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Structure of High-Energy Proton-Proton Scattering*

HENRY D. I. ABARBANEL, 't SIDNEY D. DRKLL, AND FREDERIcK J. GILMAN

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
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A suggestion of how to correlate the electromagnetic form factors of the proton with p-P scattering is
developed in detail. We postulate a new elementary local interaction of current-current form plus a diBrac-
tive term, and construct for P-P scattering an approximately unitary scattering amplitude for large 6xed s
and all values of t, using the Fourier-Bessel transform of the scattering amplitude. The t dependence of
the resulting cross section is closely correlated with the fourth power of the electromagnetic form factor
of the proton, as suggested Grst by Wu and Yang, and agreees well with high-energy data (El,b=30 BeV)
over many decades in values of der/dt. Differences from related models are discussed, as well as further
applications and experimental implications of the theory.

proton energy s increases, the invariant differential
cross section do/dt for large t approaches a limit
independent of s to within logarithms and the t depen-
dence of this limit is proportional to Gsr„(t), i.e.,

I. INTRODUCTION

~ ~

~ ~ITH heuristic arguments, Wu and Yang' pre-
dicted in 1965 that high-energy, s»M~', large-

momentum-transfer, —t»M~', elastic proton-proton
scattering would reveal the same structure of the proton
through its t dependence as that measured by the
electromagnetic form factors in elastic electron-proton
scattering.

Since that original suggestion appeared, there have
been important new experimental results in both p-P
and e-p scattering extending into broad new domains of
s and t. From these data there has emerged a suggestion'
of how the electromagnetic form factors can be cor-
related with the p-p cross sections. This is illustrated in
Fig. 1, which shows the cross section for p-P elastic
scattering, '

dr
lim —(s,1) ~ G~„'(t)' "dt

Figure 1 indeed suggests that we have already witnessed,
at least in a qualitative way, the emergence of this
limit. Whether or not this is a true inference from Fig. 1
can clearly be tested directly, and for our theory ormciatly,
before long at Serpukhov, at the CERN colliding-proton
ring facility, and at Weston.

The purpose of the present paper is to present a more
complete theory of the conjectured behavior given by
Eq. (1), starting with an input expression for the
interaction forces or "driving terms" and deducing
therefrom an approximately unitary 5 matrix and
scattering cross section. First, we shall review our
earlier suggestion for a theoretical interpretation of the
data in Fig. 1. In I we wrote an ansatz directly for the
scattering amplitude on the basis of the same physical
ideas that are used in this work to specify the form of
the single-nucleon matrix elements of the interaction
currents from which the P-P scattering amplitude is now
constructed. Limitations of the earlier model, as well as
essential differences from the related theories proposed
by others, will also be explored.

In I we suggested the following correlation and
interpretation of the data in Fig. 1: In the amplitude
for p-P scattering there is a piece, the diffractive tail, "
which dies precipitously for fixed t as s grows and, im

cddiHort, a point interaction of current-current from
which depends on t alone and emerges as s becomes
asymptotic. The differential cross section then appears
as

X(s,t) (do/d=—t)/(do/dt), =0,

plotted together with the fourth power of G3r„(t), the
magnetic form factor measured in e-P scattering, '
normalized to Gsr„(0) =1. This connection, although
different in particulars from the earliest suggestions of
universal functions that might represent all the high-
energy p-p data, supports in essence the original
Wu- Yang proposal that the t dependence of p-P scatter-
ing and the fourth power of the electromagnetic form
factor are proportional to one another.

The basis for the ideas presented in Ref. 2, and for
the theory which is constructed in the present paper, is
the close coincidence, extending over almost 12 decades
in range of values, of the p-p data at the laboratory
energy E&,b =30 8ev, or s = 2M&'+23I&E&,b =60
SeV', with the measured form factors, together with
the following theoretical conjecture: As the incoming
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' T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).' H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
Letters 20, 280 (1968); hereafter referred to as I.

' G. Cocconi et al. , Phys. Rev. 138, B165 (1965); J. V. Allaby
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references therein.

da do
[aGgI '(t)+R(s, t)]'

dt dt ] p

where a is independent of s and t, and R(s,t) vanishes
as s ~ ~ for large, fixed —t.
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Fxo. i. NormaHzed diBeren-
tial cross section X(s,t)
= (da/dt)/(der/dk)t o for p-p
scattering and the fourth popover
of GIr„(I)/GIra(0) plotted
against $. The experimental
points are labeled by the corre-
sponding values of the square
of the c.m. energy, s, and are
taken from Ref. 3. Equal s
contours are shown by dotted
lines.
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Fol' collcl'eteIless we cllose fol' R($&f) the ca110111cal
"Regge form"

I+e-iaa(t)
R(,~)=~(f) . (3)

sins n(t)

although our ideas were and are weakly coupled to any
special model for R. In a Reggeized world, n(t) refers
to the usual vacuum trajectory. The experimental
basis for choosing such an R(s,t) is the observed
dramatic drop in X(s,t) for large negative f by a factor
of &2 for each 20%%uq increase in s in the range 20-60
BCV'. It is tempting to propose that s &'& accurately
describes the approach to the high-energy limit. Not
only is this in accord with the data shown in Fig. 4 and
more transparently by the straight-line segments of
Fig. 2, whose slopes measure n (f) at the labeled values of
t, but it is also theorctically appealing. If one particular
Regge trajectory has a slightly smaller slope than RB
othcl's, then by the time wc move out to 1Rrgc VRlucs
of both s and —t it will dominate the others and a
simplified paramctrization of the elastic scattering
amplitude such as proposed for R(s,t) is a natural
consequence. The small slope for the Pomeranchuk
or vacuum trajectory, compared to other known

trajectories, which is suggested by p-p and Ir-p data at
small t, is in agreement with this behavior. Ke em-
phasize that our main point of comparison between e-p
and p-p scattering is not rigidly tied to a speciic Regge
Inodel. More broadly stated, as s~ 00 for 6xed large

f, R(s,f), which—may be interpreted as the decreasing
tail of the diGractive or unitarity contribution from the
inelastic channels, falls below thc postulated s-indepen-
dent contact term revealing the G1r„'(f) structure.

An origin for the contact interaction was proposed as
follows: Consider the reaction nucleon(PI)+nucleon(P2)~ nucleon(p1')+nucleon(p, ') in the region where
s&&—Q&M~~. Writing out the T matrix in terms of the
Fermi invariants, we find that the pseudoscalar and
scalar contributions are of order f/s or MN'/s compared
to V A and T. If we imagine thRt ln this kinematic
region, where all masses are negligible compared with
the relevant dynamical variables, the scattering occurs
with no Hip of the nucleon helicitics, then the amplitude
becomes to order t/s

2'xx=F vN(pe')y. N(pg)N(pr')y. N(pr)
+~.~(p. ».."(p,).-(p, )..~.N(p). (4)

This resembles one vector density probing another
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Fn. 2. Normalized di6'erentia1 cross section X(s,t) for p-p
scattering and the fourth power of G~„(t)/G~~(0) plotted against
s for —t=10.0„11.1, and 15 BeV. If X(s,t) were purely of the
form p(t}s ('), the plotted points for given —t would lie on the
straight lines. We attribute the deviation from these lines to the
emergence of the contact term.

If, further, the vector and axial-vector form factors
become similar for large t, or if the contact interaction
cannot distinguish between right- and left-handed
protons so that the contact interaction is purely of the

~ At this point the isotopic and unitary spin properties of the
current in the contact interaction are not speci6ed beyond saying
that its diagonal matrix element between proton states exists.
The possibility that the contact interaction in fact corresponds to
the SU(3)-symmetry-breaking interaction, thus restricting its
unitary spin properties, has been suggested by V. Ne'eman,
Phys. Rev. 172, 1818 (1968).' Specifically, we mean the form factors F&(r) and gz (f) which are
the cocKcicnts of y and yyq, respectively. H the scaling law
G@e(r) =Gers(I)/Gee„(0) holds, as assumed by Coward el ol. (Ref
4), then P~p{t) become8 proportional to G~~(t) for large t.

plus an axial density int, eracting with another. We
proposed to take this resemblance seriously and
suggested that the proper statement of the "contact
interaction" which is exhibited. in the p-p data is that,
for s)) f&&MQ, F—rr and F~ become proportional to
the squares of the vector and axial-vector form factors
that one measures in the weak' and electromagnetic
interactions. ' The contact terms enter do/df as

( Fir lie+ ( Fg [
s+4 Re(Fr *Fg)f/s.

vector type and F~=O, then the structure asG~s4(f)
for X(s,f) emerges. '

Our statement of no helicity Qip by the proton in the
kinematic range when M~' is negligible compared with
both s and t has its parallel in both weak and electro-
magnetic processes. In the weak interactions this is
trivial because of the special nature of the lepton
coupling, but in the electromagnetic interactions it is
suggested in a preliminary way by the data. It also
follows from the theoretically popular scaling law for
the proton's electromagnetic form factors. To see this
we simply write the Rosenbluth cross section for e-p
scattering:

and note that if (g—t)Fs(f)/Fr(&) ~ 0 for large —
&,

then we are left only with the helicity-nonRip term F~'.
The "scaling law" for electromagnetic form factors tells
ust atF, (f)—(f/4ms)f F,(f)—=G~(f) =G~(f)/p, ,= t F,(f)
+pF, (f)j/Irr, where pal=2. 79. If such a scaling is in
fact experimentally verified, it makes Fs(f) cc Fr(f)/f for
large —t, and is thus an even stronger condition than is
needed if we are to be left with only the helicity-nonQip
term as s —+ ~ at large —3. Experimentally, the largest
t value at which Ii ~ has been measured is —t 3 GeV'
and by then the ratio of Fs/Fr has dropped from I at
I,=o to & 3.8

With these assumptions our picture of the large-s,
large-Ir proton-proton scattering was completely drawn,
the differential cross section being written

do' rdo
Lo'G .'(f)+v(f)(~/ro)"""' "

df k df (=e
+interference terms'. (6)

The magnitude of the interference terms depends on
the relative phases of the contact terms and R(s,t),
given by the signature factor in the Reggc case, as well
as on thc spin structure of the di6'ractive contributions.
We need only consider the interference terms in the
limited range of s and f where R(s,f) and aGsrs'(t) s,re
of comparable magnitude, and in our preliminary fits
we ignored them, obtaining the following representative
set, of parameters:

~{f)=&+~'(0)f+-,'~"(0)fs, u'(0) =0 5ao I, . .
o."(0)=0.02+0.005, and a=0.85+0.15. (&)

The small value of n'(0) is consistent with our earlier
remarks. Within the uncertainties permitted by the

7 Such an indistinguishability of right-. and left-handed protons,
or helicity independence, as s ~ ~ with t fixed, has previously
been discussed by R. Torgerson, Phys. Rev. 143, 1194 (1966),
who calls this "strong ys invariance. " The previous case of just
no helicity-Qip terms as s ~ 00 is caHed "weak yg invariance"
in his notation.

s W. Bartel gt a/. , Phys. Letters 25, 3236 (1967).
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unknown interference term, more complicated guesses
are possible for these parameters.

There is an appealing simplicity to the idea that, in
hadron processes, under a "diffractive tail" there should
emerge a contact interaction of a current-current
nature with the same currents whose transition form
factors are being measured in weak and electromagnetic
processes. However, before this idea of nature's simplic-
ity in choice of currents and interactions can be
promoted from a pure phenomenology and dignified
(or encumbered?) with a more solid theoretical founda-
tion, we must address ourselves to several questions.
The most fundamental one is the following: In e-p
scattering one measures the matrix element of a con-
served vector current for momentum transfer 3 between
initial and Anal single-physical-nucleon states, and
summarizes the observations in terms of form factors.
In contrast, in p-p scattering we have proposed a model
containing both a strong interaction via vector currents,
as in Eq. (4), as well as a strong diffraction term
summarizing inelastic contributions via unitarity to
elastic scattering. From out of this stew of strong inter-
actions distorting the two proton wave functions via
multiple vector and Regge-type exchanges, how does
puree of electromagnetic form factor emergent More
directly stated, if we construct a T matrix starting with
interacting currents such as in Eq. (4) as the "driving
term" or input contact force and then add to this the
inelastic or diffraction amplitudes, what is the t de-
pendence of the resulting scattering amplitude fully
unitarized? Does it still show a Gjr„(t) variation in the
differential cross section for large t?

There are several additional questions that can also
be addressed. For example, what is going on at small t
values? Equation (2) with aGts„(0) 1 tells us that the
forward scattering amplitude naively obtained by
extrapolating the contact term from large t has approx-
imately equal real and imaginary parts, in contradiction
with experiments that fix the ratio of real to imaginary
parts of the forward amplitude to be much less than 1,
even at present energies. Although our original model
was imagined to be applicable only when —t))M&',
can our present approach remove this restriction and
show how the observed behavior near t=0 emerges?
In this connection there is the very striking observation,
emphasized by Feynman, ' that the close proportionality
of do/dt and Gseo'(t) remains valid all the way to very
small t. Can we also shed light on this behavior? What
about the famous "breaks" in do/dt? Finally, once we
extend our theory to t=0, what can we say about the
total cross section and the status of the Pomeranchuk
theorem' In particular, what is the resulting asymptotic
limit of the contact interaction for s —+ ~ P

Our program here will then be as follows: (a) We
postulate that there is an elementary local interaction

9R. P. Feynman, in Proceedings of the Thirteenth Anneal
Irtterrtatiorsat Coeferewoe ol IIigh ENergy Physics, Berhe-tey, I%66
(University of California Press, Berkeley, 1967), p. 98.

between two protons of the current-current form which
operates ie addition to the usual strong-interaction
dynamics leading to diffractive contributions which
are customarily summarized in a Regge parametriza-
tion. (b) We can then introduce a precise form for this
current-current interaction that embodies the Wu- Yang
idea, namely, our input is just a product of single-
nucleon matrix elements whose structure is that of the
electromagnetic current. It is introduced as an addi-
tional "force," an inhomogeneous term in the 6xed-t
dispersion relation in the energy s for p-p scattering.
To this we add the usual forces leading to diffractive
behavior. (c) In Sec. II we construct an approximately
unitary scattering amplitude following the procedures
developed by Blankenbecler and Goldberger' and by
Baker and Blankenbecler. "They introduce the Fourier-
Bessel transform of the scattering amplitude, for in
the high-energy regime this leads to an exceedingly
simple unitarity relation from which the elastic ampli-
tude can be recovered by a judicious mixture of
quadratures and computers.

The resulting theory, which we complete in Sec. III
by computing in detail, differs in two essential ways
from related studies of the connection of p-p data and
electromagnetic form factors: (a) We have introduced
a local current-current interaction ie addi''oe to the
diffraction scattering that one would normally contem-
plate. In the models based on Yang's work, " '4 the
form of the diffraction term itself is identified with the
electric charge density. More precisely, if one writes
the partial amplitude at energy s and impact parameter
b as e"'&' '—1, the scattering phase 8(b,s) is interpreted
in Refs. 12 and 13 as a path integral proportional to the
overlap of the electric charge distributions of the
colliding hadrons. (b) The S matrix, as approximately
unitarized in our approach with the Fourier-Bessel
transform, also has desired analyticity properties —in
particular, a unitarity cut. Formally, in scattering
examples with elastic unitarity, this replaces this
"eikonal" phase 8(b,s) by the form 8 —+ 2 arctan —,'b. 'e

This replacement was introduced by Blankenbecler
and Goldberger in order to preserve desired analyticity
as well as unitarity properties of the S matrix. Clearly
these forms are indistinguishable for weak potentials,
such as those with which the eikonal approximation
has often been used, but differ dramatically for strongly

'OR. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962)."M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962)."T.T. Chou and C. N. Yang, in Proceedings of the Second
International Conference on High-Energy Physics and Neclear
Strectere, Eehovoth, Israel, 1967, edited by G. Alexander (North-
Holland Publishing Co., Amsterdam, 1967), pp. 348-359; T. T.
Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968); and (to be
published); Phys. Rev. Letters 20, 1213 (1968)."L.Durand and R. Lipes, Phys. Rev. Letters 20, 637 (1968).

'4 C. Chiu and J. Finkelstein, CERN Report No. CERN-TH-
892 (unpublished).

» A rather brief, clear account of the transition 8 —+ 2 arctan $B
is given in M. L. Goldberger and K. M. Watson, Collision Theory
(John Wiley 8t Sons, Inc. , New York, 1964).
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FIG. 3. (a) Pictorial representation of the local current-current
interaction. (b) Picture of the "usual" t-channel exchanges leading
to diffraction scattering. (c) Graphical representation of inelastic
channel contributions to the elastic p-p scattering.

interacting processes. We shall exhibit an example in
Sec. III which makes explicit the differences between
these two procedures and shows the importance of
preserving the analyticity properties in addition to
unitarity of the S matrix. We conclude this section by
presenting our representations for the elastic P-P
scattering cross section and comparing with the original
ansatz, Eq. (1).Our final results closely correlate with
this form and hence with experimental data at energies
=30 BeV over the full range of measured t values
extending over many decades for do./dt.

Finally, in Sec. IV we shall briefly recount the
achievements of the earlier paragraphs, study the
ultimate approach of our amplitude to the Pomeranchuk
limit, and speculate on further applications of the
theory and its experimental consequences. In particular,
an intriguing connection between the contact interaction
that we have examined here and lorn-energy nucleon-
nucleon scattering is discussed.

'6 Here Tzz is the Feynman amplitude which is related to the
differential cross section in the barycentric system by do/dQ
= (Mx'/4w'sl X 4 P»i» ~

Tn x
~

'. At high s&& t, the contribution-
to do/dt of a vector contact term as in Eq. (8) is do/dh= g'G4(t)/kr.

II. APPROXIMATING UNITARITY

In constructing our suggested representation for the
P-P scattering amplitude we begin by assuming that
there exists a local current-current interaction in addi-
tion to the usual t-channel particle exchanges and
production matrix elements in p-p collisions. That is,
we introduce a new two-particle scattering matrix
element with no physical singularities in s, which we
add to the usual driving terms or input forces B(s,t)
that one might consider in constructing a unitary
amplitude for elastic scattering. We then write for these
driving or "Born" terms in the nucleon-nucleon T
matrix, "
T~tt'"'-'(&(Pt)+&(Pt) ~ &(Pt )+&(Pt ))

=g G (t)Q(P2') rpst(P2)N(P1')Vptt(pl)+B($)t) q (8)

where g' measures the strength of the additional local
coupling that we are considering, G(t) is the form factor
associated with the one-nucleon matrix element of the
vector current involved in the interaction, ' s is the
square of the total barycentric energy in the collision,

and t is the four-momentum transfer t= (P—t—Pt )'
= (Pt—P2 ) . The function B(s,t) includes any and all
other driving forces leading, in the absence of our
added current-current interaction, to the high-energy
diffractive scattering. We include in B(s,t) not only
t-channel exchange contributions such as one-pion-
exchange terms, but also the strong inelastic forces
which, after acting twice via unitarity through multi-
body channels, return the system back into the elastic
P-P channeL A graphical representation of these con-
tributions to B(s,t) is drawn in Figs. 3 (b) and 3 (c), along
with the current-current term of Eq. (8) in Fig. 3(a).
We are omitting terms required by crossing symmetry
and the Pauli principle because we shall subsequently
examine a region of s and t (s))—t, s)&rert') where such
effects may be safely ignored.

We are also suppressing inessential spinor factors.
Our requirement of no helicity flip for large t, as discus-
sed in Sec. I and in Ref. 2, is essential in order to intro-
duce, by an argument that is essentially a statement of
a generalized conserved vector current (CVC), the
electromagnetic form factors to describe the structure
of our direct-interaction matrix element. We have no
deep commitment to the Lorentz tensor structure of the
driving terms B(s,t) in Eq. (8) leading to the usual
diGraction behavior, and henceforth we shall suppress
the spinor factors as inessential.

It is a basic physical assumption of our model that
the form factor G(t) appearing in the current matrix
element above is to be identified with the electro-
magnetic form factor of the nucleon' as measured in
elastic e-p scattering. Equivalently, we may also think
of this force with its form-factor structure in t as arising
from an egectiw Lagrangian interaction of the form
L ff (x) = —g2J„(x)J„(x), as in weak-interaction theory.

Given the driving forces, we must now construct the
properly unitary and analytic scattering amplitude for
p-p scattering. Since many inelastic channels are open
and important at high energies, giving rise to the diGrac-
tion pattern for elastic scattering, it requires, in general,
Herculean labor to construct a unitary S matrix. We
shall therefore attempt to approximate unitarity in a
tractable manner following the route mapped some
years ago by Blankenbecler and Goldberger. " They
noted that if one writes a Fourier-Bessel representation
for the scattering amplitude T(s, t)

T(s, t) = bdb Jo(bg t)Z(b', s), —
0

then for large values of the energy s the problem of
implementing the unitarity condition on the partial
amplitudes H(b', s) for fixed impact parameter b can
be managed with relative ease. In fact, a completely
algebraic procedure for doing this was given by Baker
and Blankenbecler, " using a multichannel formalism
a,nd a further strong assumption that we shall state
shortly. Baker and Blankenbecler consider multiparticle



unitarity for the amphtudes T; (s,t) for (I particles to
yield u' particles. [The 3(a+a') —12 variables other
than s and t are suppressed; t is still the momentum
transfer between a nucleon in the initial state and 3,

nucleon in the final state. $ A Fourier-Bessel representa-
tion for T;,(s,t) is written

)'..(s,b) fbd=b), (bg b))) —(b';s). ,. (10)

with p;(s) the appropriate kinematic density of states
factor for the intermediate state with i particles. An
approximate solution to (11) is now constructed by
Baker and Blankenbecler by assuming —and it is both
R strong assumption Rnd the only tractable onc avail-
abL that "the multiparticle matrix element is pro-
duced only through transitions to a Mly interacting
two-particle state. "

7Vc shaH accept this assumption as a working tool.
ID tcH11s of thc Fouricr-Besscl amplitude de6ncd ID

Eq. (9) for elastic scattering,

H22(b', s) = qdq Jo(bq) T22(sb i= —q'), (12)

and of the driving terms in Eq. (8) (we drop the
Lorentz tensor structure and spinor factors as noted
earlier),

)d (b d) f dd'd)=—(bb)(d G (b b '))'=(—)b)',

HD(b', s)= qdq Jo(bq)&(s, i= —q'),
0

(14)

we write the approximate solution to the unitarity
relation constrUcted by Baker and Blankenbecler as

H, (b', s)+O'I) (b',s)
Hss(b', s) = . (15)

1—I{)[H.{b', )+H {b' )j
As defined, H, {b',s) is given directly by the Fourier-
Bessel transform of the electromagnetic form factors,
and Hn (b',s), which is the reflection back on the p+ p ~
p+p elastic transition of all the inelastic channels as
well as the boson exchanges as illustrated in Fig. 3,
will be given a suitable paramatrization below. The
fRc'tol' I(s} ls all Illtegl'al ovcl' tllc two-bo(iy pllase-space

»This sjmple form of unitarity comes vrhen the sum over
inelastic states includes all states for vrhich s is much larger than
the invariant masses of the tyro-body "clumps" making up the
states. Therefore, the phase-space integral is eGectively over
states of "lour threshold" compared to s.

Rnd UDltRrlty ls glvcD ln the high-energy llmlt Rs

ImH. .(b', s) =P H;, (s+ie, b')p, {s)
s=2

XH,.(s—i~, b2)+O(1/s), (11)

,p2(s')
I(s) = —ds'

8O s s

alld thc low'cl limit so ls 1DtrodUccd to CUt off thc
phase-space integral at an energy so&&4M~', below
which this high-energy approximate solution of the
unitarity condition, Eq. (11), ceases to be valid. Only
the two-body phase space appears, and never three-
or morc-body phase space, as a result of the approxima-
tion stated above of building up the multiparticle
scattering amplitude through two-body intermediate
states. Equation (15) is recognized as no more than the
summation of a geometric series formed by successive
iterations of the driving terms in Eqs. (13) and (14), as
illustrated in Fig. 3, using two-body unitarity. It is a
conscqUcDcc of this that Unltarlty leads to thc simple
algebraic form of Eq. (15) for the partial amplitude
H12(b', s) at "impact parameter" b.

The form of I{s)for s) so is

(1 s
I(s) =const&~ —ln—+i ~,

s()

with the logarithm coming from the principal-part
integration in (16). For s(25so, the imaginary or
absorptive part is the primary contribution to I(s).
Taking AN'&&so(20M)))', we see that we may
approximate I(s}by I(s)= iX real const for all energies
s& 500M~' or laboratory energies up to EI,& 250 BeV.

For larger energies yet there will be logarithmically
growing corrections to this approximation as the
energy is increased. Such a growth would certainly be
imperceptible in the p-p data as presently available;
however, we return to consider these logarithms in Sec.
IV %'hcn w'c discuss thc apploach to infinite-energy be-
havior and the emergence of the Pomeranchuk theorem.

The elastic scattering amplitude for proton-proton
scattering is Dow constructed by integrating

)'(s)) =f bdb ),(bQ t)—
H, (b', s)+Hg) (b',s)

X —, (18)
1 i {4Ir) I—('[H. (b-' s)+Hg) (b',s)]

where the real constant from Eq. (17) has been deter-
mined to be (4))-) "' from the normalization requirement

do~, /dk, =
( T(s,i) ('.

It plovcs coDvcnlcnt to define R slightly Ienormalizcd
amplitude

iT(s, i)
bdb Jo(bg —i)

(4~)"'
h, (b', s)+bib (b', s)X,(20)

1—h, (b',s)—hb) {b',s)



h (O', S)= i(42r)-'/2H. (b2,S)

hn (b' s) = i(4~)-I/2BII (b', s) .
Now rcwlltc T(s,t) lll tile form

iT(s, t) " hl) (b',s)
Mb J2(bg —t)—

(42r) I/2 1—
hll (b',s)

It only remains to give a convenient parametrization
for hn(x, s), which represents in an acceptable approx-
imate manner our ignorance of the di6ractive or
inelastic channel contribution to the elastic process.
Motivated by the experimental knowledge that, for
small mome22tgm transfers, differential cross sections fall
exponentially in t and are essentially independent of
s for p-p scattering {again, up to logarithms), we choose
to give ho (x,s) the s-independent form

h, (b',s)
(21)

Li —hg) (b', s)gL1—h, (b', s)—hg) (b',s)$
so that

(27)

where the Grst term is what would survive'„if there were
no contact interaction, that is, if the entire amplitude
came from "diGraction" scattering. The second term
may be viewed as our unitarized contact interaction.

Fol' tllls coll'tact term wc compute Eq. (13) wl'tll tllc
electromagnetic form factor represented by the dipole
Gt to the data

G(t) = (1—t/»')-', (22)

with»'=0. 71 BCV2. The difference between (22) snd
the measured. G(t) can only result in some inconsequen-
tial, for our arguments, numerical changes in the output,
nsIlmly, da'/dt fol' P-P scattcl'lllg, and will Ilot cllallgc
the main features of our predictions as given below.
This form also allows us to have a closed analytic
expression for h, (b',s), which is essentially the Fourier-
Bessel transform of G'(t),

iA (b») 2E2 (b»)

48
h, (b', s) =

(42')'/'

iA
pe Jo(b/t)G2(t= —q2). (23)

(4n-)"' 2

A is a constant that characterizes the strength of the
contact interaction; its relation to g' is g'= A (42r)I/2/»2.

%'e may switch to dimensionless variables now by
defining x=»b and y= (—t)I/2/». Equation (23) reads

hn(x)
{+iP)e—g2/I22

1—hI) (x)
(28)

Some s dependence may always be added to this if
one desires. For example, Regge-pole enthusiasts would
recommend that E' be proportional to 1ns, so that the
resulting diffraction peak in do//ft would "shrink. "
%e shall return to this possibility in Sec. IV in discuss-
ing the approach~&to the Pomeranchuk limit, and for
the present proceed with the thought in mind that we
are working at some axed large energy s.

We may interpret the parameters in Eq. (28) by
recognizing /I as the imaginary contribution to T(s,t)
and thus a measure of the absorption due to the
inelasticity at large energies. Common sense and a bit
of unitarity led us to require it to be positive. E.' is the
width of the diGraction peak, more or less, and is
clearly a positive number. Typical widths of diBraction
peaks led us to expect it to be on the order of 10 in
units of » '. The meaning of P, the real part of the
diGractive amplitude, is less transparent. It rejects the
fact that at 6nite energies, like those found at accel-
erators, our "di8ractive"-like processes are not purely
lIDaglQary.

The four parameters A, n, P, and E2 will be deter-
mined in Sec. III by certain physical requirements on
T(s,t). At that point we shall be prepared to evaluate
T(s,t) for all t (at our imagined large fixed value of s)
fI'OID

iA x'E2(x)
h. (x) =

(42r)"' 48

and the scattering amplitude is

iT(s, t) 1 ( hII(x, s)
xCx J,(xy)~

(42r) I/2» 2 &1—hII(x, s)

{24) (4m)'/'
T(s, t) = xCx J&(xy) i {e+ip)e *'»'-

K 0

A x'E2(x)
+ Ll—(a+iP)e-*2/&2j2

(4~)'/ 4s

h. (x,s) F(s,t)
(23)

P1—h (x,s)jL1—h, (*,.)—h~(x, s)g&

iAx2E2(x))1 (n+ip)e ~2/"2—j -'-
X~1— (29)

48+42r

do 4m.—=—(F(s,t) (2=8x[F(s,t) [2/BCV4.
dt

QU&DRATURES AND COMPUTERS

(26) Our unitarized Fourier-Bessel representation for
T(s,t), Eq. (29), contains four unknowns, which we fix
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by the following physical requirements:

(a) The correct value of Co/Ct at t=0 must be
reproduced; that is,

ALE I. Values of the parameters n, P, E.', and A found by
computer search for a set of choices for a~, where dg/Ch~e'G~„4(f)
g(do/CI) t 0 for large —t. Here a'=0.40 is our best Gt. The sign
of A corrsponds to aNractke input contact force as suggested by
the low-energy discussion in Sec. IV.

=
i T(s,o) i~80 mb/BeV .

d~ t-o

(b) The observed slope of Co/Ct must be reproduced.
This gives the "diGraction radius" and is primarily
determined by our E'. For de6niteness, we chose a
slope of j.0 BCV ', suggested by the present high-energy
data, so that

0.25
0.35
0.40
0.50
0.70

0.50
0.51
0.53
0.57
0,58

p

+0.30
+0.33
+0,35
+0.38
+0.40

our particular choice of

13.0
13.0
12.7
12.3
12.2

+11.41
+12.43
+12.92
+13.85
+15.0

do do'
e"' for t 0,

dt dlt 0

(4s)'t' A x'E~(x)
(31) f(x) = — i (n+ip) e *'I"'-+

(4m)"' 48

(c) The real part of T(s,o) must be much smaller
than the imaginary part. This is in accordance with
the observations of Foley eI, c/."In particular, we take
"small" here to mean zero, although ReT(s,o)/ImT(s, o)

20% is suggested by the data at present "high"
energies. Our program can certainly accommodate that
view' of "small. "Therefore, vre demand that

ReT {s,o)/ImT(s, o) =0. (32)

(d) Finally, we require that for large t, say, abo—ve
20 BCV', the di6erential cross section approaches a
constant times G~„'{t), as given by the dipole fit in
Eq. (22). More precisely, we demand that, for large
—3, and for the large energies that wc are always
considering here,

c0' do')
-.o'G~„'(t) —

Ilarge -t
d~ j

where u is a constant independent of s and t and on the
order of i. This is the substance of our observations in
Ref. 2 on the manner in which the Wu- Yang asymptotic
behavior emerges.

In order to implement this last condition we must
know the asymptotic $ dependence of the Fourier-Bessel
transform of a given function. %'c 6nd by integration
by parts that

xCh Ja(xy) f(x)

1 C)'
xCx Jo(xy) ——

i f(x)
ydy x Cxl

X
x 34

/de p dS Ldll -g=o

plus surface terms and integrals which vanish as y ~ ~
faster than 1/y', the asymptotic behavior expected from

» K. Foley et a/. , Phys. Rev. Letters 19, 857 (1967).

iA x'Ka(x)
xL1—( +id)s ""j' (1

—'

(4~)"' 48

xp- (.+@).-"i"))

from Eq. (29). Although we have used the "dipole"
approximation of Eq. (22) to the proton form factor for
simplicity ln constructing closed cxprcsslons oui results
are not essentially dependent on this approximation.
Using Eq. (34), we find that T(s, t) in Eq. (29) has the
large t behavior (rec—all that t =a'y')

(4m.) 't' 48
T(s,t) -t ~oo ~2 ys

~(4 )-"'(1/48)I1- (n+ip)]'
X . (35)

(1—i~ (4~) '"(6)L1—(n+ip) j) '

Wc note that the diBractivc terms proportional. to 0,

and p have made the originally purely real contact term
pick up a nonzero phase at large —t.

We are now in a position to actually construct
T(s,t). Choosing a value of u' in Eq. (33),we imposed the
f diti gi b byd g fo -p tr
searches on a computer with successively 6ner mesh. For
any reasonable value of e' we found that vie couM
always find a solution. '9 Some typical values of n, p, Rm,

and A for given values of u' are to be found in Table I.
The resulting amplitude' was then constructed by
numerical integration of Eq. (29). Because of the rapid
oscillations of Jo{xy), which almost canceled contribu-
tions to the integral for large y (i.e., large t), it was-
necessary to do the integral numerically by integrating
between the zeros of the Bessel function Jo(xy) and
printing out the result of each such subintegration.
This also provides a convenient check that the 6nal

» Conditions (a)—(d} on 0,, P, A, and 8' allow one to change
p —+ —P and A ~ —A and leave the scattering amplitude un-
changed. The sign of A, namely, the question of whether the
contact force is attractive or repulsive, is thus left open at this
point.
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The diGerential cross section falls as e' ' near t=0, as
it was constrained to do, but for —t&1.5 BeV' or so it
has already turned over to approximate closely the
fourth power of the form factor. In between, at —)=1.0
BeV', there is what might be called a "break" in do/dt
where the contact interaction emerges to take over a
dominant role from the precipitously decreasing
diBractive contribution. Note also that, for —t&0.5
BeV', do/dt falls below Gtr„4(t), and then crosses over
near —t= l.0 BeV' to rise above it, only to return below
again at very large values of —t. This is in fact qualita-
tively similar to the observed behavior of do/dt for
high-energy elastic P-P scattering at small f. Att—empts
to fit these data with exponentials alone have suggested
appearance of a break or knee in the curve at —t=2,
where the two diferent slopes joined. Figure 5 fits the
observed p-p differential cross section at s=60 BeV' to
within a factor of =2—3 over the measured range out to

I I I I I I I I I I I I I I

IO-I

I

I

Io 2

Io 3

IP-4

IO5

IP-6
O'Q
(3
0

FIG. 4. Normalized differential cross section X(s,t) as computed
from our unitarized T matrix for various choices of the asymptotic
condition do/dt -+ a'G~„4(t}. Also plotted is the fourth popper of
the dipole Gt to the proton form factor: Gtr„(t) = (1+

Itl�
/g') '

Io 7

IO-8

(very small) amplitude for large y (i.e., t) is not of-
the same order of magnitude as the last significant
figure carried by the computer.

In Fig. 4 we have the computed (do/dt)/(do/dt), Q

curves for some typical values of a', as well as Gsr~'(t)
Our "best 6t"" is shown in Fig. 5, where X(s,t)
—=(do/dt)/(do/dt), e as computed from Eq. (29) is
exhibited with G~~ (t), as given by the dipole 6t, and
e' '. The asymptotic strength of X(s,f) for large t is—
0.4Gtr~'(f). The parameters ct, P, R', and A are 0.53,
+0.35, 12.7, and +12.92, respectively. This corresponds
to a g' in the driving terms, Eq. (8), of

IO-9

Ip-IO

Ip-I I

lp-I2

I
0"l3

I
p- l4 I I I I I I I I I I I I I I

g'= (1.6 F)' (36)

Further light is shed on the properties of our form of
T(s,t) by detailed comparison of do/dt for t&25—.
BeV' with the dipole form of Gtr „'(t), as is seen in Fig. 6.

~ We did not try to achieve a best fit in any precise statistical
sense, e.g., by minimizing some g~.

0 2 4 6 8 Io I2 I4 I6 I8 20 22 24 26 28
- t —(BeV2)

FIG. 5. Normalized differential cross section X(s,t) as computed
from our unitarized T matrix for the asymptotic condition
do.//dt~0. 4G~„4(t). This is our best fit. Also plotted is the
fourth ower of the dipole fit to the proton form factor: G~„(t)
=(1+ t[/a') ', which would have been the prediction of the
nonunitarized hypothesis of I.
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IO-I

10"2

O

10 3

10-4

~ 0

le-

on it. In particular, we took their model A, in which
the scattering phase b(b, s) is given as a path integral
over a purely absorptive density proportional to
i(bx) E3(bx). This is the solid line in Fig. g and agrees
with Fig. 1 of Ref. 13. Next we made the substitution
b ~ 2 arctan-', b, indicated above, and the resulting do/dt
is given by the dashed curve of Fig. 8. The striking zeros
of the eikonal amplitude have gone away and only one
little wiggle remains. With the addition of a real part
to the potential- and spin-dependent pieces of the cross
section as in Ref. 13, even this little wiggle can be
washed out. Similar effects may be anticipated for the
other models.

—t~i5 BeV'. This is evident by comparing with Fig. 1
and noting the close coincidence of our computed do/dt
to the form G'(t) The m. ain point to be emphasized is
that in the high-energy region the unitarized result
differs in form from G'(t) by less than a factor of 2

over many decades in values for the momentum
transfer —t, and hence is a good representation of the
data. This is a con6rmation of the basic ideas presented
in I. Whether this behavior remains correct at Serp-
hukov and higher energies is now the crucial question.

For completeness, rather than any particular implica-
tion for experiments, we give in Fig. 7 the real and
imaginary parts of T(s, t) as a function of t. It is amusing
to observe that both ReT(s, t) and ImT(s, t) have zeros,
but that these zeros are arranged, by unitarity, to fall
where their effect on do/dt is not noticeable, resulting in
a smooth behavior for the differential cross section.
This is in strong contrast to the results presented in
Refs. 12 and 13. This difference shows the importance
of protecting, at least approximately in the high-energy
limit, desired analyticity properties in s as we have done,
in contrast to the eikonal method. Had we adopted the
eikonal approach, the amplitude within large paren-
theses in Eq. (20) would have been replaced with the
transcription

~ (&" +" 1) 'tonal
1—h,—kD

(37)

or, equivalently, the complex "scattering phase" b, (b,s)
i(h, +hn—) is replaced in our procedure with

8, —+ 2 arctan-,'8„

0 0.2 0.4 0.6 0,8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-t, {BeV2)

FIG. 6. Computed small —t behavior of da/dt for the best 6t:
do./dt —+ 0.4G~~4(t) for large —t. Note the "break" as do-/dt turns
from the diGractive behavior e' ' to the dominance of the contact
interaction above —t=1.0 BeV'.

T~"~'~s= g'G'(t) uy„uuy„u, (3S)

plus diffractive contributions. Unitarity was imple-
mented essentially through the E/D formalism of
Blankenbecler and Goldberger and of Baker and
Blankenbecler, which gives

bdb Jo(bg —t)
0

&&[H " '"'/(1 —I(s)H " '~')]. (39)

I I I I I I I I I I I I 1 I
I

IO

O
E

~ lo50
a
IL

IO6—

IO'—

IV. FURTHER OBSERVATIONS AND
CONSEQUENCES

We have now completed the major task of this paper:
the construction of an approximately unitarized high-
energy representation for the elastic p-p scattering
amplitude starting from a basic input force given by our
current-current driving term

as remarked by Blankenbecler and Goldberger. ' The
unitarity cut, in particular, is absent from the eikonal
amplitude. To illustrate the effect of this substitution
we have taken for simplicity a model given in the paper
of Durand and Lipes" and performed this substitution

IO-8

0 2 4 6 8 I 0 l2 14 16 18 20 22 24 26 28
{8eV2)

FIG. 7. Real and imaginary parts of the elastic
p-p scattering amplitude.
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lO I

I I I I I I I I I I I I lou-energy nucleon-nucleon scattering in terms of forces
generated by the exchange of mesons. Recalling the
Born approximation arising from our interaction

lo 2

I

I

lo ~

I

1

1

IO
1

1

Io 5

"Eikona l
'
Approximation

———Unitarized Amplitude
(8 —2 are tan(8/2))

lO-'

40

lo 7

10-8
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1
p-l 0

lp-I I

I p -I 2

lP -15
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0 2 4 6 8 IP l2 I4 l6 I8 20 22 24
-t —(DeV2)

FIG. 8. Modification of model A of Ref. 13. The solid line
reproduces a result found in Fig. 1 of Ref. 13. The dashed curve
takes 5 —+ 2 arctan qb.

The extra handle of unitarity provided us with enough
leverage to be able to extend our basic ideas down to
small momentum transfers —a regime that we had
avoided before. Some of the interesting features of this
extension have now been spelled out both in Sec. III
and in the accompanying graphs.

The value of g' which we have extracted from our
analysis indicates that the interaction that we have been
discussing is a strorIg interaction. If we take out the
dimensions of g~ by expressing it in units of BeV ', then

g'/4r 5.1, (4o)

which is certainly strong. Although we have been
discussing very-high-energy scattering, one might ask.
whether such a new strong interaction can be accom-
modated by present phenomenological analyses" of

2~A. Scotti and D. Y. Kong, Phys. Rev. 138, 3145 (1965);
J.Ball, A. Scotti, and D. Y. Kong, ibid. 142, 1000 (1960);D. V.

T»P(P~)'+lv(pu) ~E(px')+N(p2') j
=g'G~~'(t)g(p, ')7 g(p, )g(p, ')y N(p, )

+"I-channel" terms, (41)

we see that it has a "range" dictated by the form factors
for the hadronic structure and spin properties deter-
mined by the nonrelativistic limit of the tensor products
of the spinors and y matrices. Given the dipole 6t to
G(t) in Eq. (22), the effective radius or range of the
force in Eq. (38) is given by a mass of 4/(0. 7 BeV')
=(1/3' )'~L1/(420 MeV)$'. This is very close to
the mass of the so-called a meson discussed in Ref. 21
and introduced to provide a needed force intermediate
in range between the pion and p meson, but with isospin
zero. The nonrelativistic limit of Eq. (38) gives a spin-
independent force as also desired. The strength of the
coupling that we find is smaller than those favored by
these authors by about a factor of 3, so that a 0. meson
may still be necessary to fit the low-energy nucleon-
nucleon scattering data, but our additional interaction
is at least not in contradiction with such data in range,
strength, or sign. '9

The nuclear-physics requirement that the extra
force be in the I=O state may shed some light on the
isospin properties of our interaction —a matter that we
have not discussed here. ' This is most releveant when
we turn to collisions of other hadrons —and, in partic-
ular, to z.-p elastic scattering. Since a pion can only
couple to a vector current with I=1 (viz. , the p but
not co or p mesons), if our current is assigned I=O
only, it will not contribute directly to ~-p scattering at
high energies, since the contact term H. (b', s) in Eq. (13)
would be identically zero.

Further, we may address ourselves to the region of
ultrahigh energies. This is the realm where the phase-
space integral 1(s) in Eq. (18) is no longer well approx-
imated by a purely imaginary constant, but grows as
ln(s/so). Let us also add an s dependence to the diffrac-
tion term in B(b',s) by letting a fall as 1/lns and R'
grow as lns for large s in Eq. (28). This is needed to
give a shrinking forward peak, appropriate to Regge
asymptotic behavior, for diGraction scattering and to
lead a constant contribution to the amplitude at t=0
(corresponding to a constant total cross section in our

Bugg, Nucl. Phys. BS, 29 (1968). In discussions with J. D.
Jackson, P. Signell, and F. von Hippel, we also learned that it
may be possible to account for a large part of the "o-meson"
eGects by a realistic model of the I=O uncorrelated two-pion
states. It is worthwhile to remark here that the quoted g' was
gotten by comparing do./dQ from the vector contact term to that
of the quoted authors at s=43fz', t=0. Since the shapes of the
potentials coming from a simple Klein-Gordon propagator for the
cr meson and the G'(t) form that we consider are quite distinct,
one might expect our "potential" to have different effects on the
phase shifts. One might even be able to find the smaller strength
to be quite acceptable.
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normalization). Thus, we write

Hr) (b2,s) —g (2)ei 0 (s) /2e —bs/ (R2

Ins�)
1—I(s)Hi& (b2,s)

(42)

T(s,t) = bdb J(&(bg t)H22(b—',s)

for 6xed t&0 as s —+ ~.As constructed, the diffraction
term [the 6rst one in Eq. (22)j vanishes in the Regge
manner. The detailed nature of the contribution to
T(s,t) of the contact term in the ultrahigh-energy limit
depends somewhat on the exact asymptotic behavior of
Gir~(t). For example, if GR(2(t) is a dipole, then the
behavior of this term is (ln 1ns) /lns; if GR(~(t) is an
exponential in ss/'( —t), then its behavior is 1/(lns)I/2;
and if G22„(t) is an exponential in t, then asymptotic
decreases of this term is ln lns/lns. In each case the
part of the amplitude coming from the contact term
goes away quite slowly, but it does go away. Thus the
elastic scattering cross section vanishes for s —+ ~, and
we are able to recover pure diffraction scattering in the
ultrahigh-energy regime. This enables us, independent
of the isotopic or unitary spin properties of our current-
current interaction, to enforce Pomeranchuk theorems

and imagine that, as s —+ sc, X(s) 1/lns, and (t&(s) -+ Ir.
The unitarized elastic partial amplitude now looks like

(b2 2) —&((&)&s$(s)/2R Il-(R Ins)

H, (b', s) [1+I(s)X(s)e'&(s&/'e 2'/(R"ns&)'

(43)
1—I(s)Hs(b'ss)[1+I(s)X(s)8'&('/'8 "I(""'&j

For large s, I(s)X(s) is a constant. We are interested in
the asymptotic behavior of

such as srr(pp) -+ ar(pp) at infinite energies, although
only in a logarithmic and not in a power-law manner. "
Whether or not it will prove to be feasible to trace such
a gentle approach of the p-p total cross section to its
asymptotic limit is a matter for future experimental
analysis.

Finally, we remind the reader of the possibility that
the local current-current interaction that we have been
discussing should show up in other high-energy hadron
collisions. We have discussed pion-nucleon scattering
above and outlined some others of these in our earlier
paper. ' The observation, or lack of it, of the contact
interaction in other reactions provides a strong handle
for determining its isospin properties.

Before we consider recommending such diKcult
experiments, however, we must reiterate our earlier
statement that elastic proton-proton scattering done
at the energies available to Serpukhov, Weston, or the
CERN intersecting storage rings will provide crucial
tests of the theory of p-p scattering presented here,
based on the assumption of a new and strong interaction
between hadrons of the current-current type.
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"Although we certainly avoid logarithmically any mathemat-
ical contradiction with Pomeranchuk-like theorems asserting the
equality of the pp and pp total cross sections, we may in fact also
avoid such contradictions through a power-law approach of total
cross sections if p changes sign appropriately together with the
contact interaction in going from pp to pp. Since the t-channel
isotopic or unitary spin properties of P (as well as the contact
interaction) are not now known to us, no de6nitive statement can
be made.


