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A purely algebraic formalism is introduced in order to describe the relation between current algebras and
Lagrangian Geld theory. It is then applied to the description in differential-geometric terms of the equal-time
commutation relations for currents deGned by Lagrangians derived from Riemannian metrics on internal-
symmetry spaces.

I. INTRODUCTION

ECENT work by Sardakci, Frishman, and
Halpern, "Sommer6eld, ' and Sugawara4 has pro-

vided models in which the current algebra commuta-
tion relations take a very elegant and symmetric form.
Another interesting feature of the models is that they
seem to be closely related to the geometry of spaces
on which the internal symmetries act as transformation
groups.

The primary aim of this paper is to bring this con-
nection to the foreground; the result will be formula
(4.21), which expresses the commutation relations in
terms of the covariant derivative operation for a
Riemannian metric on the space on which the group
acts. (The metric arises from the choice of Lagrangian
describing the theory. ) In order to express the ideas in
the clearest mathematical form, we also introduce
purely algebraic formalism, independent of Hilbert
spaces, for describing the connection between Lagrang-
ian quantum Geld theory and the theory of current
algebras.

II. GAUGE-GROUP CONSTRUCTION

First, we present several general algebraic remarks.
Let G be a Lie algebra over the real numbers. Let F
be an associative, commutative algebra over the real
numbers. Let G» be the tensor product F8G, where the
tensor product is taken with respect to the real numbers.
G~ can be made into a real Lie algebra in the follow-
ing way:

[fi8Xi, f28Xs]= fif28[Xi)X2]
for fg, f2&G. (2.1)

It is readily verified that (2.1) makes G» into a bo»»a

fide Lie algebra. (The fact that F is a commutative
algebra is crucial here. )

Gell-Mann's "current algebras" are of this form. To
see this, specialize F to be the space of real-valued C"
functions f(x) of a real 3-vector x=(x;), 1&i, j~3.
Suppose G is 6nite dimensional, with basis (X„),
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1~n, P~ t»», and structure constants o p~, i.e.,

[X,Xp]=c p„X~.

Then, elements X, X' of G» are of the form

X=f.8X., X'=f.'8X..
(2.1) and (2.2) combine to give the relation

[X,X']=f fpc p~8X„.

(2.2)

(2.3)

X.(x) =S,8X., (2.5)

where 8, is the Dirac delta function concentrated at the
point x, i.e.,

8,(y) =5(x-y).
We would like to use (2.5) to de6ne X (x) in a precise
mathematical way. There are certain di5culties in
doing this in a completely rigorous way —connected with
the well-known difBculties in de6ning the product of
distributions —but let us proceed as far as we can in
this direction.

Let Fo be the algebra (under multiplication) of C",
real-valued function f(x) of compact support. De6ne
the space of Schwartz distributions, as usual, 5 denoted
by K). F& can be considered as a subspace of X). Dis-
tributions can be multiplied by functions, i.e., 5) is a
module over the ring Fo. Let F now be the free associa-
tive, commutative module over Pg. Recall that it is
constructed as the space curves of formal products
8& ~ 8„of elements of S, with the only relations those
provided by commutativity, associativity and the
required module structure over Fg.

We can now use F as de6ned to construct G» as
before, as the "current algebra. " Then, X (x) as de-
fined in (2.5) makes literal sense as an element of Gp.
Of course, instead of (2.4), we have the following
relations:

[X (x),Xp(y)]=8,b„c p, 8X~(x). (2.6)

5 R. F. Streater and A. S. Wightman, PCT, Spin, and Statistics,
and All That (W. A. Benjamin, Inc. , New York, 1964).
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(2.3) is, of course, the integrated form of the current-
algebra commutation relations proposed by Gell-Mann:

[X,(x),X,(y)]=h(x y)c p,X-„(x). (2.4)

Now, (2.4) arises formally by defining
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Since they give the same results in terms of test introduce variables q,a (0&@&3).Let 1. be a function
functions, this is not too serious; for example, we can f(q„qpa) of the indicated variables. Let
introduce as new relations in Ii the relations

B.B„=B(x-y)B,. p.„=BI./Bq.„. (3 4)

We can also consider elements of the "universal
enveloping algebra"' of Gp, as integrals of formal
products of elements of Gp. For example, if 6 is a com-
pact Lie algebra, and if (X ) is a basis that is ortho-
normal with respect to the Killing form' of G, then

X (x)X (x)dx

is a "Casimir operator" of Gg. Algebraic methods of
constructing linear representations of Gg and "de-
formations" of the Lie algebra structure relations (2.1),
(2.3), (2.4), i.e., "Schwinger terms, " have been given
in Ref. 7.

Finally, the formalism enables us to define the
"partial derivatives" B; of such symbols as X(x). For
example, if x= (x;),

Let us suppose that relations (3.4) can be solved for
q, p as a function of p,p. [The condition for this is, of
course, that det(B'/Bq, pBq»)WO ].This enables us to
convert any function f(q„q») of the indicated variables
into a function of the variables q„q„,p, by identifying

p, with p, p. In turn, this function can be converted into
an element of the universal enveloping algebra of G~
by identifying q, with q, (x) =B,aq„q„with B,q, (x),
and p, with p, (x) = B 8q, . (Of course, we face the usual
problem of taking into account the non-commutativity
of products in the universal enveloping algebra of G~.)

For example, let us consider the Lagrangian for free
Klein-Gordon particles, namely,

+= pgavgaaqav+m qaqa,
1 (3.5)

where g„„ is the usual Lorentz metric tensor (g„„=0if
pWv, 1 if ad= v=0, —1 if 1&p= v&3). Then,

1
B&((x;))= lim —[X((x;+ply)) —X((x;))]. (2.7)

~~0 hence,
B~/Bqaa gavqav v

(3.6)a= g'ao

If we have something of the form X(x,y), B;aX(x,y)
denotes this "partial derivative" with respect to x The "energy-momentum tensor" e„„canbeconstructed
with y heM constant. as usual:

1
Bav 2paaqav gav ~ (3 7)

III. LIE ALGEBRA OF CANONICAL
FIELD THEORY

Choose indices 1&a, b& m. Let G be the Heisenberg
Lie algebra, defined by symbols (q„p„1),with the Lie
algebra structure defined by

o=[P.,p p]=[q. qp] LP. qp]=B.» (3 1)

with 8 y the Kronecker delta, i.e., 8,~=0 if a&b, =1
if u=b. Define, as before, Gp~, and Gp. Within G~,
we can define

p. (x)B.p. , q. (x)=B,sq„(3.2)

and we have, analogously to (2.4), field-theoretic
canonical commutation relations

[q.(x),p&(y)7= B.pb(x —y) . (3.3)

As for any Lie algebra, we can define the universal
enveloping algebra of Gp as the formal "products"
of elements of G~. This enables us to make sense of
"functions" of the symbols q, (x), p, (x). In particular,
we can use the formalism of Lagrangians, for example,
to construct "currents. " One way of doing this can be
described as follows. In addition to the variables q„

R. Hermann, Lie Groups for Phys~cists (W. A. Benjamin,
Tnc. , New York, 1966).' R. Hermann, University of California, Berkeley, report
(unpublished).

The generators of the Lie algebra of the Poincare
group can then be written as follows, as elements of the
universal enveloping algebra of Gp.'

3Ea„= (x„B„p—x„Bap)d'x;

I'„= ep„d'x.

(3.8)

[Of course, in order that Ma„, P„de fiendby (3.8),
really satisfy the commutation relations of the Poin-
care group, the Lagrangian L must be Lorentz-in-
variant. ] For example, with relations (3.5) and (3.6),
we have

&p= Bpp(x)d'x

[-', B;q.(x)B;q.(x)+m'q. (x)q. (x)]d'x, (3.9)

which is, of course, the usual formula for the "energy"
for Klein-Gordon free particles.

We now turn to the consideration of more complicated
theories of this type mentioned in Refs. 1—4.
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IV. CURRENTS GENERATED BY GROUPS
OF INTERNAL SYMMETRIES

where (g ', b) is the inverse matrix to (g, b), i.e.,

g abgbc= ~ac ~

—1

Let (x,q, p) be the variables used in Sec. III. Suppose
that L is a Lie algebra of vector fields on q space. ' Each
XgL can be realized then as a first-order differential
operator

Hence;
L a'= —gabgbs &

X—=A. (q) (BIBq.) .
Associate with X the classical function

or, following the rules for converting functions of

(4 1) q„q b„ into elements of the universal enveloping
algebra of Gp,

fx=" (q)P' (4.2)
VP(x) = g.—,(q(x))B,qb(x)A. (q(x)). (4.9)

It is then well known from classical mechanics that the
assignment X—b f» as a homomorphism between L
(considered as a Lie algebra under Poisson bracket)
and G the Lie algebra (under Poisson bracket) of
functions of p and q. We can also associate to X the
following element of the universal enveloping algebra
fo Gp..

X(x)=A.(q(x))p. (x). (4 3)

It is readily verified that "current algebra" commuta-
tion relations are satisfied:

LX(x),X'(y))= h (x—y)LX,X'](x),
for X, X'gL. (4.4)

Let L(q„qb„) be a Lagrangian as explained in Sec.
III. Given XgL, one can then define the "current"
associated with X, as follows:

V„X=A,I.,„,
or

We see that

LVP(x), V,»'(y)] =0, for X, X'PL. (4.10)

[Vo (),V' 'b)l
= [A.P.(x),g, bB,qbA, '(y) ]
= -A.(q(x))t P.(x),g.b(q(y))B'qb(y)A. '(q(y))3

A.—(q(x))B.g, bB;qbA, '8(x y)—
+g.b(q(y))LP. (*) B'qb(y)&A. '(q(y))

+g.b(q(y))B'qb(y)B. A.'(q(y))B(x —y) (411)

(B, applied to a, function of q denotes the partial
derivative B/Bq, .) Now,

LP.(*),B;q (y) j=L&*P. , B,B,aq j
=8,8;bye, b

= fp. , — B'f'(y)qb(y)dy

Vo»(x) =A.(q(x))p. (x);

V+=A, (q(x))1.„.
In view of (4.3), we have

(4.5)

(4.6)

Now,

(fp B'f 3qbj

B~f Bab (4.12)

Vo» ——X(x), f(x)f'(y)BpB(x y)dxdy—4.7)

i.e., the zeroth components of the "current" generated
by elements of L satisfy the "current algebra" com-
mutation relations (4.4).

Our job is now to compute the commutation relations
between V„x and V„x' for X, X'gL. Rather than
working in complete generality, let us suppose that I,
is of the following form:

where (g„„) is the Lorentz metric tensor —constant, of
cours" and (g b(q)) is a "metric tensor" for the
"internal symmetry" q space.

Then,
ap gpvgabg bv

hence,
Pa =L aO = gabqbO q

ol

f(x)B,f'(y) 8 (x y) dxdy = —fB~f'. (4.13)—

Hence, (4.12) can be written as

LP.(x) B'qbb) j=B'"B(x—y)B.b.

Combining (4.11) with (4.14) gives

(4.14)

LVo (x),V; '(y)]= A, (q(x)—)[B,g, bB;qbA, '(q(y))
XB(x y)+g, b(q(y—))A.'(q(y))B.bB;ab(x y)—

+g bB'qbB A '(q(y))B(x —y)j (4 15)

Now, one sees directly from (4.9) that VP and Vox
are independent of the coordinate system (q,). Hence,
the right-hand side of (4.15) should be expressible in

terms of invariant quantities. Let

qbb=g abPb) (X,X')= g, bA Ab'. (4.16)
8 R. Hermann, Differential Geometry and the Catculus of Varia-

tion {Academic Press Inc., New Vork, 1968). It is the inner product of the vector fields X, X' with
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respect to the Riemannian metric

dS =g~blg~dgb. (4.17)

gab=&ab; ~gab/~pa=0 (4.18)

Evallia'tlIig 'tlie right-hand side of (4.15) Rt g, iisiIig
relations (4.16) to (4.18), gives

(X,X')8;ob(oo y)—A.—B.A, '8;pbbs(x y)— . (4.19)

Introduce the covariant derivative operation (X,X')~ VxX' fol vector Acids associated with thc mctllc
(4.17).Since (g,) are normal coordinates at go, we have

VIrX'= A.B.(A b)(8/Bqb) . (4.20)

Let us 6x attention at a point qo. We can then choose
(q,) as Riemannian normal coordinates at qo. In these
coordinates, we have, at the point q',

of left-invariant vector fields on L.o o This leads Le.g.,
for L=SU(2), SU(3), or SU(3)XSU(3)] to the
sltuatlons considered ln Rcfs. 1—4.

We can also readily work out the energy-monmntum
tensor 8„„.For example, consider the energy operator

goo=op. go. o
—L

= ops/so
= opsgsb pb ogsbgaa gbp papp+ogsb~iIjb

1= ggob~sga~sgb. (4.24)

Suppose that I is a I.ie algebra of vector 6elds on (t

SPace, witli X =Aa (8/Bga)) lge, P~II, R basis of L.
Using (4.9), let us postulate a relation of the form

ooo=h pV; Vf =h pg, .8,g,A. gbp8;q+pP. (4.25)

Comparing (4.24) and (4.25) gives the relation

Putting this all together, we have ~aPggc~c gW~Z~= ggab. (4.26)

Ão (*),V' '(y) j= (XX')(V(*))~'*~(*—y)
+V,vxx'(g(z))8(& y) (4 21)

This is the general formula for the current-algebra
commutations relations.

Now, these commutation relations may be considered
to be of optimally simple form if the relations (4.21)
do not depend on the 6elds g(x). One can then read off
from (4.21) a set of conditions which will give such
conditions. Suppose that L, I ' are I.ie algebras of vector
6elds on g space such that

(X,X')=const for XEL, X'6L'. (4.22)

For XgL, X'QL', %~X' is a linear combination of

elements of L' with constant coeflicients. (4.23)

It is then an exercise in differential geometry to work
out the conditions on the metric g be,drab which are
implied by (4.22) and (4.23). This will be done in a
later work. For the moment, it sufhces to mention the
most obvious solution of (4.22) and (4.23). Suppose
(q,) are variables on a compact Lie group L, with the
metric chosen as the unique one invariant under left
and right translation, and with I.=L'=Lie algebra

Again lct us wolk ln normal coordlnatcs at a point.
(4.25) takes the form

-', b, b ——h PA, Ab~. (4.27)

(4.25) can be written in coordinate free form as follows:

-', (X,X)=h p(X,X )(XP,X)
for each vector field X on q space. (4.28)

Again, solutions of this form impose conditions on the
metric that will be investigated systematically in a
later paper. One may readily verify that, in case the
metric is the biinvariant one on L, and in case (Xa)
is a basis for L (the Lie algebra of left-invariant vector
fields on L) that is orthonormal with respect to the
Killing form, ' ' that relation (4.27) holds, with
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