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the Ins/s term which gives the dominant behavior at
large s, one sees that the box amplitude provides a
concrete example of a situation where a contribution o
type (b) is important at high energy. In other words,
if only the on-shell contribution had been retained one
would have obtained an incorrect high-energy form for
the box amplitude.

To check that the first term in (10) gives the correct
leading term, the # and #; integrations can be done to
give

o(1)
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and therefore
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which is the same as (2).

In conclusion we feel that this example suggests that
the off-shell contribution to iterated scattering ampli-
tudes is important at high energy (if one believes field
theory). Consequently, any iterative scheme which
does not include this contribution may make a serious
omission. Since the absorption and eikonal formalisms
apparently do just this, their ability to generate believ-
able corrections to Regge-pole exchanges is questionable.
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We present a method of improving the new strip approximation of Chew and Jones by calculating parts
of the elastic double spectral functions using the Mandelstam iteration procedure. These double spectral
functions are used to obtain additional contributions to the left-hand cuts of the partial-wave amplitudes,
and also to estimate the inelasticity within the strip region. The inelastic N/D equations are solved in the
way proposed by Frye and Warnock. The method is applied to the problem of bootstrapping the p trajectory
in 7w scattering, and some preliminary results are presented. We find that it is possible to obtain a self-
consistent trajectory with the correct physical mass, width, and intercept «(0), but that the solution is
by no means unique, since self-consistency can be achieved with trajectories having intercepts anywhere
from «(0) =1 to «(0) =0.2. Also, the trajectories have a large curvature, and large residue, which result in

a violation of crossed-channel unitarity for low /.

I. INTRODUCTION

VER the past few years many attempts have been
made to demonstrate that the p meson approxi-
mately “bootstraps” itself in n-r scattering.!=1° The
zero external spins and equal-mass kinematics make this
one of the most attractive bootstrap problems, but as
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more sophisticated methods have been applied to the
problem, it has become clear that while many qualita-
tive features support the bootstrap hypothesis, the
quantitative details of the solutions to the various
models are very unsatisfactory.®1

Probably the most comprehensive approach has been
the so-called “new form” of the strip approximation
devised by Chew and Jones,!*** which parametrizes the
amplitude in terms of the Regge poles in each channel,
and then uses the N/D equations to impose unitarity
and so determine the Regge parameters. However, it
has been found that this approximation is inadequate,?
one of its principal deficiencies being that it includes the
forces only in the first Born approximation. It has been
shown recently that the V/D equations for nonrelativ-
istic potential scattering give much more satisfactory
results if the forces are included up to at least the third
Born approximation,’® and we can expect that this
will also be true in relativistic calculations.
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Higher Born approximations, for the region of ener-
gies where two-particle unitarity holds, can be calcu-
lated using the Mandelstam iteration method.!* This
formed the basis of the old strip approximation,®
and has been revived recently for the p bootstrap by
Bali ¢! al.” These authors made a large number of
iterations of the potential given by fixed-spin particle
exchange until they could identify the crossed-channel
asymptotic behavior, and used this behavior to obtain
the Regge parameters (see Sec. IT). The disadvantages
of the iterative method are that very high numerical
accuracy is needed to obtain the Regge parameters,
and that it is not easy to improve the calculations by
including inelastic effects, etc. By comparison the
N/D equations enable one to obtain accurate Regge
parameters with comparatively simple calculations, and
to include inelasticity in a fairly straightforward way.

Our intention in this paper is to try and combine the
advantages of both methods, by continuing to use the
N/D equations with the potential calculated in the new
strip approximation, but using the Mandelstam method
to calculate parts of the double spectral functions, and
hence higher Born approximations to the left-hand cut.
At the same time we obtain information about the in-
elasticity within the strip region, and can use this as
part of the input for the N/D equations, which are
solved in the form suggested by Frye and Warnock.!®

The basic assumptions of the approximation are of
course the same as those of the new strip approxima-
tion.!? We suppose that the m-r scattering amplitude
can be divided into a high-energy region controlled by
the leading Regge poles in the crossed channel, to-
gether with a low-energy region containing the direct-
channel poles. In the low-energy region the dynamics are
supposed to be mainly in the elastic channel, the modi-
fications produced by the inelastic channels being small,
though not negligible. In particular we do not consider
the possibility that the low-energy resonances may be
Castillejo-Dalitz-Dyson (CDD) poles in the channels
we are looking at, despite recent evidence that this may
be the case.'”-® Thus what we are presenting is really
just a better approximation to the equations implied
by the strip approximation, and there is no change in the
basic assumptions as they were explained in Ref. 12.

In the Secs. II-1IV we present the details of the boot-
strap scheme we are proposing. Although this scheme
may obviously be applied to many types of bootstrap
problem, here we have restricted ourselves to a discus-
sion of 7-m scattering and have incorporated zero spin,
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UNITARIZED STRIP APPROXIMATION

F16. 1. The Mandelstam diagram showing the strips (shaded),
and the curved boundaries of the elastic double spectral functions.
The elastic s-channel double spectral function is marked Y. so
is the threshold, and s; the strip width, in the s channel.

equal-mass kinematics, and the = isotopic-spin cross-
ing matrix from the start. In Secs. V and VI we describe
the results of an attempt to bootstrap the p trajectory
in the 7w scattering amplitude. This is not our final
answer to this problem because the effect of 7=0 ex-
changes (the Pomeranchon, etc.) is neglected. It is
well known!®!® that the exchange of this trajectory
presents special problems which we hope to cover in a
later publication. Also there is the advantage that the
inclusion of only one trajectory enables us to make a
comprehensive search for self-consistent solutions, and
to examine thoroughly the effect of the cut-off parameters
on our results. :
Some conclusions are presented in Sec. VIIL.

II. CALCULATION OF THE POTENTIAL

The new form of the strip approximation, introduced
by Chew and Jones,' consists of representing the two-
particle scattering amplitude by strips of double
spectral function adjacent to the physical regions, as
shown in Fig. 1. The amplitude is assumed to satisfy
the Mandelstam representation, which, in terms of the

19 G. F. Chew, Phys. Rev. 140, B1427 (1965).
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usual invariants, may be written!
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the D’s being the discontinuities and the p’s the double
spectral functions. Here ¢y and %, are the thresholds in
the ¢ and # channels, respectively. However, we shall
always be concerned with amplitudes of definite (&)
signature,
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This is explained in greater detail in, for example, Ref. 1.

The strips are parametrized by the Regge-pole func-
tions of the appropriate channel. Thus the contribution
of a given Regge pole to the strip X in the diagram is
given by

Pu(s,8) = A3 T () Pacy(—1—5/2¢2)10(s—s1),

where

(2.2)

(2.3)

I()=[2a()+117 (") (—g/D)*®, (2.4)

a(t) being the trajectory and §(£)i-*)=+(f) the reduced
residue. As usual we have taken a factor {2 out of
the reduced residue, so that ¥(¢)is of constant dimension
for all #. The parameter { corresponds to the scale factor
in Regge-pole analysis,*?® and is chosen so that ¥(¢) is
a slowly varying function of 4.

This piece of double spectral function gives a con-
tribution to the amplitude (see Ref. 10)

Ru<s,t>=%r(t>{— Pt/ 20

sinmo
" Paw(—1—5"/2¢4)
B /;mz s'—s
20 F. T. Hadjioannou, R. J. N, Phillips, and W. Rarita, Phys.
Rev. Letters 9, 183 (1962).

ds’} . (2.9)
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It has been constructed so that it contains the ¢-channel
pole for a(f)=integer, has the correct cuts in s, and
displays Regge asymptotic behavior

puulsd) ~ 590 (2.6)

The Reggeized Born approximation to the amplitude of
isotopic spin I in the s channel consists of putting

Al (s,) =32 [R(s,)+ (= 1) TR (s,u) Jor1,
+2 B[R () +(— VTR (tu) ]

+(— 1)’Zk BULL) LR (,8)+ (— DR (1) ], (2.7)

the sums being over all the trajectories in the three
channels. The B8(Z,I,), etc., are the = isotropic-spin
crossing matrices.

The functions a(f) and ¥(2), etc., are arbitrary except
for the requirement that they satisfy the usual disper-
sion relations,!

1 2 Ima(@
a(t)=a(oo)—|—-—-/ ma( )dt' (2.8)
™ Jt —i

and

17(t)=£ / "Iy ¢ )dt’ (2.9)

. U—t

These forms are required by the Mandelstam represen-
tation provided that the trajectories do not cross one
another, and provided that our assumptions about the
subtractions needed in the dispersions relations are
correct. We discuss this further in Sec. V.

To perform a bootstrap it is necessary to relate the
s-channel poles to those in the ¢ and % channels by the
imposition of unitarity. We try to find values of the
Regge parameters which are self-consistent in the sense
that the same values are generated in the s channel
as are fed into the ¢ and # channels.

The procedure which has been used for imposing
unitarity in the new form of the strip approximation is
the N/D equations. The strips, with a given choice of
input Regge parameters, are used to calculate the left-
hand, and far right-hand cuts of the s-channel partial-
wave amplitudes, and the corresponding N/D equations
are solved.

It was shown in Ref. 10 that the contribution of the
i~ and #-channel strips to the partial-wave amplitude
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is, using the Wong projection,!!
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where
T;i(t) =B(I,1,)Ty(1) .

In addition, we can include the s-channel strips, which
contribute

(2.11)
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to the left-hand cut. Note that we only need to know the
Regge parameters for /<0 in these formulas. The
s-channel trajectory parameters can be obtained from
the solution of the N/D equations (see Sec. IV) and the
input can be varied until it coincides with the output.
This method has the advantage that the N/D equations
readily give very accurate values for the output Regge
functions, but the disadvantage that only the first Born
approximation to the left-hand cut is used. In particular,
the “corners” of the double spectral functions (Fig. 1)
are not included in the left-hand cut (though the N/D
equations calculate them for the right-hand cut auto-
matically). It has been shown that in many circum-
stances the use of just the first Born approximation to
the left-hand cut is not sufficient,'® and the self-consis-
tent p trajectory obtained by this method is a very poor
representation of the physical p.?:10

An alternative method of imposing unitarity is to use
the Mandelstam iteration (see Sec. III) to generate the
full s-channel strip starting from the {- and #-channel
strips.®—% Observation of the asymptotic ¢ behavior of
the s-channel strips permits the identification of the
s-channel Regge poles since

; )a(s) 2T (a(s)+2)
2 T(a(s)+1)

This method has the advantage that it is possible to
follow the trajectories even for s> so. Calculations along
these lines have been carried out by Bransden et al.®
and Bali,® but only with fixed-spin poles in the ¢ and %
channels, not Regge poles. The reason for the relative
lack of popularity of this method is that very high nu-

Dix(s,) —> I‘(s)( (2.13)

merical accuracy of the iteration routines is needed to
isolate the poles. It is also not easy to include other than
purely elastic unitarity by this method.

Our procedure is in a sense a combination of these
two methods, which we hope will give us the best of
both worlds. We calculate the “potential” from the
strips as described above, but we also include the con-
tribution of the corners of the double spectral functions
to both the left- and right-hand cuts of the partial-wave
amplitudes in the N/D equation. These corners are ob-
tained by applying the Mandelstam iteration to the
potential, thus unitarizing it.

III. UNITARIZING THE POTENTIAL

The Mandelstam iteration,* which was the basis of
the old strip approximation of Chew and Frautschi,®
uses the following equation for the s-channel elastic
double spectral function (the region ¥ in Fig. 1):

1 K=0
psﬁl“(s t)= / /dlldlz
" ag/s Ju
DiE(s4,t1) DiE(s_t2) G3.1)
I(ll2 (t,thlz,s) ’ '
where
K(t,h,tg,S)

= [t2+ t12+ t22_ 2(”1-}‘ tt2+ t112) -_ ttlfz/qszj (32)

and s;, s_ are points above and below (respectively)
the s cut of D;.

The fact that the integration runs only up to K=0
means that to calculate pg;°'°(s,f) out to, say, i=¢, we
only need to know D *(s,?) for 1<{; at a given value of s.

We also have .

1 ® Py els(s” t)
pash== [ EE e,
S —Ss

™

(3.3)

where D,7%(s,f) is the ¢ discontinuity of the rest of the
amplitude other than p,*'*(s”,f). In the strip approxi-
mation

DVE(s,t)=AL2R*(s,1) ], (3.4)

with R#(s,f) given by (2.5). We can thus in principle
calculate p,'(s,t) for any s and ¢ given the ¢ and u-
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channel Regge parameters. In fact, as is well known,
(3.1) diverges for large s, since if

D(s,ly) ~ st 3.5)
8-»00
for some {1, we find that after # iterations
Pstela(s’t2) ~ stalt—n ) (36)
800

for some #,>1; (the value of #; can be found from # and
n using the properties of K).

This divergence (which is connected with the problem
of the spurious Amati-Fubini-Stanghellini cuts®?) is due
to the false assumption of elastic unitivity for all s.
The difficulty can be circumvented if we rewrite (3.1)

as’
gls) pE=0
/ / dhdls
T4/S J 1y

Dti (S+yt1)Dti(s——:t2)
K”Z (t,tl,tg,s)

985818(330 =

X))

where g(s) is some cut-off function. In our calculation we
have followed Bali® in using

g(s)={1+exp[(s—s1)/AT}~". (3.8)

With this cutoff we can calculate py;2'(s,Z) out to s=s3
without there being any singularity of p,.°'*(s,f) at the
boundary, as would be the case if we simply terminated
the integration of (3.1) at s=s;. Above s; we expect the
double spectral function to be given by the #-channel
strip (see Fig. 1).

We could, as mentioned in the previous section, use
(3.7) to generate ps°'%(s,t) for high values of ¢, and
attempt to find the s-channel Regge trajectories from
the asymptotic behavior. However, the strip approxi-
mation already includes the asymptotic part of the
double spectral function so we are only concerned with
using (3.7) to calculate ps°'(s,t) for {<{:. In practice
we shall always use s;=1; as in Fig. 1. Obviously, (3.4)
demands a knowledge of the Regge parameters for >0,
unlike (2.10) and (2.12).

Crossing symmetry requires that the other corner
regions of the double spectral functions shown in the
diagram (Fig. 1) should be the same as ps:°'*(s,f) apart
from permutation of the variables. More precisely,

pat®t(5,8) = pes®1(2,5) ,

Pt (t) = por®*(tu)

Pt () = psi®"(w,t) .

As a digression we may note that at this stage one
could use these results in (2.2) to obtain new values of

D" (s,f) which could be used in (3.1) to find a new value
of psl¥(s,f). Repeating this cycle a few times would

(3.9)

2D, Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1,
29 (1962).
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give a more self-consistent p,°'*(s,f). In practice, we
have not found that this makes much difference in the
values of py°1*(s,f) that are obtained. In any case the
existence of p,;°1(s,f) implies that it is not strictly cor-
rect to use elastic unitarity for s>s; (sr being the in-
elastic threshold in the s channel; =16m,? for =-r
scattering). The advantage of going to this extra trouble
is thus doubtful, and in this paper we assume that the
elastic double spectral functions calculated as above are
a sufficiently good approximation for obtaining the left-
hand cut of the N/D equations. But we shall include
this inelasticity in the right-hand cut (see Sec. IV).

The contribution of these double spectral functions to
the full amplitude is of course obtained by substituting
them in (2.2), i.e.,

1o [ peft(s" 1) pont(s” )
Ax(s,)=— / / : -
w2 (s"—s)(¢—1)

Lot £ opa(t 0" ) Eput(u't)
+— aw'dt’ .
e ' —u') (¢ — 1)

ds"'dt

(3.10)

Our complete approximation to the scattering ampli-
tude is the sum of (3.10) and the six strip contributions

2.7).
IV. N/D EQUATIONS

As in the previous calculations®!? we shall use the
N/D equations to impose unitarity on the partial-wave
amplitudes of definite signature. The “reduced” partial-
wave amplitude is given by the Froissart-Gribov
projection,??

BiE(s)=Ar*(s)gs*

1 . . ¢ dt .
- / D, (s,t)Qz( +§E)gs2‘“, (4.1)

and we write it in the form
Bi(s)=[m(s)e*)—17/2ip(s) (4.2)

with
s—4m 2\ 12 5 —dm 2\
pl(s)=< ) ( ) . 4.3)
s 4

The phase shift has been decomposed into its real and
imaginary parts (for real s),

81(s) = 8:2(s)+18:1(s) (4.4)

and

()=, (4.5)

22 M. Froissart, invited paper at the La Jolla Conference on
Weak and Strong Interactions, 1961 (unpublished); V. N. Gribov,
Zh. Eksperim. i Teor. Fiz. 41, 667 (1961) [English transl.: Soviet
Phys.—JETP 14, 478 (1962)].
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The function 7;(s) gives the inelasticity, and
mls)=1 for s<s<Sr,
0<m(s)<1 for

(4.6)
(4.7)

We follow the method of Frye and Warnock!® (see
also Ref. 1) in factoring the amplitudes into

BL(S) = Nz(S)/Dz(S)

and giving D;(s) a right-hand cut for sp<s<s; with
phase ¢~%1%()_ All the other cuts of B;(s) are put into
Ny(s). From (4.2)

§> 1.

(4.8)

Ni(s)=Bi(s)Di(s)=[nu(s)Dr*(s)— Di(s) 1/ 2ipi(s) ,  (4.9)
and taking the real and imaginary parts we get
1—mni(s)
Im{Nz(S)}= ( Re{Dz(S)} , S1<s<s: (4:10)
PUS
—2pi(s)
Im{Dl(s)}— G Re{Ni(s)}, so<s<si. (4.11)
+mis
We define the potential function
sz TmBy(s' * ImB(s’
BV (s)= / m, s o / m, 1) (4.12)
8= oq S'—s
and
st 1—n(s") ds’
BY (=B (5)+— / . @13)
2m(s) (s'=s)
and also define
_ 2mu(s)
Nz(S)E Re{Nz(S)} . (4.14)
+muls)

Then, writing dispersion relations for D;(s) and
{Ni(s)— B:i"(s)Dy(s)}, we end up with the Frye-Warnock
form of the N/D equations modified for the strip ap-
proximation, viz.,

R@=Bres [(2O7

/

T J s s'—s
PN 10 aas)
O ) mi(s’)
1 py(s")No(s'
Dz(S) 1—— ‘/80 m (416)

Hence we can find B,(s) from the unitarity condition
(4.2) given B;V(s) and ni(s) as input.

If we divide Im{B;(s)} for S;<s<s; into its elastic
and inelastic parts,”

In{Bi(s)) = pu(s) | Bi) |+ I BI(5)}, (4.17)
and substitute these expressions in (4.2), we find

m(s)=[1—4p(s) Im{ B,/ ()} J**.  (4.18)
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Now B;"(s) is the sum of (2.10), (2.12), and the contribu-
tions of the corners of the double spectral functions
(3.10) to the left-hand cut of Bi(s) [=B;(s), say].
The latter may be obtained by substituting (3.9) in
(2.2), and then in (4.1), giving (say)

Lo pal(s” )2 pal(s” )
By(s)=— f / [ ‘ ds"
27[' S”_S
pm(t,,u”):l:pm(u, tl)
._|_

, 4 ar
L du"]Q,<1+ ) .
w'—u 2482 qa2l+2

The first term of (4.19a) contributes also to the right-
hand cut of B,(s), and if we remove this right-hand-cut
part (see Ref. 23) we end up with

8 s Uy
Bite(s) = 1 / 1 / [pu(s ) peu(s’ b )]
2w s'—s

Qu(1+1/2¢)  Qu(1+7¥/2g,"")
X[ ]ds”dt’

(4.19a)

QS2 2 qe”2 H-2
+i fsl / I:p‘"(t,:u”):tpm(u”yt,):I
2 w'—u
Qu(1+7¥/2¢.%)
X T udy . (4.19b)
g82l+2
The contribution of p,°!(s,) to Im{By(s)} is
81
(B = [ D pnio()]
Q:(1+1/295%)
ST . (4.20)

2g,24

Hence, within the approximations of Sec. III, we have
ni(s) given by (4.18) and (4.20), and [see (2.10) and
(2.12)]

Bi7(s)=Bi*1(s)+B.HI(s)+Bi(s), (4.21)

and the N/D equations can be solved with the input of
Sec. II.

As usual the output, s-channel, Regge-trajectory
parameters can be obtained from

Da(s)(s) =0 (4.22)

and
v(8)/e/(s)=[Nu(s)/D/ () ]| 1=ats) (4.23)

(the prime indicates d/ds). Our bootstrap procedure thus
consists of putting #- and #-channel trajectory parame-
ters into (2.3), finding the corresponding potential
(4.21), and mn:(s) (4.18) solving the N/D equations,
and thus finding the output s-channel parameters. We
adjust the input until it coincides with the output.

% P, D. B. Collins, Phys. Rev. 139, B696 (1965).
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V. ¢ BOOTSTRAP

As an example of the above procedure we have at-
tempted to bootstrap the p in 7-m scattering. It has been
shown that the force from the exchange of a p trajectory
will also generate an =0 Pomeranchon trajectory.%:1
The inclusion of this trajectory calls for special treat-
ment which we hope to discuss in a further paper, and
we shall restrict ourselves to a discussion of p exchange
alone. This approximation has been discussed by many
authors,”5 and has been tried both in the new strip
approximation® and in the Mandelstam iteration
method.?

We parametrize the input trajectory function by?**

ci?

Ima(t) =———
mel) (x—a1)?+ b2

x=1—4m,> (5.1)

which, substituted in (2.8), gives
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and the residue by

Imy(f) = coM(w—d)/[(¥—a2)*+b],  (5.3)
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Fic. 2. Self-consistent p trajectory, and residue, functions

(input Reap= , input Imap=-———, output Reap and
Reap=----). The parameters (see text) are s;=1000, A=50,
t=200, a,=47.0, b5,=3.94, =105 a2=540.0, by=392.5,

¢2=0.068, and d=420, all in m,? units. This corresponds to an
input p width T'iy=147 MeV, but the output width Igy=340
MeV.

2 A, Ahmadzadeh and I. A. Sakmar,¥Phys. Letters 5, 145
(1963).
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which in (2.9) gives
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where

di=tan"Y(b;/a;)—m, i=1,2. (5.4)

The form of these functions is shown in Fig. 2.

Note that Ima must be positive by unitarity, but
there is no such restriction on Imy. Both Ima and Imy
must vanish at the threshold, and we are assuming that
the integrals (2.8) and (2.9) can be written without sub-
tractions, so that

Imy(d), Ima()<O@tY). (5.5)
We are also assuming that
a(s) — const (5.6)
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Fi16. 3. The output p trajectories which result with the indicated
values of A. All the other parameters are as in Fig. 2.

as it does in potential scattering. If a(s) —== we can-
not expect our single-channel bootstrap to work,
though it may still give a reasonable approximation to
the trajectory over a limited region of s near s=0 (see
Refs. 17 and 18 for a discussion of this). The input
width of the p meson corresponding to these functions
is given by

Im{a(m,2)} Re{y(m,*)}
Tin= =~ pu(m,?).
m, Re{d'(m,?)} m, Re{d'(m,?)}

(5.7)

These parameters are used in (2.3) and (3.4) to find
ps¢°'%(s £) for a given value of s;=# and A. It is evident
that the number of iterations which we need to find
ps:*(s £) depends on how large is £,. The main weight
of D," at the point where Ima is a maximum, and since
this must be above the p mass (since the trajectory is
rising through the position of the p meson) the number
of iterations needed for, say, s;= 2000 .2 is only 6 or 7.
The calculated double spectral function is then used in
(4.19) to find B;<(s) and to find n,(s).

There are thus 11 input parameters, a1, b1, ¢1, a(),
d, as, by, ¢, &, 51, and A. The first nine of these are to be
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Fi1G. 4. (a) The self-consistent p trajectory of Fig. 2; (b) the out-
put trajectory obtained when 7 is set equal to 1; and (c) that
obtained when only the strip contributions are included in the
left-hand cut, i.e., the first Born approximation.
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made consistent with the output, so there are just two
free parameters, the cutoff’s s; and A. Our bootstrap is
only really self-consistent if the dependence on the
choice of s; and A is small. Since A only determines the
“width” of g(s) in (3.8) the results are in fact only
trivially dependent on it, as Fig. 3 demonstrates. In all
the rest of the results quoted in this paper it is fixed at
A=350. Also the scale factor in the residue function £,
which we expect to be roughly %s1,%® has been fixed at
200m,* throughout.

A self-consistent p trajectory is shown in Fig. 4. It
has been chosen so that its parameters correspond to the
physical meson by having «(30)=1, and the experi-
mental input width T'y,= 147 MeV.26 The output width
is still much too large, however, T'ou=340 MeV. The
trajectory is not qualitatively different from those ob-
tained in previous work,? 1% where the second and higher
Born approximations to the potential were not included,
but a good deal of extra force has been obtained.

Part of this extra force is due to the inclusion of in-
elasticity, and also show the trajectory which is obtained
with n;(s)=1 rather than the calculated value. The vari-
ation of 7;(s) with s for various values of / is shown in
Fig. 5. The corresponding values at s; [calculated by
substituting Im{B;"(s1)} from the strip region in (4.18)]
are also indicated in the figure. They do not match on
completely, of course, since nothing has been done to
make them consistent, but the discrepancy is not too
bad, except that for /</0.2 unitarity is violated above s;.
This problem has been noted previously,® and is due to
the fact that the self-consistent results tend to have too
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F16. 5. A plot of the inelasticity »7:(s) against s with the parame-
ters of Fig. 2, for (a) I=1.0, (b) /=0.2, and (c) }=0.0. The values
calculated from the strips above s; (=1000) are also shown, and
we see that for / <0.2 unitarity is violated at s;.

2 G, F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).
26 J, Pisut and M. Roos, Nucl. Phys. B6, 325 (1968).
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Fic. 6. Plots of «(0) and «'(0) against s; with all the other
parameters fixed. The three cases are (a) the complete calculation,
(b) n set equal to 1, and (c) only the strip contributions included
in left-hand cut. The dependence on the choice of s; is much re-
duced by including the elastic double spectral function.

large a value of y(f) for ¢<0. This is compensated by
having a large o/(s) in the region of the p meson by put-
ting the peak of Ima(s) not far above the mass of the
particle (see Fig. 2). The problem!® of needing a large
input width to generate enough force to produce a
reasonable output trajectory is thus circumvented.

The dependence of the results on the choice of sy is
shown in Fig. 6. We see that the position of a(0) is
little affected by the value of this parameter provided
we take s12>800m,2, and is much reduced by the inclu-
sion of higher Born approximations. The slope tends to
decrease with increasing si, but again the higher Born
approximations make the results almost independent
of this arbitrary parameter if it is sufficiently large. The
dependence is certainly not so great as to make one feel
that it is playing a dominant role.

In Fig. 7 we show the variations of p,®*(s,f) with ¢
for some values of s. The first peak corresponds to the
first iteration of those in D,(s,t) due to the particle at
t=m,? and the maximum of Ima(f) just above it, and
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F1c. 7. A plot of ps©s(s,f) against ¢ for two values of s. The
dashed line is the asymptotic strip for £<s;, and matches rather
well, showing that we have indeed reached the asymptotic region
for £ 1000m 42
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F1c. 8. Self-consistent p (i) trajectories, and (ii) residues, with
(@) @(0)=1.0, a(»)=0.49; (b) a(0)=0.57, a(=)=0.17; and (c)
(0)=0.17, a(®)=0.03. The dashed lines are the output, and the
full lines the input Regge functions. Once a() has been decided
upon, the demand for self-consistency fixes the shape of the tra-
jectory. The width of the /=1 resonances in the three cases are (a)
bound state, (b) 350 MeV, (c) 630 MeV. Note that case (b) is
similar to, but slightly different from, Fig. 2. The parameters
which have been changed are b;=400 and ¢.=0.76. This indicates
the amount of variation which can be tolerated in these
parameters.

the subsequent maxima are due to the further iterations.
The double spectral function has settled down to its
asymptotic value for ¢ 1000m,% and so we take this
as our preferred value of 5,. The double spectral function
calculated in this way matches smoothly onto the
asymptotic strip region above si.

The chief problem in this type of calculation lies in
determining the range of parameters over which
“reasonable” self-consistency can be obtained We have
found that at the unitarity limit, «(0)=1, it is possible
to obtain such a solution and, for lower values down
to a(0)~0.2. Some examples are shown in Fig. 8.

It will be noted that the basic shape of the residue
function is always the same. It agrees with the Chew-
Teplitz form,

7(#) = const a'(t)(i—t)Qa(,)<1+

2m,?
i—4m,

which was deduced in Ref. 26 from the form of the N/D
equations. The only way of avoiding this shape is for
there to be changes of sign of B;¥(s) in the strip region.
The need for such oscillations, if we are to find residues
with a rapid decrease for negative ¢, like those found in
many fits to the experimental data, has been discussed
in Ref. 27. With only the attractive p-exchange potential

2) , (5.8)

2 P. D. B. Collins, Phys. Rev. 157, 1432 (1967).
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we cannot expect oscillations, though we can hope that
they will occur when the Pomeranchon repulsion is
included. The form of Im¥(¢) in (5.3) has been chosen to
reproduce (5.8) for negative ¢, and the change of sign
at t=d-+4m.? seems to be the easiest way of achieving
this.

Since the output shape of ¥(s) is always much the
same, the values of d, a,, and b, are more or less fixed.
The value of A should correspond to the known threshold
behavior! of Imy(¢), which is

Imy(t) ~ (t—ig) 0+l
[ 2]

In practice we have fixed A=0.5 for all (0). This has
been found to make rather little difference so long as
M does not approach too close to 1, when the integral
(2.9) would diverge. The only really free parameter,
which is not determined by the shape of the output
residue, is the over-all magnitude ¢,. It is this which is
determined by demanding self-consistency of input and
output, and ranges from ¢,=0.093 for «(0)=1 to
¢2=0.028 for «(0)=0.2.

Similarly, the range of shapes of the output trajec-
tories exhibited in solutions shown in Fig. 8 is very
limited, and the only really significant free parameter
in (5.2) is the absolute height of the trajectory de-
termined by a(). Again \ was fixed at 0.5, though in
this case the integral (2.8) converges for A<2. The
values of a1, b1, and ¢; are essentially fixed by the form
of the output. As far as we have been able to discover
the trajectories shown in Fig. 8 span the full range of
parameters for which reasonable self-consistency can be
achieved. It has not proved possible to get a self-con-
sistent trajectory with a(e ) <0 for any choice of input
parameters. Such trajectories produced much too little
force. To get a trajectory like the experimental p (for
example, in Ref. 28) we would like a much smaller
curvature, but Fig. 8 shows that the amount of curva-
ture is always about the same.

It will be noted from Fig. 5 that, as in earlier calcu-
lations,® though the input and output trajectories
agree very closely for <0 it is not possible to make them
agree for £>0, and in fact Re{Dy(s)} for 120.9 does not
have a zero in the solution shown in Fig. 8. The output
widths quoted in Figs. 4 and 8 were obtained by plotting
out the partial-wave cross section. They are something
of an improvement over earlier calculations, but the
problem of achieving a sufficiently narrow p has cer-
tainly not been solved.

There is a related difficulty that, because of the
bunching of Ima(¥) in a peak just above the p mass,
D.V£(s,t) calculated from (3.4) also has a peak there,
and has the sort of shape plotted in Fig. 9. Normally
one would expect the maximum of D,"*(s,f) to be at

28 G. Hohler, H. Schaile, and P. Sonderegger, Phys. Letters
20, 79 (1966).
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F16. 9. A plot of logioD:!~1(s,) against ¢ for s=15 m,2. It shows
the first peak of D; due to the particle at #=30 m,? and the second
and larger peak due to that of Ima at ¢=47 m,2.

t=m,? (there is a secondary peak there) corresponding to
to the vanishing of sinma(%).

A large Ima(¥) of this sort is essential in our paramet-
rization if we are to obtain a trajectory with a curvature
like that of the output. This peak of D,V%(s,f) implies
that there is a peak of the ¢-channel cross section, but
no such peak is evident in our output ¢-channel cross
sections. Full crossing symmetry has thus not been
achieved. In Bali’s calculations® (see Fig. 8 of his paper)
Ima(f) was a continuously increasing function right up
to the boundary of the strip, {=s;, and an iteration of
such an input would not settle down to its asymptotic
form unitl £>s;. One can hope to improve the satis-
faction of crossing symmetry by choosing one’s parame-
ters to ensure that the {- and s-channel partial-wave
cross sections are consistent, but it is probably not
worth worrying about this until the Pomeranchon has
been included as well.

VI. CONCLUSIONS

We have succeeded in bootstrapping a p trajectory
with the physical mass, width, and intercept (0). This
is one of a range of rather similar self-consistent solu-
tions with «(0) ranging from the unitarity bound of 1
down to about 0.2. The physical trajectory is thus not
uniquely predicted in our approximation.

Also the output trajectory is only known to be similar
to the input in the region ¢<0. For £>0 is not possible
to trace the output trajectory, and we can not be cer-
tain that it goes through /=1 on the unphysical sheet.
This was also the case in the new strip approximation,*
but not in the iterative calculation of Bali.® No calcu-
lation has ever been able to obtain trajectories which
rise much above /=2 and if the physical trajectories
do this we cannot hope to reproduce them in a single-
channel calculation of this type.

Similarly since there are no superconvergence rela-
tions built into our potential we know that the end-
point of the trajectory, a(« ), must be at some dynami-
cally determined point above /= — 1.1 Unfortunately it
seems to be impossible to get an output trajectory
which does not have considerable curvature, and so
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ends up above /= 0. Because a(s) is a Herglotz function,
this curvature means that Ima(s) must have its maxi-
mum not far above threshold, and this makes the tra-
jectory turn over rather soon on the right-hand cut. We
have discussed elsewhere!” the implications of straight
Regge trajectories with narrow resonances for boot-
strap calculations and will not repeat the arguments
further here. We can still hope that the single-channel
calculations will give a worthwhile approximation to the
trajectories in the region near ¢=0.

It is probably worth reminding the reader that,
because. the Wong projection is used in (2.10), the strip
contribution to the potential depends only on the Regge
parameters for (<0, where complete self-consistency
has been obtained. The corners of the double spectral
functions depend on the Regge parameters for ¢> i,
and it is not possible to continue the solutions onto the
unphysical sheet to find the zeros of Di(s). Despite the
fact that our parametrization of Imaf(#) fits the output
a(f) for 1<0 through the dispersion relation, the corre-
spondence is probably not very good above threshold,
because the sharp peak of Ima(Z) in the input does not
seem to be reproduced in the output. There is very
little freedom in the possible form of the output tra-
jectory for <0, and only its height a(e) is variable
to any significant extent.

Very similar remarks apply to the residue function
which is almost constant, and, in order to produce a
self-consistent trajectory, has to be very large (though
smaller than is required if we do not iterate the po-
tential). This size results in a violation of unitarity for
low values of I. The magnitude of the residue does not
mean that the input p meson is too wide, however,
because the trajectory is very strongly curved and has
alarge slope at the position of the meson. But the output
p is certainly too wide by a factor of 2.

There is still hope that some of these deficiencies
will be rectified when the Pomeranchon is included as
a force, and we hope to return to this in a further
publication, but it seems all too likely that even then
we shall not be able to obtain a trajectory which is
similar to the physical p.

Calculations of the type described in this paper proba-
bly represent the maximum of sophistication which is
worthwhile within the confines of a single channel, and
if there is to be further progress it will probably be
necessary to perform multichannel calculations, includ-
ing particles with high spin. The approximate multi-
channel calculations which have been attempted so
fart529 have not produced results sufficiently different
from the single-channel ones to make one feel opti-
mistic about this, however. We do not really know any
way round the fundamental difficulties of the bootstrap
philosophy described in Ref. 17.

2 N. F. Bali and S.-Y. Chiu, Phys. Rev. 153, 1579 (1967).



