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Current Algebra, Dispersion Relations, and the 9+-9' Mass Difference
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An analysis of the p+-po mass difference has been made using (a) on-mass-shell current algebra, and (b)
dispersion theory. The former method gives a logarithmically divergent result similar to the one obtained
by the phenomenological Lagrangian approach. In dispersion theory, if one writes unsubtracted dispersion
relations for the form factors describing virtual-photon-p-meson scattering, then the mass difference is
quadratically divergent. However, once-subtracted dispersion relations with the subtraction constant taken
from current algebra, together with the assumption of p dominance of the dispersion integrals, gives a
result similar to that obtained from (a).

1. INTRODUCTION

HE current-algebra calculation of electromagnetic
(em) mass differences between the members of

various isomultiplets has attracted a lot of attention in
recent times. One calculates these up to first order in
em interaction (then these are related to integrals over
the forward virtual Compton scattering amplitudes for
scattering with transverse and longitudinal photons) by
taking into account a few low-lying states. Harari, '
on the basis of a pure Regge-pole model (with no cuts')
has argued that AI=2 mass differences (e.g., rr+-s',
p+-p', etc.), due to high-energy damping effects do not
have a large Regge tail and are therefore dominated by
low-lying states. However, if fixed poles in the angular
momentum plane are present, then the pure Regge
behavior of the virtual Compton amplitudes F; (defined

below) gets modiaed, ' and Fr and Fs, instead of satis-
fying unsubtracted dispersion relations as would be
expected from Harari's argument, satisfy once-sub-
tracted dispersion relations (see Sec. 3).

It may be mentioned that Das et aL using chiral

SU(2)&(SU(2) current algebra and working with soft
pions, have obtained 6nite x+-x' mass difference in good
agreement with experiment. Gerstein el u/. ' have shown

that if one calculates the same mass difference by using
hard-pion current algebra or the phenomenological
chiral SU(2) XSU(2) Lagrangian approach, ' this mass
di6erence is logarithmically divergent. It so happens
that the logarithmically divergent term is proportional

to (m /m, )s, and therefore the mass difference obtained
is not sensitive to the cutoG parameter. As a result of
this, the mass diBerence is in good agreement with ex-
periment. This is encouraging. Ke point out here that
this hard-pion current-algebra result could also be
obtained by writing once-subtracted dispersion relations
for the form factors Ii j and Iig and by determining the
subtraction constant from the sof t-pion current algebra,
provided that the dispersion integrals are saturated by
m and A~ single-particle states only. In the current-
algebra calculation, a similar saturation scheme was
used implicitly, hence the equivalence of this result is
understandable. However, dispersion integrals also
receive contributions from continuum and other single-
particle states (e.g., a& and q poles), which (in principle)
are calculable. In this paper, we draw a similar conclu-
sion' in the context of a calculation of the p+-po mass
difference.

Assuming the validity of the first-order perturbation
theory, the em mass difference is given by the expression'
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' H. Harari, Phys. Rev. Letters 17, 1303 (1966). These argu-
ments are based on the assumption ca~(0) &0 for I=2 meson
trajectories and have been used to calculate em mass difkrences
in dispersion theory. See, e.g., S. N. Biswas, S.K. Bose, K. Datta,
J. Dhar, Yu. V. Novozhilov, and R. P. Saxena, Phys. Rev. 164,
1937 (1967).

'The presence of Regge cuts might invalidate the assumption
a2(0) &0. See, e.g., I. J. Muzinich, Phys. Rev. Letters 18, 381
(1967).

q D. J. Gross and H. Pagels, Phys. Rev. 172, 1381 (1968).
4 T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E.

Young, Phys. Rev. Letters 18, 759 (1967).'I. S. Gerstein, B. W. Lee, H. T. Nieh, and H. J. Schnitzer,
Phys. Rev. Letters 19, 1064 (1967).

6 See, e.g., B. W. Lee and H. T. Nieh, Phys. Rev. 166 1507
(1968), and G. C. Wick and B. Zumino, Phys. Letters 254, 4'l9
(1967).
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Here, T»(q, k) is related to the forward virtual Compton
scattering amplitude of a photon of mass k' and a p
meson (with its polarization states averaged) of momen-
tum q with ps= —m„s. V„™(x)is the em current. X is a
gauge-dependent parameter.

~ K. C. Gupta and J. S. Vaishya, Phys. Rev. 176, 2125 (1968).' In the context of strong-interaction amplitudes, namely,
~-p and ~-Aj scatterings, the question of subtractions for the
invariant form factors involved will be discussed elsewhere.

9Riazuddin, Phys. Rev. 114, 1138 (1959); V. Barger and K.
Eases, Nuovo Cimento 28, 385 (1963).

25i2



p+ —po MASS DIFFERENCE

In Sec. 2, we calculate T„„(q,k) using on-mass-shell
current algebra. " In this model, T„,(q,k) is gauge-
invariant and therefore ) is arbitrary. In Sec. 3, we
calculate T„„(q,k) using fixed-ks unsubtracted and once-
subtracted dispersion relations for F; de6ned by

T„„(q,k) =g„„F1+k„k„Fs+(q„k„+k„q„)Fs
+&(qeke kpq —}Fe4+qpqeFs e

F =—F (p k') with p= qk.—
The results are then utilized for calculating the p+-po

IQass dl'fferencc.

2. CURRENT ALGEBRA AND y DOMINANCE

Using the 6eld-currcnt identity

V. (*)=gee:(*), (2 &)

T„,(q, k) can be related to M„„1,(q,q, k,k) in an obvious
manner, where we de6ne"

M„„g.(q,p, k, k')
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Assumption of the equal-time commutation relation
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"contact" or "seagull" term. These vertices are assumed
to bc smooth functions of IQomcnta:

m, 4 k' 8k'+2kdm;s-
FI(p,ks) =— 3+
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+(p-b —p), (2.8a)
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Thc other form factors R1c relRtcd to Fj and Fg through
the following relations":

(2.9)

These relations follow from the conservation of the
vector current and the assumption that the Schwinger
terms are c numbers or at least that the equal-time
commutator LVse(x), V„b(y)j8(xs—ys) does not have
any I=2 compoennt. Equations (2.9) ensure the gauge
invariance of T„.(q,k).

8. UNSUBTRACTED AND ONCE-SUBTRACTED
D/SPERSION RELATIONS ~ ~+ ~o

MASS MFFERENCE

The question of sUbtractions in the dispersion rela-
tions for F;(p,ks) is related to their behavior for large p

and 6xed k'. If a pure Regge-pole model is applicable
for virtual-photon scattering, then one expects, for
p ~(x) Rnd 6xcd k )

F (p k') ~P q;(ks) p '&» j=|2 (3.&)
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U»ng Eqs (21-2.~) wIth p=q and k=k', straight-
forward algebra gives

d.«&.-"-"(T(V:(*),V, '(0),V'(y))}.

—;,ebeg —sg pp'(q}g;"(q —k)6e""'(k)I'„.„.b.(q,k) . (2.5)

I'„„„(q,k) Is the three-point proper vertex and

F„,eb«(q p, k) is the four-point vertex, called the

'0 For three-point functions, see S.Weinberg and H. J.Schnitzer,
Phys. Rev. 164, 1828 (1964t'); for four-point functions see I. S.
Gerstein and H. J. Schnitzer, ibid. , 170, j.638 (1968).

» Here, we follow notations similar to that of the erst paper in
Ref. 10.

where y, (ks) are the residue functions at (=0 (forward
direction). Following de Alfaro ei tIl., ts if we assume
n;(0) &0 (as we are considering the BI=2 m, ass shift),
then the Regge behavior (3.1) will imply that F;(p,k')
satisfy the unsubtracted dispersion relation'.

ImF;(p', k')
F (p k')= — Ifp'

p p

~e The crossing symmetry requires F;(p,ks) =p;(—„,ks) for
4 1, 2, 4, 5 sn=d Pe(p, k') = —te(—p,ke).

18V de Alfrao 8 Fubinl 0 Furlan'and C Rossetti phys
Letters 21, 5'76 (j,966).
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The right-hand side can be calculated in the standard
way, starting from

ImT„„(q,k)= —(2w)'P ([&p+,ql V„' (0) In)
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Now, we make the assumption that the imaginary part
of T„„(q,k) is dominated by low-lying single-particle
states and the inelastic contribution is small. It is
obvious that for an isovector photon, only the p+ term
contributes with a p intermediate state. "For isoscalar
photon, m and A & states contribute equally to the p+ and
p' terms and hence do not contribute to the mass dif-
ference. From Eq. (2.5), we have

2rtsv'ex(p) e„(k)
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Using this in Eq. (3.3), we get"
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Using Eqs. (3.5), we can calculate F; (i = 1, 2, 3, 5) from
unsubtracted dispersion relations. If these are used to
calculate (1.1)," we 6nd the mass difference to be
quadratically divergent":

I
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I
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Here, h. is a cutoff parameter. If, in contrast, we assume

'4 Note that the qf. and A1 single-particle states do not contribute
because of G-parity considerations.

"Other ImF s are related to ImF1, 2 through the relations:
ImFI+4 ImF2= v ImFg, 4 ImF3=v ImF5, and ImF4=0.

"Here, we work in the gauge X=4. This ensures that contact
diagrams having the covariant structure g„, do not contribute to
the mass ditference. In contrast, Biswas er al. , /Ref. I] insist on
gauge invariance of the amplitudes for virtual Compton scattering
in analogy with the physical case. This may explain the difference
between the results quoted there and our calculations in dispersion
theory."In Ref. 1, an attempt has been made to argue the convergence
of em mass shifts on the basis of large-v behavior of the amplitudes
F;(v,k') for axed k'. W. N. Cottingham and J. Gibb )Phys. Rev.
Letters 18, 883 (1967)] have argued that the logarithmic diver-
gence in the em mass shifts is reQected in requiring one subtraction
in the form factors FI,~. We feel that the convergence of the mass
shifts is also related to the asymptoti'c behavior of the form factors
for large O'. See also J. D. Bjorken, Phys. Rev. 148, 1467 (1966),
D. G. Boulware and S. Deser, ibid. 175, 1912 (1968), and Ref. 3.

once-subtracted dispersion relations for the form factors
F; (j= 1, 2), we have

(v —vo)
F;(v,k') —F;(vs,k') = ImF, (v', k')

dv'. (3.7)
P —Po P —P

It may be mentioned that if fixed poles in the angular
momentum plane are present, then the pure Regge
behavior (3.1) gets modified to'

F;(v,k ) Er(k )+P y;, (k )v ' (3 8)

where E,(k') are related to the residue of the fixed poles.
The fixed poles in the angular momentum plane have
been shown to occur in the current-algebra calculation
for nonstrong processes at nonsense points with right
signature. ""It is now easily seen that the assumption
of the once-subtracted dispersion relation (3.7) is con-
sistent with the modifmd Regge representation (3.8).

Evaluating the right-hand side of Eq. (3.7) with the
help of Eqs. (3.5), we note that it is identical to that
evaluated from current algebra [see Eqs. (2.8)].""

However, dispersion theory alone cannot determine
the subtraction constant F,(0,k'), so we utilize the
current-algebra result (2.8). Evaluating (1.1), we find
the mass difference to be logarithmically divergent":
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18Virendra Singh, Phys. Rev. Letters 18, 36 (1967); J. B.
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"Unsubtracted dispersion relations, along with Eqs. (3.5}

Q dominanceg for the form factors FI and FI, reproduce the
result (2.8) for current-algebra four-point vertex functions.

"For the sake of simplicity, one can choose F0=0 (see e.g.,
Ref. 7).

ss It may be pointed out that M. Halpern and G. Segrh [Phys.
Rev. Letters 19, 611 (1967)) have presented general arguments
that the 6eld algebra, in general, gives logarithmically divergent
em mass shifts. See also P. Olesen, ibid. 20, 525 (1968)."J.Schwinger, in I'roceedings of the International Conference
on I'articles md Fields, Rochester, 1967 (Interscience Publishers,
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This result is similar to that obtained by Schwinger23

and Lee and Niche from the phenomenological-Lagrang-
ian approach. Note that our result for the mass dif-
ference is not very insensitive to the cutoff parameter
A, as was the case with sr+-m' mass difference. For this
reason, we refrain from comparing it with experiment.


