced by Schwinger® and developed further by
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Gell-Mann and Lévy.” In this model, the = and ¢ fields
form a four-vector coupled to the nucleon field ¢ in the
chiral-invariant combination ¥(c+éyst-=)¢. In the
older work? the emphasis was rather on the renormaliza-
tion of the weak axial-vector current and PCAC than
on the usefulness for pure strong-interaction predictions,
although Gell-Mann and Lévy mentioned that the
nonlinear ¢ model has the nice property of yielding a
very small low-energy s-wave w-IV scattering amplitude
without charge exchange in agreement with experiment.
In the nonlinear ¢ model of Gell-Mann and Lévy, the
o field is replaced with a nonlinear function of the pion
field of the form [(m/f)?—=*]"2. The nonlinear chiral-
invariant models® considered earlier on a more general
basis by Giirsey® have been favored over the linear o
model because of the lack of evidence for a I=J=0
m-m resonance to be identified with the o field.

In the meantime, experimental evidence for a res-
onance in the/=J=0 2 channel has been accumulated.
Feldman et al. found a resonance in the #%#° channel in
the reaction 7~ p — na'n® with a mass of 730 and a
width around 50 MeV. This rather narrow resonance
was never confirmed by other experimental groups using
similar techniques and beam energies, although one
group found a rather broad resonance with a mass
around 600 MeV in the same reaction.! Further
information about the7=0 27 channel comes from =+z~
production on protons by negative pions. In this reac-
tion one has contributions from the /=0 and 7 =1 states
of the 7w system. Since the I =J =1 term—in particular,
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in the p region—is much stronger than the I=J=0
contribution, information about the s wave comes
mostly from interference with the p channel and is
needed, in particular, to account for the observed
asymmetry in the o° decay. The analysis is based on the
peripheral model supplemented with absorption or
form factors. Just recently a number of groups have
performed such analysis and arrived at #r s-wave phase
shifts passing near or through 90° in the vicinity of the
p mass.’? Of course, we would be much more comfortable
if there were unambiguous experimental evidence for a
resonance in the 7=J=0 2z channel. But there appears
to be little doubt that the relevant phase shift is large
and possibly resonant somewhere between 0.6 and 1
GeV. Further evidence for an I=J=0 7r resonance,
even less direct, comes from analysis of elastic =V
scattering—in particular, from backward dispersion
relations—and from analysis of elastic p-p scattering
below the meson-production threshold.!?

In the following, we shall assume that a broad I=J
=0 7r resonance exists and shall call it ¢. In such a
theory the mesons including ¢ and 7 are placed into
linear representations of SU(2)XSU(2). This “linear”
theory seems to have some advantage over nonlinear
realizations of SU(2)XSU(2). The pion does not play
such an exceptional role as in the nonlinear theories.
Therefore, it is easier to incorporate higher-symmetry
schemes which combine vector (axial-vector) and scalar
(pseudoscalar) mesons. The interactions are poly-
nomials of the fields, as in the conventional theory, and
there is some hope that such a theory might be useful
also for predictions at higher energies and for processes
in which no pions are present in the initial and final
state, as in elastic nucleon-nucleon scattering. In fact,
one-boson-exchange models based on Lagrangians with
structures that we are going to propose have been
successfully applied to the analysis of low-energy p-p
scattering,'4 and chiral symmetry might be useful to
place restrictions on the boson-nucleon coupling
constants.

In this paper we construct chiral-symmetric Lagrang-
ians based on linear representations of SU(2)XSU(2).
We start from the old linear ¢ model of Gell-Mann and
Lévy” and extend it to incorporate isoscalar and
isovector vector and axial-vector mesons. For complete-
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ness we include also the %(549) and the y(1016),
usually not considered in chiral-symmetry schemes, and
introduce their symmetry transformation properties.
The other meson fields are o, 7, p, @, w, and d. The latter
three are identified with 4:(1060), «»(783), and D
(1285).15 A chiral-invariant Lagrangian involving inter-
actions of these mesons with each other and with
nucleons is constructed in Sec. II. Since the Lagrangian
is to be used to derive relations for meson decays and
low-energy theorems, we consider only terms with no
more than three derivatives of the fields. To introduce
the vector and axial-vector mesons in the Lagrangian
we do not require gauge invariance of the second kind.
Then our currents are not proportional to the p and
a fields, respectively, but are generated mostly from the
conventional kinetic-energy terms of the Lagrangian.
We do not intend to investigate the operator structure
of the symmetry that we impose on the Lagrangian.
Therefore, the question of how our approach is related
to current or field algebra remains open.

In Sec. ITI, after elimination of a coupling between
the pseudoscalar and the axial-vector fields, mass
relations and normalization conditions for the vector
and axial-vector mesons are derived. The mass relations
for these mesons as well as for the o itself essentially
stem from the nonzero vacuum expectation value of the
o field. Then symmetry-breaking terms are added to
the Lagrangian in the usual way to produce a mass term
for the pion field. With this Lagrangian, we calculate
in Sec. IV the low-energy parameters for the processes
«N — xN, mr — 7w, yN — xN, and #N — ¢V from
lowest-order preturbation theory. These “low-energy
theorems” and the relations for the meson-decay
constants are evaluated numerically in Sec. V and
compared to experimental data and current-algebra
predictions. The only free parameters required as input
are essentially the pion-decay constant, the pion-
nucleon coupling constant, and the masses of the
nucleon, p, 41, and .

II. CONSTRUCTION OF CHIRAL-INVARIANT
LAGRANGIAN

In this section we shall construct a chrial-invariant
Lagrangian which describes the coupling of nucleons to
isovector and isoscalar mesons of spin zero or 1 and
with positive or negative parity. These mesons will
be labeled as #(0~,1t), 8§(0t,1%), p(17,17), e(1t,1%),
7(0—,0%), a(0+,0%), w(1~,07), and d(1+,0*), where the
symbol (JP,IC) refers to spin, parity, isospin, and C
parity of the neutral member of the isotriplet, respec-
tively. Possible identifications of these mesons with
observed particles will be discussed in connection with
applications of the chiral Lagrangian. From the begin-
ning we assume that the nucleon field ¢ is a (3,0)4-(0,3)

15 A, H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri,
L. R. Price, M. Roos, P. Séding, W. J. Willis, and C. G. Wohl,
Rev. Mod. Phys. 40, 77 (1968).
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linear representation of SU(2)XSU(2). Then the
isospin SU(2) transformation and the chiral SU(2)
transformation for the nucleon field are
Y =iy,
11/ — ¢”= e(l/Z)ia‘r‘ys'p'

)

Before we specify the transformation properties of the
mesons, we briefly review the linear ¢ model. In this
model the scalar field ¢ and the pion-field 7 transform
in such a way that the usual Yukawa coupling of ¢ and
m together with the nucleon-mass term myyy form a
chiral invariant:

mpy— fP(o+iyse- =)= invariant. (2)
Then the chiral transformation of ¢ and o must be
(m— fo)— fiyse-m— e Ha s
X[ (m— fo)— fiyse-m]e 7 (3)
or, infinitesimally,
dr=a-m,
dm=a(—m/f+0o).

Usually the nucleon-mass term is combined with ¢ to
form a new field

©)

o= '—m/f-l-O',

which now has a nonvanishing vacuum expectation
value {¢’)o=—m/f, and ¢ and = transform like the
four-dimensional representation of SU(2)XSU(2). It is
obvious that ¢'?+=? is a chiral-invariant, as is

o*—(2m/ flo+=*, ©®)

which differs from o'24=? only by a constant. A simple
chiral-invariant Lagrangian L( for the y-r-o system
with a direct w7 interaction is easily constructed in
terms of the invariants (2), (5), ¥v.0.4, and 4,2(c>+=?).
It has the following form:

L@ =—3[(80)*+ (87)*]—N[o*— 2m/ f)o+=* T
—(vudutmp+ fl(o+ivem-e)y. (6)

This Lagrangian is the so-called linear s-model Lagrang-
ian of Gell-Mann and Lévy" in the symmetry limit.
Before we go on to include the other mesons in this
Lagrangian, we want to point out several features of
this Lagrangian, some of which have already been
noticed by Gell-Mann and Lévy” and by Weinberg.’
First, we remark that the pion mass is zero, whereas
the o mass is m,>=8m?\/f2. Thus A must be positive.
This essentially comes from the nonvanishing vacuum
expectation value of the o’. The interaction Lagrangian
is

L= ff(o+iysm: o)y — N o'+ (2)?
+20*x 4 (4m/ flo=]. (7)

If we calculate the pion-nucleon and the pion-pion
scattering amplitudes from this interaction Lagrangian
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in lowest order, we find that they vanish at threshold.
In #-N scattering the second-order nucleon-pole con-
tribution which yields — f2/4wm for the scattering
length is cancelled by the o-exchange contribution. Of
course, we must consider only the isospin-symmetric
amplitude TV, since the antisymmetric part T¢
vanishes at threshold because of crossing symmetry. For
the scattering length ¢ we obtain
2 8wm
dra = ._Z__|__. _f_= 0,
m o f me?

since mq?=8m?\/ % In a similar way one shows that the
corresponding m-m scattering lengths are zero. Here the
o-exchange contribution is cancelled by the direct #-r
interaction term. Another quantity of direct physical
interest is the decay rate of the ¢. For zero-mass pions,
the total decay rate I is given by

g2 3

y

A7 m,

where g, is the coupling constant between the ¢ and
the two #’s, in our case, g,= (4m/f)\. Thus, with
go=4m\/ f= fm,2/2m, we have

Of course, we would like to have I'<m,, but with
f%/4wr=14.5, this is possible only for m,<0.3m. This
limitation on m, is not changed appreciably if a sym-
metry-breaking term is added to the Lagrangian and
the actual pion mass is taken into account in the decay
rate. On this property alone, Weinberg® rejected the o
model as a useful phenomenological model of strong
interactions. It is possible, however, that g, is modified
by further terms which appear quite naturally if all
the other meson states are introduced into the model.
We are encouraged, therefore, to construct a complete
Lagrangian which contains couplings of all mesons to
the nucleon but which should account also for the most
important meson decays like p— 2w, ¢ — pm, w — pm,
etc. In the following paragraph we shall still consider
the pion as massless. The symmetry breaking will be
introduced later in connection with the applications of
our Lagrangian.

Unfortunately, there is no @ priori principle which
determines the transformation properties of 8, p, @, 9,
w, and d similarly, as there is in the case of ¢ and ,
but once we have chosen a particular coupling of these
mesons to the nucleon field as part of the interaction
Lagrangian Lia, the transformation properties of the
mesons are determined from the condition that Liy is
a chiral-invariant.!¢ Just as in the ¢ model, we choose

16 Tnstead of this, we could list the representations of SU(2)
XSU(2), in which these fields are placed.
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the usual Yukawa coupling without derivatives:

L'= ‘/;{ Efp (Pvuwoutiveyua,)+ f',f)] i
+ fatvsvudu+ futvuwut frivsn )@ =invariant. (8)

Then the §, p, etc., must transform infinitesimally as

0d=an, 0,=—a-9,
dou=[aXa,], da,=[aXp.], )
0w,=0, 0d,=0.

We see that the choice for the coupling above connects
the p and the ¢ meson, which should lead to a relation
between the coupling constants of prw and apr. Further-
more, we notice that the couplings of w and d are
invariant by themselves. Thus, we cannot gain any
relations for the coupling of these mesons if their
transformation properties are such as stated in (9).
Another possibility to couple the mesons =, p, 6, a, 7, o,
w, and d to the nucleon field ¢ in a charge-conjugation-
invariant way is a derivative coupling of the form

LN=%J’{Qsﬁ’n}an‘p“%(au‘/—/){‘f’;')’u}'//: (10)

with

¢=o+iysn+iywuatiysyuds
+r- (3+ivsmtiyuout-tvsvuay).

Here we omitted the corresponding coupling constants,
so that the meson fields are not normalized as usual.
Unfortunately, the interaction L” is not chiral-
invariant in itself, as the coupling (8) is, even if the
meson fields fulfill specific chiral transformation rules.
To obtain a chiral-symmetric coupling together with
L above, we must introduce mesons with opposite C
parities. Such mesons can be coupled only with deriva-
tives of the nucleon field in a similar way to (10), but
with commutators instead of anticommutators with the
vu It is clear that these derivative couplings do not
relate the 7 and the (0+,17) particle and would be
chiral-invariant only if particular transformation rules
between mesons of opposite parity and C parity are
fulfilled. These couplings would lead, for example, to
relations between the couplings of the w and a (1+,17)
particle which could be identified with the B(1220)
meson. In this paper we shall not pursue these possibil-
ities for other representations of some of the mesons
and for different chiral-invariant couplings than (8)
any further, and shall limit ourselves to the exploration
of the nonderivative Yukawa coupling (8) with the
transformation rules (9).

The construction of the chiral-invariant Lagrangian
with couplings for the most important meson decays is
straightforward after we have constructed chiral
covariants which are products of two meson fields. Of
particular importance are products transforming like o
and =. The covariants must contain space-time deriva-
tives of the scalar and pseudoscalar meson fields if
couplings to the vector fields are to be present. Such
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products of meson fields which transform like 9,
9,0, d,m, and 9,8 are the following:
mu= 0yt g1(guX m—au0) — 20,3,
0= 0,0"+g1(au =+godyn)
7u= 0+ f2@u- 8+f3d;4°" ’
5u=aﬂa_fZ(QﬂXf"l'au’?)_fiidn“,
with arbitrary real constants g1, go, fo, and f5. We notice
that all these ‘“fields” have positive C parity and that
=, has the quantum numbers of the a, and 7, has the

quantum numbers of the d,, but, of course, the chiral
transformation properties are different. We have

(11

ony=—ao,, OM=—a-J,,

(12)

doy=a m,, Od,=an,.

We notice that we obtain the desired pmrm coupling if
d,= and 9,0 are replaced with =, and ¢, in the Lagrang-
ian L@ [Eq. (6)]. This leads immediately to a relation
between the prm and apm coupling constants. Products
of meson fields with the same chiral transformation
properties as mu, o, 14, and 3, but with negative C
parities are the following:

m) = g3(a, X3+ 0um) +guwyum,

o, =ga0u" d+gawuo’,

Wﬂl = figu* ®+ fawun,

3,/ =— fi(@,X=—u0")+ fiw,d.

Therefore, as before, =,/ =,/ +0,/0, and 7,/9,/+35,’- 8,
are chiral-invariants, which also should be included in
the Lagrangian. The second invariant involves again a
connection between the prr and apr vertices. However,
the couplings for apm constructed either with (11) or
(13) do not contain any tensor coupling of the a to the
pm system. In general, by Lorentz invariance alone, the
apw vertex depends on two coupling constants, whereas
the prm vertex depends only on one coupling constant.
This tensor coupling is easily generated in a chiral-
invariant way by considering covariant tensors m,,
O vy Ny and By, defined by

(13)

Ty = 'Yl(gyvx T a;wo'/) - 72dw3+71'(9u>< Oym— 0, X ym
—a,0,6"+a,0,0") —v2 (,0,8—d,0,8)
0= Y10 ®+vedwn+v1 (ay d,m—a,-9,x)
+'Y2, (dpav"l— dvau’?) ’
Nuw= €20, 0+ €xd o’ + €' (a,-9,5—a,-9,,9)
+ e3(d,8,0'—d,0,0”),
dp=— 62(9uv>< 5+ auﬂl)— 63duvﬂ
— &' (0,X8,5— 0, X 8,5+ a,9,n— a,9,1m)
— €' (d,0ym—d,0,m).

(14)

vy Ouwy My aDd By are antisymmetric tensors with
positive C parity and transform under chiral symmetry
like =, ¢’, 1, and 8. Antisymmetric tensors with negative
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C parity are

va, =73 (auvx 6"i_ 9‘&1'77) +'Y4wﬂvﬂ
+’Ys/ (a,.><a,,ﬁ— a,X9,5+0,0,n— Ova;ﬂ])
Fvs(wpdymT—w,dum) ,
Uﬂv, =730 5+74wnv7,+73’ (Quavs_ Qvans)
+'y4(w,‘é),,a-’— wvanq’) 3
' = €104 %+ exwpn+ €1 (Qu 0y — 0, 9um)
+e (wuav"l— wvaﬂﬂ) )
anvl = el(auyx T qua',)+ 54(&’,1#8
— &' (a,Xdm—a, X3, %x— 0,9,06"+9,9,0")
+ e (0,0,8—,9,8).

(15)

In Egs. (14) and (15) the tensors g, etc., are defined as
usual: g,,= d,0,— 9,0, The tensors defined in Eq. (15)
are important for generating the wpr coupling and for
the tensor coupling of p and w to the nucleon field y.
Of course, mu Tuw+0uwow, Tw Tw +0u'ew, Nulw
48, 84y, and 1,0 +9,,’0,,” are chiral-invariants, but
also

fuvpa("‘uv *8p— "uv’?pv)
and (16)
euvmr(“uvl : f’pv’_ o nv/ﬂpv/)

are chiral-invariant and are invariant against C con-
jugation. We notice that the second invariant in (16)
has a pwr coupling of the following form:

Lyyn=— (Zm/f) e,",,,,,('y4' €10,0,% " Qpo— ')’451,"’#1'9/: : (9,1:) .

17

Unfortunately, the constants vy4'e; and yse’ are not
related to other interesting meson vertices, but they
do appear in scattering processes, as, for instance,
T+w— w+a. We see from Eq. (17) that a pwmr coupling
does not exist if gauge invariance of the second kind for
the vector fields is demanded. In the same way, sym-
metric traceless tensors with chiral transformation
properties like ¢/, =, d, and 5 can be introduced, but
we shall not write them down here. They should be
considered in connection with chiral interactions for
spin-2 mesons like f, f’, and A, which we shall not
attempt in this paper. Of some interest are the traces of
symmetric tensors which transform like scalar particles,
for example,

= a1(0uXym— @,0,0") — 22d,9,8

os=a1@y 0 m+ad,d,m,

Ns= B?ap ‘ 6“5+,33d"au(7, ’

8= _62(9uxau5+ aua#’?) —B3d, 9,
which have positive C parity. Of course, =,’-0c,* and
752+9,2 are chiral-invariant. Other combinations with
the same transformation properties involve 9,0, 9,a,,

9wy, or d,d,, which vanish in lowest order of perturba-
tion theory. Traces of symmetric tensors with opposite

(18)
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C parity can also be written immediately. We shall not
make use of these traceless symmetric tensors for later
applications, but they are useful for meson-meson
scattering like w-p or ¢-a scattering and production of
p, @, etc., by nucleons.

So far we have introduced only chiral-covariants with
one derivative, so that the corresponding term in the
Lagrangian does not have more than two derivatives,
but later we shall make a translation in the o field
which will bring one additional derivative into the
Lagrangian. Therefore, we must also allow independent
chiral-invariants with three derivatives. Such invariants
are easily constructed with new vectors defined like
Ty Ouy My, and O, but with an additional derivative.
The following vectors transform like =,, o, etc.:

21(0wXdym— a,y0,0") — §2d,,9,9,
810y, 0ym+22d,00,m
J2@- 0,5+ fad u0,0”

- f 2 ( 0ur X 0,0+ aﬂvaw"l) - f 300y

Vectors with opposite C parity are defined analogously
on the basis of =,/, etc., given in (13). It is obvious that
all these vectors transform like =, ¢/, 7, and § as =,
oy, etc., did. We add these two “derivative vectors”
to the =, introduced in (11) and define new =,, o,
Nuy and 8# by

(19)

mu=0um+g1(gu X =— a,0')— g:d,d
+§1(9,w><3m— a#vavo") - g2d;way8 (20)

and analogous definitions for o, 7,, and $,. The same
construction is done for =,’, ¢,/, etc. A further general-
ization is achieved by substituting in (19) for 9,=,
d,0', 8,1, and 9,8 in the terms proportional to g, and g,
the complete =, 0,, 1,, and 9,. In this way we can
generate higher covariant polynomials. | &
geNow we consider which of these products of meson
fields can be coupled to nucleons to preserve chiral
invariance. It is clear that =, o, 1., and 8, are coupled
like =, ¢’, 9, and d as stated in (2) and (8), but we shall
not include them in our Lagrangian. Furthermore, it is
easily seen that =,,’, 0./, 7, and 3,,” defined in (15)
can be coupled invariantly with nonderivative tensor
coupling to form L,:

L"= Kt;{ _%['Y}U'YVJ(O-;"""“‘E . 8,",,
=175 (nw’ 2 =0 )WY, (21)

whereas %, 0, Nuw, and 3, cannot be coupled in this
way because of wrong C parity. A C-invariant coupling,
on the other hand, which contains derivatives of the
nucleon field is not chiral-invariant. We notice that L,
yields the tensor coupling for p and w. The situation is
different for the “vector fields” defined in Egs. (11)
and (13). Here both kinds—those with positive and
those with negative C parity—can couple in a
chiral-invariant way to ¥, but only with derivatives

Kie b g B
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acting on y, giving L,’:

L)= ‘/-’%['Ym’)'v]gv(”ﬂ'*"" : 5#‘*"'5’)’5(7)#'}“" : “u))'},’
- i‘l_’gla(‘fﬂl‘l"‘ : T),,'—I—'i'ya(n“'-i—‘: : "u’))'l’ ) (22)

where Yo0=y04— (04)¥ is supposed to act only on
the nucleon fields and in =, o,, 1, and &, the terms
linear in the basic fields must be removed.

All meson couplings considered so far transformed
like =, o/, 7, and 8. In the same way meson couplings of
the tensor type which transform like g, and a, are
usually defined

fuvz au@v— a’@l‘+7 (Q#X 9V+al-‘>< a“) ’

8=0,0,—d,a,+v(e.Xa,+a,Xp,).

Since g,2+a,? is chiral-invariant, we can easily write

down a chiral-invariant L® which contains the free
part of the p and ¢ meson:

L® = _'%(fuvz'*'gm?)_%sz(Qf'l‘auz) ) (24)

with the same mass my for the fields g, and a,. Of course,
the Lagrangian L) for the w and d meson is not
restricted by chiral invariance, and is

L@=— % (wWZ_}_d”yZ - %mw%";&z— %mdzdnz . (25)

But L™, which contains the free part for the  and 3§,
is restricted to the following form:

L®=—3[@un)*+(0,8)7]—3ms(r+5).  (26)

This completes the construction of the chiral-invariant
Lagrangian L. It is given by the sum of the chiral-
invariant parts defined in Egs. (6), (8), (24), (26),
(21), and (22):

L=L@O+ L'+ LO+ L@+ LD+ L, +L,+L, (27)
but with d,= replaced with =,, etc., in L and with
d,n replaced with 5, etc., in L™, and where L., contains
all the other four meson couplings transforming like
=?+0'? and 72-+9?% which are
Lm= - % (7';.;12-""7;4,2"‘ ﬁplz'l""]p./z) + (“pv2+0'uv2+77w2+5m2)

+ (7‘#»,2+Uuu’2+77w/2+ ﬁyvﬂz) + €uvpo (1:“,, . pr

7 l4 /7 A
_a'uv"lpo-'i"ﬂuv ‘ ﬁpa — O Npo ) .

(23)

(28)
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Of course, many more chiral-invariant Lagrangian terms
can be constructed if we allow higher derivatives and
higher products of the basic meson fields. Since we wish
only to establish consequences for three-meson vertices
and threshold behavior of some two-particle scattering
processes, the Lagrangian L is sufficient. In Sec. III we
shall eliminate two-meson interactionsin the Lagrangian
and shall derive relations for masses and decays of the
more interesting mesons like p, 7, and o.

III. RELATIONS FOR MESON MASSES
AND DECAYS

In this section we shall be concerned only with meson
properties. Here we shall discuss also the connection of
the fields =, o, 9, , 9, @, w, and d with the observed
meson resonances. First, we consider only the interac-
tion of =, g, @, and o. These fields will be associated with
the familar 7 (140), p(765), and 4:(1060), whereas the
o can be the s-wave mr resonance, encountered in 7w
phase-shift analyses mentioned in the Introduction.
Other possibilities for ¢ are 5v(1070)!% or a linear
combination of yy with the = resonance of lower mass.
But the 2r decay mode of the 4y seems to be rare,! so
that it is unlikely that it is a candidate for our ¢. The
field a, is actually a linear combination of d,x and the
Ay, since L@ with 9, — =, contains a direct @, — 9%
transition interaction which can be removed by a
linear transformation:

a,=a,’+20,=. (29)

Then, up to a factor, a,’ will be associated with the 4.
The direct @,d,x term comes about because ¢’ contains
a constant term forced upon us by chiral symmetry.
L@ also has terms which contribute to the mass of
the p and ¢ meson, which leads to relations of the masses
of these mesons with the coupling constants introduced
in =, and o,. In order to derive these relations, we start
from that part of the Lagrangian L which contributes to
the free part of g,, a,, ¢, and =, and which originates
from L@+L®+L,. It will be called Z and consists
only of the meson-meson interactions for g, @, =,
and ¢. The 5-6 part will be considered separately.

L= _%{ [:6u’°+g1(9nx’”_ 0“0',)+§1(9,,w><3yﬂ—' a,,,,><8,a’)]2+ (6u""+glau' m+41a,,- avﬂ)z'l‘ (f19ﬂ ‘ 7'+f19uv : 67")2
+[fi(@. X =— p,0") +.fl(a#vxav7"_ QMVGFU,)]z_I'mVZ(QML*‘ a,?)+msa?} —i{ [9uv+7 (euX eta.Xa)]
+[anv+7(9ux a+a, X o) ]2} +[71(9va T alw‘f,) +71I<9ux dym— X dym— auav"',"‘ avauo'):F
+[’710qu W‘I”Yl,(auxav"" aX 6"7!)]2—}‘[619#, et 51,(9# $0ym— 0y 6#“)]2+ [el(aﬂvx T quo'l)

+e' (auX dym— a,0,m— Qnaﬂa'+ anpa')]2+ (4m>\/f)0'7!2 .

(30)

With the substitution @,= a,’+29,= this Lagrangian is transformed into

= —3[2:(0um)?+ 2,3 (3,0, — 0»04)*+2:3 (9,0 — 040>+ (3,0)*+maa,2+m 20,2 4my 0¥ ]+ Ly ’

(1)

where Lz contains all three- and four-meson interactions to be considered later. The normalization constants and
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masses are given in terms of the “symmetry” masses
my? and coupling constants:

zr=(1+gum/ f)*+my*2,

z,=1—4e’m?/ f2, (32)
za=1—4y'm?/ f?,
md=myt gt/ 2, mE=myt fimt/f2. (33)
With the constant z equal to
m m
- = <)

fmvtgemi ) fme?

the direct d,ma,’ interaction term is eliminated. By
substituting z into (32), z, can be cast into a simpler
form:
Ze=my2/m,?. (35)

The necessity of making a shift in the a, field to
eliminate the ,=- a,” coupling seems to be characteristic
of chiral-invariant Lagrangians and has been en-
countered also by Wess and Zumino'” and by Gasioro-
wicz and Geffen!® with their Lagrangians. Furthermore,
we observe that the masses of the @, and g, split even
with chiral invariance, a fact which is connected with
the nonzero vacuum expectation value of the ¢’ field.

Next, we derive the decay interactions for prm, apr,
and aom which follow from L as given in (30). L,, gets
contributions in L), in L®, and in L,,. We have

Lp,,,,= —G10m 0uX ®—G o9, mX Iy (6,49»—3»9;.) ’ (36)
where
gm m
Gl=gl(1+z—)—f12—— (7
f f
and

2
Gy= %ZZ —'4:26161’31“!-21(1— Zg1ﬁ> .
f S

In G; and G» we eliminate 2 and f; with Eqgs. (32) and
(33) and obtain

mp2 my* 1 1
Gi=gr—, Ga=—}; + (Mo —myt)y——,
Mg? met 2mgt m?
46161,17&2
€= (38)
f’l
On the mass shell, L, is equivalent to
—m,2g m2—my? y  myt
LPmr = i’ /1_ —+ ""+ 5)
ma \ 2me g1 ma? g1
Xeou wXym, (39)

17 J, Wess and B. Zumino (Ref. 8).
18 S. Gasiorowicz and D. A. Geffen (Ref. 8).

CHIRAL-SYMMETRIC MESON-NUCLEON LAGRANGIANS

2521

whereas off the mass shell, extrapolated to 9%,=0, we
have

Lorr=—G194 =Xy,
Le,x has a somewhat more complicated structure. First,

we read off from Eq. (30)

m
Lype=(g12— flz)}-a,;" 0uX m— 2y (0w @' X dym

m
+aw' - 0uX dym)+ 2}" (vi’— e®)ay’ ouwXm

4m 4m
+_'Yl71'auvl7r * Oux dm+—e 51’0;41' * a,,’X dy=

m m
+2g1§1—f(1+2g17)9,“,~ a,/’Xom

F2ffre( 1 sgre Va0, X0y, (40)
fr 17( +Zg17)a,w cuX0m. (

On the mass shell, L,,, can be reduced to

Lap1r= _hlgp mX aul_hZOnr' =X ayv’ ) (41)

where

m
= (g12- f12)7+ 2y (maz'— 'mpz)

4m
—‘—"‘(‘71‘)’1"%;2— €1 61'mp2)

m m
+7(1+Zg17) (zglglmpz—flflmaz) ) (42)
= et )
y=—(e2—y12)F+—(eres’ —v171’
7 1°—Y1 7 1 Yy

+_f"f<1+zg%n-) (g&1—3 A1)

With the definitions €'=4yyyi/'m?/f? and 6=2(e2—v1%)
Xm?*/f* and Eqgs. (33) and (34) for 2, m,2, and mgz2,
respectively, 4y and %, are simplified to

[ gmme—m2? f
}l1= (m,ﬁ— m,,z)-—— 'y—f— —‘—'2—‘—'—(67}1,,,2— e’m¢2)
Mg m

m my

T 2(2mp2g1§1—m42f1f1), (43)

my

(&181—3f1f1).

M2

f m
hy=—[8—3(e— &) H+—
m f

In order to be able to compare with the prr coupling
constant we eliminate f/m in favor of g;. We choose
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f/m=g1/ (m2—my*)'? so that f and g, have the same
sign. Then
Ma2—m,? [ Mai—my® vy em,?— €'m,?

(ma2—my?)1iL

h1=gl " —
Mg, gl

mi—myimyl & fifs
N |

Mg —1m,?

ma?.__m 2 ma2 2
1 » 81 81 (44)
—g———— 53— ¢
bz gl(ma2_mv2)1/2[a H(e—¢)
ey (éz_ﬁé)]
g1 2g°

Making the proper normalization of p,, @/, and =
with 4/2,, A/%, and A/2., we obtain as the final result
for the gorr and (A1)apr and (B2)epr coupling constants

1 m, 1 ml—myty my*h
Born="—" 51(1_'— I +€),
V5, my* 2 m? g1 mt g

M Mg?—m,?

() [ ma*—my® ¥
1)apr= — g1 1— -
" ) my (= my? m? g
emyi— e'my?  (m—my?)my?
o 1
ma2_ mpz ! (maz___ mp2)ma2 (45)
g1 f 1f 1
X(Z—-m,, — M ):I R
81 g1
e
(h9)apr= — "1[6——1— e—¢€)
° (3,2)V2 my (mg2— mvz)x/zs 2

+mva(m 2—mVZ)(—L‘ﬁ-jl—f)l>:|

Mg? g1 2g1°

Thus, even under the condition that the “masses” m,,
m,, and my together with the normalization constants
2, and 2, are known, the three coupling constants still
depend on seven constants. Therefore, the correlation of
these three coupling constants on the basis of chiral
symmetry alone is rather weak in contrast to the
chiral-symmetry approach of Zumino and Wess'?"18 or
current algebra with single-particle dominance hypoth-
esis,’® where one encounters a linear relation between
Zorry Plapry and hogye. Only with further assumptions
beyond chiral symmetry shall we get the result obtained
in Refs. 17 and 18. In these papers the p and ¢ fields are
introduced as Yang-Mills gauge fields. Then y=gi.
Furthermore, we shall assume without any justification
that z,=2,=1. Then 6=0, and the parameters m, and
m, are the masses of the p and 4; meson. Furthermore,

19 See H. J. Schnitzer and S. Weinberg (Ref. 3); S. G. Brown and
G. B. West (Ref. 3); K. Fabricius (Ref. 3).
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we assume that mp?=m,?; then f,=0, and we put
mq?=2m,?, which roughly is the experimental relation
between the p and the 4; mass. Then we have

&
Sorn="— 4+2mp '—'+e g1,
§1

f1
hm,,=(-;-—<e-2e'>+m,,2—)mag1, (16)
81

a1
Roapr= (— (e— e’)+m,,2——->—g1.
81

Mq

Now, if e=¢=0, our result agrees with the relation
obtained by Zumino and Wess.”:!8 In this case anomal-
ous couplings of p, @,, and 7 appear only in connection
with the tensors p,, and a,,, but not with (p,d,m-p,0,7),
etc. In Ref. 17 such tensors are excluded because the
Lagrangian is constructed on the basis of gauge invar-
iance of the second kind for the fields a, and p,.

Other three-meson couplings of interest are the aow
and o couplings. For the first of these two, we derive
from the Lagrangian L

Laﬂr= gl[au’ . auﬂ o— aul g 6,,0'

& m
+—(1+Zg1_‘>a;w, . a“ﬁ ayU] ’ (47)
81 f

which is equal to
V2
ay’ 0,x0,0.
Mg?

Loor=g1a,' (0ymo— md,0)+281 (48)

On the mass shell and for renormalized pions [,
= (\/2,)r], this reduces to

gl Mq
Lisr,=a, - 9,m, 02g1(1+——mvz)—-— . (49)
81 my
L.+ has the following contributions:
(ma2__ mV2> 1/2 mV2
Lvrw 81 uauﬂ'auﬂ‘"ﬂ'a“ﬂa,ﬁ'
Mma? \ Mg 2
4m,?
— Aow: 1:) . (50)
3%

On the mass shell and for renormalized pions, the
Lagrangian is

(Gmet—m?)

(ma2—my*)''? ymy*
Lo'1rr1r,-= F 4

my? g2

4\
+%m,’-—-—2'ma2)ﬂc,- = (51)
81
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For zero-mass pions and

mq®=8\m?/ *= (8)/ g1?) (ma*—my*)
and
2m = 2my*=2m,?,
this reduces to

(52)

We see that the orr coupling in the original ¢ model is
reduced by a factor of 4 through the extra couplings
originating from the introduction of the p and ¢ fields.
A part of this reduction, however, is lost by the proper
renormalization of the pion field = — .

A similar analysis can be carried out with that part
of the meson Lagrangian which couples the %, 8, and
d fields. To eliminate a d,d,n7 coupling, one defines in
analogy to the a-m problem a new field d,’ to be asso-
ciated with the D meson by

dy=dJ+50un.
Then the mass of the d,/ is
mdt=md+ f'm?/ f*

§-= + (md/2__md2)1/2/md/2 R

Logn,=—3(mi2/m,)g10%p 7y,

and

where the two signs are related to the relative sign of
fand fs. The normalization of the 5 field is changed by

2,=(4my2—3m?)/m4'?,
which changes also the mass of the n compared to the &
mass. We have
miE=mg/\/%,.

Therefore, m,2>3m;?, which is not satisfied by 7(549)
and 7y (1016).1* But there are two other candidates for
the 7: 7'(958) and E(1420),'8 which makes further
analysis rather complicated. On the other hand, f;
which determines all these masses, can be correlated
with the decay d— §+w, which seems to be the
dominant mode of D(1285).15

So far, we have derived only consequences from our
chiral-symmetric Lagrangian with the pure symmetry
assumption. To obtain results for a finite pion mass, we
must introduce a symmetry-breaking term in the
Lagrangian which we choose proportional to =?:

Lop=—}ox*. (53)

Then this term accounts for the mass of the pion. The
divergence of the chiral current 7,5 is

3,J,5=0L/3a=co'=m. (54)

Thus the Goldberger-Treiman coupling constant g,
which determines the weak decay of the pion =, is

my (mg2—my?)l2
=— Myl

Maf1

(55)
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where m,2=c/3, is the actual pion mass. f is also linked
to the pion-nucleon coupling constant g,n,. In our
Lagrangian, the pion-nucleon coupling L., has the
following form:

Lyn= (2e)2n- (fivsmetzfoivsydume .  (56)
For nucleons on the mass shell the coupling is
Lw,n= g‘lm‘;" * 7'1‘7:7630 ) (57)
with
M 2f,g1m?
e (=} (58)
my foma?

with p universality, 2f,= g1, we would have

grn= (mV/ma)f-

IV. SEVERAL LOW-ENERGY THEOREMS

In this section, we shall calculate low-energy param-
eters such as s-wave scattering length for various
processes as wN—wN, wr— ww, YyN— N, and
7N —o¢N. It will be assumed that the low-energy
parameters can be obtained from lowest-order perturba-
tion theory based on the chiral-symmetric Lagrangian
with symmetry breaking. This assumption may be
questionable for cases where the unitarity plays a major
role as in low-energy s-wave NN scattering or in the
p-wave parameters in w/V scattering. Therefore, we shall
concentrate on the parameters and reactions mentioned
above, for which unitarity effects are expected to be
small.

In =N scattering, we have contributions from
nucleon exchange to be calculated from the interaction
Hamiltonian H iy :

Ma _ . fogam
Hip= ——fiﬁf s\ me— 0w Y, (59)
my f2m.,2
o exchange, where the appropriate interaction is
B (mg2— mv"’)”2/4m.,2)\
Hine=— f{po+gr \ o, Tr
my? g1
mv2
+ﬂr.a“ﬂraua———2a3"ﬂr'apﬂr) ) (60)
Ma

and p exchange, with the interaction Hamiltonian

Hint= - fp‘;i'YM‘ﬂp : 9,4"*‘610‘47:1 . qu WT+G2apﬂr

8o ..
XOym, 9#»"‘4‘2 Vil vw v o ow, (61)
m

where
m,? Mo2—my*  my? 1
Gi= 81, 52=——————-—7———g1— 81—,
my? 2mg*my? Mg Mo
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the magnetic coupling of the p which is not related to
other known coupling constants. Since we are only
interested in the s-wave scattering length, we calculate
the forward amplitude To=T(s= (m~+m,)?, t=0) at
threshold which is related to the scattering length by

1 m

a=——

4 m~+-m,

To. (62)

Ty is easily obtained from the invariant amplitudes 4
and B, which are defined as usual:

T=ua(p)[—A+iv(¢+q)/2BJu(p),
so that
To=—(A-+m,B).

(63)

(64)

Of course, we consider the {-channel /=0, 1 amplitudes’

separately, usually defined by
Top=08as TP 447075 ]T. (65)

For convenience we display the invariant amplitudes
for the three exchanges:

(a) N exchange:

A® =dmgy 2 +4gpegov
4©=0,

1 1
B®=— (gps+2m'gPV)2< - ) y
s—m?2 u—m?

(66)
1
B =— (gpst 2m§pV)2< + )" 2g0v?,
s—m?2 u—m?
where
Mg (maz__ ,sz) 1/2
gpsz'——f, gPV=—_fP'
my MMy
(b) o exchange:
2. 2 2 2
A(+)=ma my _Z—f” 1 r4ma A
my:  m m,z-—tL g.?
l my? my?
——<1+ )—I~m,,2 :l, 67)
2 g2 M2

where gim= f(m.2—my?)"2 has been used. Because of
me= (8\/g) (m2—my?) we can write 4™ as

2 2. 2| 2
A(+)=__£_ ! {m,, mvr(”m")

- i
m me2—1 my? l_ Ma?

myl  mgim,?
— 2m,2 ]— } . (68)
m,,z my

G. KRAMER

177
(c) p exchange:
2
B®) = (61—162) (fotgs),
myi—1
(69)
1 u—
A = (61— tGZ)gp— 4
my2—1 2m

The final result for the two scattering lengths o
=%((11/2+2(13/2) and a(‘>=%(a1/2—a3/2) is

2 2
o= __1_- M r(gps+2ngV)
167 mz(m—I-m,,)L 1—m,2/4m?
8 2m? my2—my?
- — |, (70)
M Mg

1 m.m [g1 fo
e =— 2=
2w m~+m Lmy?

1
+_—”"'““(gps+2”1gDV)2—gpv2]- (1)
4Am2—m 2

If we retain only the leading term in .,/m and sub-
stitute the definitions for g,s and gpv and use f2/m?
=g/ (m2—my?), we obtain

=) e ma? 2 (72)
)= g%,
8r sz(maz"-sz)gl
We notice that the p contribution is cancelled by the
pseudovector part of the -V interaction terms. The
current-algebra formula for ¢,
e =m,%/8rg.?, (73)

is obtained from Eq. (71) if gps=0, 2f,=g;, and
ga=—m,m,/V2g:. The latter formula, the Kawara-
bayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) rela-
tion,? is obtained from Eq. (55) if m,=V2my. Of course,
terms proportional to gps in the second term in (71)
do not arise in the current-algebra derivations, where
only pseudovector couplings appear. Naturally, in our
model, we must work with the complete formula.
Furthermore, we notice that the current-algebra
formula also follows from the last result, Eq. (72), if
ma= (2my)2 and g.= —m m,/ (2g)*2.

Next we calculate the s-wave scattering length for
w-w scattering. The 7-r scattering amplitude is usually
written in the following form:

T=A06480y5+Boaybss+Casbpy, (74)
where « and 8 are isospin quantum numbers of the
incoming pions and 7 and & are the labels for the pions

2 K, Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966) ; see also the papers of Ref. 19.
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in the final state. The amplitudes with specific isospin
in the s channel 4,7 are determined by 4, B, and C in
the following way:

AL=344B4+C, As=B—-C, A2=B+C. (715)
Contributions to the m-m scattering amplitude come
from p exchange, o exchange, and a direct (=2?)%-interac-
tion term proportional to A. This term can be combined
with a term originating from the s-exchange contribu-
tion using the relation m,2= (8\/g:2) (m2—my?). This
way all terms not proportional to .2 cancel. The final
result for the amplitude A4 (s,t,%) = A4 (s,u,t) is

s—u s—t
A=— (Gr—léz)z — (61—‘1462)2
my2—1 my2—u
g’

———————— 1 s(ma*—2my*t) — dm2myE (mlE—my?)
mvz(maz_ my?)

1%1/4
———-———~————[smv2+2m,,2(ma2—mv2):|2} . (76)

Mt (mq2—s)

The other amplitudes can be determined with the cross-
ing relations B(s,t,u)=A (t,5;u) and C(s,t,u)=A4 (u,l,s).
With this, the s-wave scattering length for I=0 and
I=2 and the p-wave scattering length for /=1 are
easily calculated. These scattering length, called ayy,
where the two subscripts refer to isospin and angular
momentum, are [ary=— (1/32rm,)TT7]

m.[2G2 g 29m,2
doo=—'l: —-—‘(1— )] ’ (773,)

dxlm,? my? 4m,?
M 612 g12 / ”’l‘)r2
(12(1=—|:—" ! 1+ ):I y (77b)
drl m,? my?\  dm,?
1 612 2 g12
an=~—-—~(~—— —) , (77¢)
8rme\m,> 3 my?

where we have used m,2=2my? and neglected terms of
higher order in m,%/m,?. These scattering lengths differ
from the results obtained with current algebra even
if the o contribution, which is the second term in
Eqgs. (77), is neglected. Eventually, we shall assume
that my=m,; then G1=g1, so that the p and o contribu-
tions can be added together.

Now we derive low-energy expressions for the photo-
production amplitudes. As usual, we write the complete
photoproduction amplitude f in the barycentric system
for photoproduction of pions on nucleons as a matrix
element between initial and final Pauli spinors:

= Fx,).

The F is expanded in a complete set of rotational
invariants in Pauli spin space. We adopt the notation of
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Chew, Goldberger, Low, and Nambu (CGLN).2! Then
for pion momentum | ¢| — 0, only the function F; is not
vanishing, from which the electric s-wave multipole
Ey,; can be easily calculated. We have

L(Ert-m) (Egt-m) ]2
8m/s
+[W/s)—mPD— (t—p?)(C—-D)}, (78)

where 4, B, C, and D are the CGLN invariant ampli-
tudes in Dirac space and E; and E, are the initial and
final nucleon energies. We have calculated the invariant
amplitudes for the three isotopic-spin configurations
and then determined Eo &+ from them. We have
neglected terms of higher order than (m,/m)2. The

result is
m,)
2m ’

(79)

{{(W/s)—m]4

Eo+= lim F1= hm
lq|-0 lq| -0

1 2m4-m, egrn My
Eo @ =F, ®= __m____(l
4r 2(m~+m,) 2m 2m

1 2m4-m. egren

(_)=___

47 2(m~+m,) 2m ’

where g.n, was defined in Eq. (58). The expression for
Eo ) agrees with the Kroll-Ruderman theorem, as
has to be expected, whereas Eo.®1) agrees with the
current-algebra prediction of Balachandran, Gundzik,
Narayanaswami, and Nicodemi (BGNN),22 but dis-
agrees with the pole approximation in the static model
as worked out by CGLN.2 This is somewhat surprising,
since our results come mostly also from nucleon
exchange. From pure nucleon exchange with pseudo-
scalar coupling we derive for Eo. instead of (79)

Eo = 1 2mAm. o m,(

My
1—— 4 k), (80
4 2(mtmy) 2m 2m\ +KV) (80)

2m

where ky= (k,—k») is the isovector anomalous magnetic
moment. In our approach the anomalous magnetic
moment term in the interaction of the photon field with
the nucleons can be generated only from interactions
with the vector mesons. Thus the isovector anomalous
moment interaction can be obtained from the magnetic
coupling of the p mesons:

an=‘l;%i['ym7u]"¢ : QMV(Kelm/f) ) (81)

contained in L, [Eq. (21)]. Then v will be proportional
to the coupling constant of this term:

exy/4m=—co(2xexm/f), (82)
with a proportionality constant ¢, to be determined in
a dynamical calculation of the anomalous magnetic

1 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

22 A, P. Balachandran, M. G. Gundzik, P. Narayanaswami, and
F. Nicodemi (Ref. 3).
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TABLE I. 7-N scattering lengths.

Parameter Chiral Lagrangian Current algebra Experiment
Mr ma’ Md
a®) —_———#=0.082 =0.091 0.088-£0.003
87 m 2 (ma?—m,?) 8rga?
Mr M m2 (ma®—m,?)
a® ———| grn?—8f2————— )=0.0033 0 —0.0034+0.004
167 m? Mo Ma?

moments. Of course, here we make the assumption that
the entire anomalous magnetic moment of the nucleons
is generated from the p and the w meson. The interaction
term (81) contributes to 7V — pN or 7N — v N through
nucleon exchange. But, in addition to this term, we
have a direct-interaction term for wN — pN in our
Lagrangian which is also contained in L,. It has the
following form:

Lupr=V5[v 10 Jiv sl @u* mokerma/my . (83)
This term generates a direct interaction with the
photon field proportional to ¢y, which leads to the
following contribution to Eg P:

1 2m~+m,
(E0+(+))direct= —_—
Ar 2(m+m,)

Moo
2k €1C¢
my

1 2m+-m,. egpskymiy
—— ()
dr 2(m+m.)  4m?

and cancels the second term in Eq. (80) coming from
nucleon exchange. There is no such term if the pion-
nucleon coupling is pseudovector. In this case one
immediately arrives at Eq. (79), with grn=2mgpv,
which has essentially the same form as derived in
current algebra directly.?

The gauge invariance of the photoproduction ampli-
tudes is guaranteed by the usual gauge-invariant
construction of the interaction with the photon field.
This produces an interaction term in first order from the
pseudovector part of the pion-nucleon interaction. This
term is needed to cancel terms from the nucleon

TaBLE IL. r-7 scattering length.

Parameter Chiral Lagrangian Current algebra
M g1 29m .2 Mab
Qoo —— 14 =0.15 =0.18
4r m‘ﬂ2 mcz 41rg 2
a0 0 0
Mmadgi® Mab
a0 —————=0.00057 - =—0.088
16mm 2m 2 8rg.?
8’ M
an ——=0.014 =0.044
24 mam 2 16mg.?

exchange caused by the pseudovector interaction. These
terms sometimes destroy the gauge invariance of the
current-algebra results for pion photoproduction.?

As the last example, we give the results for the
threshold behavior for the o-production amplitude.
The T matrix for the process mo+N — oc+N’ has the
isotopic-spin structure

To=T71,.

The scattering amplitude f for forward production at
threshold, which is related to T by

f=—=[m/4m(m~+m,)]T, (85)

is given by nucleon exchange in the s and # channels
and by 7 and ¢ exchange in the ¢ channel. In the forward
direction only the spin-nonflip amplitude is nonzero
and has, with terms of the order m,?/m,? neglected, the
following form:

s 1 ( mm, )1/2[f (mV2 mt+m, 1 )
& (m~+mgq)? B me m: om
Ma (m—+m,)? m~+m,
_2f9g1<"_ >

my mE(m—+mq)+msm  momy

mgt
—4f,— . (86
f glm,ﬁ M2 ('m+m.,)—|—m.,2m:| (86)

mym (2m~+m,)

Thus f would be of order m.?/m,* like the isospin-
symmetric part of the w-IV scattering amplitude, if the
expression in large parentheses in Eq. (86) vanishes.
Unfortunately we do not know enough about all the
coupling constants contained in this equation to solve
for m,. Indications however are that f, is small com-
pared to g.». Neglecting the last two terms in Eq. (86)
gives the following equation for m,:

(87)

Unfortunately, there exists no experimental information
on ¢ production near threshold. Since it can be detected
only by its 2 decay, it must compete with uncorrelated
27 production and with 27 production coming from the
p. But the contribution from the p° in reactions like
7m+p— wtr~n is favored by isospin and angular
momentum factors. Therefore, information about the
threshold behavior of o production can be gained only

me=[ (m2—mv?)/mv*Im.
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TasLE III. Threshold electric dipole amplitudes.

Parameter Chiral Lagrangian Current algebra Experiment
—€rn Mx —egama’
Eo 01 —=-—0.155X10"? =—0.158X 1072 Eo.©=(—0.105+0.024) X 1072
160 m? 167mg.
Eo, ™ =(~0.104+0.057) X 102
€gxn Mn
Eo O T +2.260< 102 Eo;. )= (2.12240.024) X 102
drmax 2m

if the behavior of all contributions leading to =tr—
within the mass of the #*r— system in the vicinity of the
o mass is calculated and compared to experiment.
Another possibility is information about the nmr®
final state where p does not contribute. But here one
has large contributions from A(1238) production. But
it might be interesting to derive the threshold properties
for #N — pN and wN — 2zxN with our Lagrangian.
For #N — 27N we expect results similar to those of
the Weinberg and Schwinger Lagrangians as calculated
recently by Olsson and Turner.®

V. NUMERICAL RESULTS AND COMPARISON
WITH EMPIRICAL DATA

In this section we briefly collect the numerical results
for the meson decays and threshold parameters for the
various reactions and state the assumptions about the
coupling constants that we use as inputs. Furthermore,
we compare the results for the low-energy parameters
and decay widths with the experimental values and with
the current-algebra predictions. As input we use the
pion-decay coupling constant g., the pion-nucleon
coupling constant g.», and various masses. The empirical
values for these parameters are g./m,*=0.10m, grn
=13.5 (grn2/4r=14.6), m,2=31m,2, m2=59m,%, and
m.2=0.019 GeV2. According to Eq. (33), the symmetry
mass 7y and the p mass m, are not equal. The difference
is determined by the coupling constant f;. Information
about fi could come from relations between 7-p and
m-a scattering or p and ¢ production by pions on
nucleons, using L,’ defined in Eq. (22). Experiments
indicate that even at low energies #V — pN is approx-
imately described by one-pion exchange. Therefore, we
assume that f; is small, and then we have my=m,.
Then we calculate from Eq. (55) values for f and gi.
The result is f=7.25, g1=35.7. m, is chosen so that
Eq. (87) is satisfied. This yields m,=0.905#=0.85
GeV. Actually, there is no information available about
the o production at threshold. On the other hand, the
empirical evidence for the existence of the o referred to
in the Introduction is not unambiguous enough to de-
termine the mass of the resonance. But the value we
choose for m, is consistent with the results of the 7-7
phase-shift analyses. With these parameters we calcu-
lated the #-N, w-w, and photoproduction low-energy

%M. G. Olsson and L. Turner, Phys. Rev. Letters 20, 1127
(1968).

parameters from Eqs. (70), (72), and (77). The results
together with the experimental data and the current-
algebra predictions are exhibited in Tables I-III. In
Table ITI, the formulas have only the leading powers
in m./m. The complete formulas can be found in the
text, but the latter have been used to produce the
numbers in Table III. The value for the parameter
a™ essentially agrees with the current-algebra predic-
tion and with experiment. The s-wave scattering length
a differs from zero, but is very small. The experi-
mental value is taken from a recent letter of Hamilton?
in which he discusses possible values for ¢ and ¢™®
depending on the source of information that one uses.
The values quoted in Table I are derived from his
“charge-independent” value a;— a3=0.26540.009 and
the #*p scattering length a@;=— 0.09140.005. Pure
experimental values obtained from =*p scattering
experiments are ¢©)=0.09040.003 and ¢“=0.001
=#0.003. These values are also consistent with calcula-
tions based on forward or partial-wave dispersion
relations. Lovelace, for example, quotes a™)=0.0886
#0.0027 and ¢ =0.01862£0.0036.25 Of course, small
changes due to unitarity corrections are to be expected
for our theoretical values for ¢ ™. Therefore, the ‘“agree-
ment”” with the experimental values is satisfactory.

There is no direct experimental information about
m-m scattering lengths. With a forward dispersion
relation it was found that a;;=0.044,28 which agrees
better with the current-algebra value than with the
prediction from the chiral Lagrangian. We remark that
the formulas for the s-wave =7 scattering lengths based
on current algebra do not agree with those of other
authors,® although the signs of the numbers are identical
and their orders of magnitude are about the same. Our
current-algebra version is equivalent to pure p exchange
in all three channels.

The experimental numbers for the electric dipole
amplitudes are from Adamovich ef al.? They agree
reasonably well with the theoretical predictions. In-
clusion of p- and w-exchange contributions which are of
order m./m,? might improve the agreement. Eq )
cannot be obtained in current algebra, since the basic

24 J, Hamilton, Phys. Letters 20, 687 (1966).

% C. Lovelace, CERN Report No. TH. 839 (unpublished).

26 M. G. Olsson, Phys. Rev. 162, 1338 (1967); see also J. Pist,
P. Lichard, and P. Béna, Nucl. Phys. 87, 433 (1966).

27 M. I. Adamovich, V. G. Larionova, A. I. Lebedev, S. P.
Kharlamov, and F. R. Yagudina, Yadern. Fiz. 2, 135 (1965)
[English transl.: Soviet J. Nucl. Phys. 2, 95 (1966)].
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formula is not gauge-invariant. Of course, Ep.) is
already given by gauge invariance alone; thus no
current-algebra formula is needed in this case.

With the coupling constants and masses given above,
we can calculate the decay width of the o. Using Eq.
(51) for the coupling of o to 2w, we obtain I';= 595 MeV
for a o mass of 850 MeV. This result is consistent with
the experimental information referred to in Refs. 11 and
12. It was pointed out in Sec. ITI that our Lagrangian
approach yields a rather weak correlation between the
coupling constants of p— 7w, ¢— pr, and ¢— om.
The four coupling constants which determine these
three decays actually depend on seven parameters.
Only if further assumptions are made can two of the
decays be calculated. For example, starting from Egs.
(46) and (49), we can assume that e and €’ are negligible
to all the other constants. Then we obtain from T,
=120420 MeV 1 that |gyrr|=5.36=0.46, and with
g1=5.7 we compute m,28:/g1=0.3820.16, using the
first of Egs. (46). Then ki, ks, and the gom coupling are
determined, and yield I'spr=14.54-2.9 MeV and T,,x
=21.845.4 MeV. Even these small numbers for the
A, widths are not inconsistent with the experimental
data.’® Another possibility is g;=¢=0; then we have
€=0.19+0.08, and obtain I',,,=35.44-9.8 MeV and
Toor=11.4 MeV.

Finally, we compare our meson-nucleon coupling
constants with some of the analyses of low-energy
nucleon-nucleon scattering. The three coupling con-
stants determined in our approach are the ¢-V coupling
constant f=17.25, the p-N coupling constant f,=—2.1,
calculated from Eq. (58), and the A4;-N coupling
constant, which is equal to f,. We notice that f, has the
opposite sign compared to gi. Thus p universality,?
which states that g;=2f,, is badly violated. Actually,

28 J, Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).
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there exist many analyses based on the one-boson-
exchange model* which do not agree very well with each
other, because different unitarization schemes are used
for the low partial waves. Therefore, we compare only
with some of the recent analyses based on higher
partial waves where unitarity is unimportant or on
forward dispersion relations, or a combination of both.
For example, Kopp and S6ding,” who combined the
dispersion relations for the forward spin-averaged
amplitude with an analysis of some higher partial waves,
obtain f2/4r=3.5 with m,=700 MeV and f,%/4r=1.2
compared to our f2/4r=4.2 and f,%/4r=0.35, whereas
Bugg,® who uses only forward dispersion relations but
includes #-p data, claims that f?/4r=14.1 with m,=613
MeV and f,2/4w=1.88. The difference in f2/4w obtained
in Refs. 29 and 30 might come from the fact that in
Ref. 29 the authors assume a second pole with a mass
of 400 MeV as an approximation of the two-pion
continuum in addition to the o resonance. It appears
that further work is necessary before a meaningful
comparison with the information coming from nucleon-
nucleon scattering can be made.

ACKNOWLEDGMENTS

I am indebted to S. Fenster, M. G. Gundzik, W. F.
Palmer, and K. C. Wali for useful discussions concerning
various aspects of this work. Furthermore, I would like
to thank T. H. Fields and K. C. Wali for the kind
hospitality extended to me at Argonne National
Laboratory.

2% G. Kopp and P. Séding, Phys. Letters 23, 494 (1966); G.
Kopp, Rev. Mod. Phys. 39, 640 (1967); see also G. Kopp and G.
Kramer, Phys. Letters 19, 593 (1965), where it is claimed that

02/4w=0.456, f2/4w=2.13 is also consistent with higher partial
waves.

% D. V. Bugg, Nucl. Phys. BS, 29 (1968).



