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The SO(S,2) representation whose basis functions are the solutions of the Bethe-Salpeter equation for two
scalar quarks interacting via the exchange of a scalar zero-mass boson to form a bound state of zero mass is
written as an infinite-dimensional representation for bosons. A general second-order, infinite-component
wave equation is given with a reasonable mass spectrum. The ground-state form factor corresponding to this
representation is calculated by identifying the electromagnetic current with the current of the equation, in
which case the pion form factor is given by G (f) =[1—b(cosh6)%/2m]/[1— (cosh6)?/4m?]5/2, The mass
spectrum and the form factor can easily begeneralized to the group SO (m,2) by a simple substitution,and the
mass spectra and form factors obtained before in the framework of the group SO(4,2) appear as special

cases.

I. INTRODUCTION

N a previous paper' we have considered the Bethe-
Salpeter (BS) equation for two scalar quarks inter-
acting via the exchange of a scalar boson of zero mass.
It was found that if the mass of the bound state is zero,
the set of all solutions of the equation can be accom-
modated into a single irreducible representation of the
noncompact group SO(5,2), while if the mass of the
bound state is different from zero, the SO(5,2) repre-
sentation splits as Y. ©S0(4,2). Also, the SO(5,2)
representation was written in the canonical basis and
its commuting generators were identified with the third
component of the isospin, the hypercharge, and a third
quantum number. From its 7 and ¥ content we find
that this representation, as well as the corresponding
H-atom representation when written in the canonical
basis, does not seem to be realized in nature as internal
space representations. In the present case we want to
use the SO(5,2) representation completely within the
ordinary space time, i.e., we take its basic functions to
be eigenfunctions of spin and parity and assign bosons
to it. This is a more natural way of looking at the repre-
sentation, since its basic functions are the wave func-
tions of two spinless quarks which can have nonvanish-
ing relative angular momentum forming a bound state
with spin. Of course, the SO(5,2) corresponds to the
unrealistic case of massless bound state and we do not
expect to have an exact SO(5,2). The ratio of the mass
of the bound state to the mass of the quark may be
taken as an indication of how “badly” our SO(5,2) is
broken. Several experiments? have indicated that this
ratio is small, and so it seems to be not unreasonable to
consider an SO(5,2) group for the mesons.
In Sec. II we give the generators and the Hilbert
space of the SO(m,2) representation with the m-dimen-
sional spherical harmonics as basic functions in terms of

* Work supported in part by U. S. Atomic Energy Commission.
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2 L. Leipuner, W. T. Chu, R. C. Larsen, and R. K. Adair,
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creation and annihilation operators. For m=3, eigen-
functions of spin and parity were obtained to be identi-
fied with the wave functions of the particles which
belong to the representation. In Sec. III we obtain from
a Lagrangian by means of the Euler-Lagrange equation
an infinite-component wave equation with a reasonable
mass spectrum, i.e., not monotonically decreasing as in
the Majorana® equation. The requirement that the
electromagnetic interactions can be brought in by the
minimal substitution uniquely determines the electro-
magnetic current to be used in the calculation of the
form factors. In Sec. IV we calculate the ground-state
form factor, which will be identified with the pion form
factor, using the electromagnetic current that we obtain
from the equation of Sec. III. The mass spectrum and
the form factor that we have obtained, as well as other
mass spectra and wave equations obtained in the frame-
work of the group SO(4,2), can be generalized to the
group SO(m,2).

We should mention that the form factor and the mass
spectrum, which were obtained by generalizing to
S0O(5,2) methods applied to the SO(4,2) group,*®
depend only on the infinite-component wave equation
that we use, and not on the BS equation. The BS equa-
tion was introduced simply because it leads to the same
SO(5,2) representation.

II. SO(5,2) REPRESENTATION

We have shown in a previous paper® that the set of
all m-dimensional spherical harmonics Yi,...;,* forms
the basis for a single irreducible representation of the
group SO(m,2). The harmonic polynomials F,...;,! are
expressed in terms of the spherical harmonics by the
relation

F."....',‘=ZtY,'1...,',‘. (2.1)

3 E. Majorana, Nuovo Cimento 9, 335 (1932); see also the
review article by D. M. Fradkin, Am. J. Phys. 34, 314 (1966).

4 (a) Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppls. 37
and 38, 368 (1966); (b) Phys. Rev. 160, 1171 (1967).

& A. O. Barut, Nucl. Phys. B4, 455 (1968).

6 A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters
20, 167 (1968).
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In a specific basis the set of all linearly independent m-dimensional harmonic polynomials was found to be

the following:

Foit=m(m~+2)- - - (m+4i—4) (21 - -z,-u)—m(m+2) oo (mA-4E—6)2%Z (814,255 + * Biy,)
+e (=D mlmA-2) - - - (20— 2)22722 (Bigiy * * Sigy_ginsZine—iZine)
+ (=) tm(m—+2)- - - (m+2t—4)22Z (Biriy" * *Oigp_yia,), t>1

F;l...;2‘+12'+1= m(m+ 2) ce ('m—i—4t—— 2) (Zl' . -z;2t+,)—-1n(m+2) e (m+4t— 4)222 (551;22;3' . 'Zi2¢+1)+ v
+ (" 1)‘—17” (m+2) T (m+21)z2‘“22 (51‘11’2' : '51’2z—siz:—22"2:‘1z4'uzi24+1)

F‘1i22=mzi1ziz—z26i1i21 F1'1=Zi, F'= 1/(m_2) )

where 2 is an operator which symmetrizes the indices
i1+ s, keeping only distinct permutations of the
indices, i.e., the terms 8:i;0ii, -+ and 8iy:,0:yi,° + + are
counted as one term. Also, the z;’s are the components

(=D m(m~+2)- - - (m~+2t—2)22Z (Bsyiy* * SigpriaBiney), 121 (2.2)
fashion. Indeed, we find
Mleil---i,'= 1:(61"‘an1'1...in_l;"+l...."t
—'5”an£‘---.’"_‘£"+1~--z‘t) ) (273')
SFiy..it=[t+3(m—2)Fs..ci, (2.7)

of an m-dimensional vector and é;j, 2, j=1, 2, - -+, m,
is the Kronecker tensor. The generators L, u, v=1, 2,
-+ +, m+2, of the group SO(m,2) are given by

Ly=M;,
Lim1=30@Vi—Py),

Limi2=3(Pi—V5), (2.3)
Lni1,mi2=1S,
Lp=—Ly, 4j=12,...m
where
i} a
M,‘j= —’L(Zr—— Z,———) y
az,- az,-
d
S= Zi*+% (m— 2) )
aZ,'
(2.4)
0
Pi=—i—,
aZ,'
a
Vi= ij—— 22,'21——— (m-—— Z)Z,'= ij"“‘—" 2255 B
é)z; az,- azi

In the above expressions summation is assumed over
repeated indices with metric 8;;. The operators L,
satisfy the relations

EL,,,,,LN] = i(gy,,L,.a-l—ngyp—guan* ngup) ) (2'5)
with the metric
gu=gn="""=gnm=—1, gni1,m1=gnia,mp2=1, (2.6)

so that the operators L,, form the Lie algebra of the
group SO(m,2). Also, they transform the harmonic
polynomials among themselves in an irreducible

PzFil...,"t= - 1[ (m+ 2t— 4)5ziﬂF5x...,'”_1,'"_*_1...."’—1
- Zain"kF“P‘“'n—lin+l'""k—l"k+l"“.tt—1] ’ (2~7C)

VlF,'l...i‘t= _F“‘.__'.‘H-l, (27d)

where the indices i, and ¢ take all values ;- - -1,
i.e., summation is understood, with the restriction that
in the second term on the right-hand side of Eq. (2.7c)
we have n<k.

The importance of the above representation lies in
the fact that it is realized by several physical systems
and their generalization to higher dimensions.! For
example, solutions of the “Schrodinger’ equation of the
m— 1 dimensional analog of the H atom, and more gener-
ally of the “Schradinger” equation with O(m) invariant
potentials, are the m-dimensional spherical harmonics
forming a representation of the group SO(m,2). The
same thing happens for the m-dimensional rigid rotator.
In this section we shall be interested in the SO(5,2)
representation which is realized by the BS equation
as argued in the Introduction. The group SO(5) has
been considered before” as an internal-symmetry group
for hadrons. In our case, however, we shall use an
SO(5) representation which can be extended to SO(S,2)
completely within the ordinary space time.

Let us introduce the creation and annihilation opera-
tors aif, a;, i=1, 2, ---, m, which satisfy the com-
mutation relations

Laiat]=8:, [asa]=[ai,a7]=0.

We can express the generators of the group SO(m,2)
given by Egs. (2.3) and (2.4) in terms of the operators
a;" and a; if we make the replacement

d/0z;— a;. (2.8)

7(a) A. Salam and T. C. Ward, Nuovo Cimento 20, 1228
(1961) [observe that S,(2)=~0(5)]; (b) R. E. Behrends, J.
Dreitlein, C. Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1
(1962).
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We find
L,‘j =—7 ((l,’f(lj— djfd,') N

L; mi1=%ilatai ai— 2atata;— (m—2)at+ai], 29)
Limiz=—3[a e/l a;i— 200l a;— (m—2)ait —ai],

Lony1,mia= ajla;45(m—2).

The above operators satisfy Egs. (2.5) with the metric
of Egs. (2.6). The replacement z;— a;' translates the
space of the harmonic polynomials Fj,...;,* of Egs. (2.2)
into a Hilbert space if we assume that the operators
that we obtain by this translation operate on the
vacuum state |0). We have, for example,

Byl — (mailTaigf” a;fd,-fﬁil;,) I 0). (2.10)

The exact definition of the scalar product which is
based on the relation (a;|a;)=8;; will be given in
Sec. III.

Consider the SO(5,2) group. We usually label the
basic vectors of a representation by the weights which
in the case of SO(5) are the eigenvalues of the operators!
Hy= (1/4/5)L1z and Hz= (1/4/5)Ls.. Instead, we shall
use here the eigenvalues of the operators

M3=%(Lis+Lss),
Aa=%(L12—La4) .

However, within an irreducible representation, in
addition to the weights we need?® % (r— 3/) more numbers,
where 7 is the number of generators of the group and /
is the rank of the group. In the present case the two
additional numbers® are chosen to be the eigenvalues
of the SO(4) commuting spins M= (M1,M2,M;) and
A= (Ay,A2A3), where

Mi=%(Los+L14),
A=3(Los—Lys),

(2.11)

Mz‘—‘ %(L31+L24) )

(2.12)
A2= "21'(L31_L24) .

Our Hilbert space is the space of the five-dimensional
spherical harmonics in the basis in which the operators
M? Ms, A% and A; are diagonal. We find

|; M, A, My=+=M,As=+=M)= (1=442)*¥55-- .5,
0 M<L3t, M=A, (2.13)

where there are ({t—2M) 5 indices. The index ¢, which
is the degree of homogeneity in the a'’s, distinguishes
the different irreducible representations. In the above
notation only the coefficients and the tensor indices of
the tensor terms of |¢; M, A, &M, 4M) are shown.
For example,

13; 1111>= F1153:f:21:F1253—F2253,

where the F¥s have been given before. The states with
M= +M, A;5+ M are obtained from the above states

8 G. Racah, CERN Report No. CERN-61-68, 1961 (un-
published).

? We recall that an O(5) spherical harmonic is labeled by four
numbers, i.e., as ¥Yynim.
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by application of the rising or lowering operators
M y=3(Las+Luz=iLytiLs),
Ay =%(Las— LysiL51FiLoy).

We combine the commuting operators M and A to
obtain the spin J:

(2.14)

J=M+A, (2.15)

which will be identified with the spin of the particle.
The states |¢,J,J3) are given by

|t; M’Ar]’]3>5 |t)],J3>= (— 1)—JB Z (2]+1)1/2
M

3,A3

M A J
X( )!t;M,A,Ma,A:;). (2.16)
M; Ay —J3

Since M =A, only integral spins can be obtained, and
so only bosons can be assigned to the representation.
We can define parity in the following two ways:

i=1,---,4 (2.17a)

b) @i—> —ai, as— a4, as— a5, i=1,---,3. (2.17b)

(a) ai— —ai, as— as,

The second definition of parity may be more appropriate
in view of the fact that in treating the BS equation we
have made the identification!

2p8pi (—p*+psH)Ps
] , =
PP+ ps p’+ps

where p; is an energy-momentum 4-vector and ps is
the mass of the quark. Under parity the generators of
the group SO(5,2) behave as follows (3, j=1, 2, 3):

Lyj Ly Lis Lys Ley Lig Liv Lss Lar Lsg Lz
@ + 4+ - - 4+ - - - - 4+ +
®w+ - - 4+ 4+ - - 4+ 4+ + +

i=1,...,4 (2.18)

i

If the parity P is defined as in (2.17a), we get
PM:EP——l:Mi, PA___EP_]':A:E.

Then from Egs. (2.13) and (2.16) we find that the
states |¢; M,A,J,J;) are eigenstates of the parity with
eigenvalue

P=(—1)Me;ns,

where e is the intrinsic parity of the vacuum. So we
find the following spin parity content of the representa-
tion for €= —1:

=0, JP=0;
=1, JP=0, (Oh1);
=2, JP=07, (Oh1), (O12);

etc. To find the parity of the states in case (b), one
observes that
PM, Pi=A,.

Then from the symmetry properties of the 3—j
symbols and the fact that M=A, we find from Egs.
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(2.13) and (2.16) that the states |{; M,A,J,Js) are
again eigenstates of the parity with eigenvalue

P=(—1)7€ins.

Thus the spin-parity content of the representation is
the following for einy=—1:

=0, JP=0;
=1, JP=0-, (0-1%);
t=2, JP=0", (0714, (0-,1%,27);

etc. The choice (2.17b) for parity implies that the 1~
mesons do not exist in the same SO(5,2) representation
with the 0~ mesons, and so we must consider a parity
doubling.10

For both definitions of the parity we may choose as
Lorentz group one of the following subgroups:

@ (1,239),
G) (1,23,7),
i.e., the subgroup with generators L,,, p, v=1, 2, 3, 6
in case (i) and u, »=1, 2, 3, 7 in case (ii). In case (i)
above we make the following identification :
L;s, ¢=1, 2, 3—Lorentz boosters,
Tu=(Len,Lir), T./= (Lgs,Lis)—Lorentz 4-vectors,

Lsg, Lsr—scalars under parity, and under the O(3)
subgroup of the Lorentz group which may be
used as mixing operators.

In case (II) we have

Ly, i=1, 2, 3—Lorentz boosters,
Ty= (Lzs,Lis),

Lgs, Lgr—mixing operators.

T'y'= (Lys,Lis)—Lorentz vector,

The above identification is valid if parity is defined as
in (2.17a) or as in (2.17b). However, if parity is defined
as in (2.17b), we have the additional mixing operators
L46 and L47.

III. MASS SPECTRUM

To proceed with the calculation of physical quantities,
we must define a scalar product with respect to which
the generators are Hermitian. We introduce the kernel
A(S) which is a function of the diagonal generator
S= Lut1,mre and we require L,, to be Hermitian with
respect to the scalar product (F’'|\(S)L,,|F), i.e., we
require

(F'| LN | F)= (FINSLwlF).  (3.1)
We find that the operators L;j;, 4, j=1, 2, - -+, m, and

10 Barut (Ref. 5) has found that the states of the meson tower
of SO(4,2) are (07), (0~,1%), (0-,1+,27), « .-, Thus a parity doubl-
ing is necessary to include the vector mesons.
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S are Hermitian. Also, since the functions Fj,...;,* are
harmonic polynomials, we have

a.-a.-lF)= (Fla.-*a.-“=0.

Using the above equation we find that Hermiticity of
the operators L;,m41 and L; mqe implies

20m=2 T (2 —1)
AS) =——————,
257(S)

which was normalized such that A(S)|0)=|0). The
operator A(S) serves as a metric which makes the
operators L; my1 and L; mye Hermitian.

We shall now return to the group SO(5,2). Let us
choose the Lorentz subgroup (1,2,3,6). The mass spec-
trum of the particles will be obtained from the solution
(diagonalization) of a wave equation. Consider a wave
equation of the form

(3.2)

(LaP”—ﬂLm"' V)‘i,=H\i'=0, (3'3)
where L, is a Lorentz 4-vector and Lg; is a scalar under
SO(3,1) and parity, which is necessary in order to be
able to diagonalize the equation in the rest frame.
Other terms of the form 7L,, may be added if they are
scalars under SO(3,1) and parity. Equation (3.3) gives
rise to the conserved current W™\L,¥, where \ is the
operator of Eq. (3.2). Let us assume that Eq. (3.3) can
be obtained from a Lagrangian £ by means of the
Euler-Lagrange equation

4L 0 L
A(FIN)  0x, 0(0¥N/dx,)

0, (3.4)

and that the electromagnetic (EM) interactions can be
brought in by the minimal substitution p*— p°—ed’.
Since the interaction Lagrangian is of the form

Lem=—A4A°T,, (3.5)
where J, is the electromagnetic current, the above
assumptions imply that the electromagnetic current to
be used in the calculation of form factors is the current
of the equation multiplied by the charge, i.e.,
Jo=eU\L,¥. 3.6)
Current conservation has been applied before to fix
the mass spectrum.’¢ We prefer to obtain the mass
spectrum by diagonalizing the wave equation, since its
solutions satisfy the current-conservation equation,
while the current-conservation equation does not in-
volve the operators H— L,p° of Eq. (3.3), and for each
one of its solutions we must find a wave equation which
gives the same mass spectrum (if this is possible). It
is much simpler to diagonalize a wave equation than
to solve the current-conservation equation.
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Consider the Lagrangian

= —1a¥N0 T, ¥ +5(a-F1Na, T
+¢(0° )AL (0,%) — pINLyr ¥

—v¥\V+Len, (3.7)
L= —eA*(a¥N\T, ¥ —36FN\id, ¥
—‘%C‘i’t)\ia,Lmi’) .
From £—£gm we obtain the equation
[(GP¢+bP,+CPUL57)P’—ML57— V]“I"':O (38)

Assuming that p7 is a timelike 4-vector and going to
the rest system, we can diagonalize the above equation
by the rotation e*:Ls, We find

am, tanhf+cm2=yp,

3.9
(am;/coshﬁt) (l+%)+bm¢2= v, ( )
from which we obtain the mixing angle 6;:
—cm
sinhf,= t+3), (3.10)
yV— b”ﬂ/t2

and if b and ¢ are not both zero, the mass spectrum

1 b
me= —(c2+
2\ )y

2by
+17

-1
) { @+ 2cu+

2bv \? b?
=+ [<a2+ 2cu+ ) — 4(62+ )
(t+3)? (t+3)?

(=]}

For 5=c¢=0 we get the mass spectrum

1 v?
th____(”Z_*_ )
A\ gy

Suppose that we have written the SO(m,2) repre-
sentation in such a way that linear combinations of its
basis functions have definite spin and parity, ie.,
particles can be assigned to the representation. Let
us write the equation

(3.12)

[(a'ra+bpa+CPaLm,m+2)P’—[-‘Lm.m+2 - y]il: 0 I}

where I'y= (Lmy1,mp2,Limi2), 1=1, ..., 3. The mass
spectrum that we obtain if we diagonalize this equation
is given by Eq. (3.11), in which we have made the
substitution

53— t+3(m—2). (3.13)
For m=4 we obtain the mass spectrum of Ref. 5. All
mass spectra obtained before for the group SO(4,2)*!

11 C, Fronsdal, Phys. Rev. 156, 1665 (1967).
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can be generalized to the group SO(m,2) with the
substitution!?
n— t+5(m—2). (3.14)
For t—o we obtain for all SO(m,2) groups from
Eqgs. (3.11) and (3.13) the saturation mass

M= [a®+ 2cuz=a(a2+4cu)2]/ 22,

The existence of a saturation mass for bosons justifies
somehow, according to our arguments in the Introduc-
tion, the use of an SO(5,2) representation, if we assume
that the saturation mass is much smaller than the mass
of the quarks.

Equation (3.8) has, in addition, spacelike solutions
that are obtained by diagonalizing it under the assump-
tion that p7 is spacelike. Equations without spacelike
solutions® ! can be written using generators of the
group SO(m,2) in a similar fashion.

We may proceed to assign the mesons with the same
internal quantum numbers to an SO (5,2) representation,
determining at the same time the constants of Eq.
(3.11) in such a way that their mass is approximately
given by this expression. Having assigned the particles
to the representation, we may calculate decay rates.
Since, however, the number of known mesons is rela-
tively small, we shall postpone such an assignment.

IV. GROUND-STATE FORM FACTOR
Let us identify the electromagnetic current L, with
4.1)

where T',= (Lgr,Li7), the Lorentz boosters with L;g,
and the mixing operator with Ls;.. We observe that
Eq. (3.8) givesrise to the above electromagnetic current.
This equation can be diagonalized by the rotation
e®Iss and since we want to identify the solutions of
the equation with the physical states, we take the
mixing operator to be Ls. Then the form factor G(¢)
of the ground state corresponding to a spin-zero particle
is given in terms of the vertex function J, by

J = (0] e~ 0Lsst\(S) L e~ ¢Lavgi0Lse |0)
=GO (P st+pdu/2m,
sinh¢=|p|/m, coshé=E/m,

L,=e(al'y—bid,—cid,Ls7) ,

(4.2)
(4.3)

where one of the particles is in its rest frame and the
other is boosted in the z direction to momentum p;. We
find, commuting e—*Zs and \(S), that

J = (0] e~#0Lss [ e~ kLssgitLss| ), (4.4)
In order to find G(f), we shall calculate one of the com-
ponents of J,, say, Jo. Details of this calculation,
which is based on a method developed by Nambu,®

12 The index # used in Refs. 4-6 is the eigenvalue of the operator
Lig of the group SO(4,2), so that in our notation # becomes ¢--1.
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are given in the Appendix. We find
Jo=e{3a coshf+2bm[ 1+ (sinh} ¢ cosh)? ]+ 3cm sinhd}
(cosh} £)?

X . (4.5)
[14 (coshé sinh} £)2]5/2
Also, we have
E+4+m t
=1———=(cosh}£)?,
2m 4m?
(4.6)

t
(sinhj£)?= ——.
4

mZ
From Egs. (4.2), (4.5), and (4.6) we get
60 2a coshf+2bm—+3cm sinh@— b(coshb)?/2m
t)=e .
[1— (cosh@)?t/4m? )52

4.7)

Charge normalization implies
G(0)=e(3a cosh6+2bm~+3cm sinhf)=e, (4.8)

and so our final expression for the ground-state form
factor obtained from the current of Eq. (4.1) is

1—b(cosh6)?/2m
G()=¢ |
[1— (cosh@)t/4m? T2

4.9)

We observe that we get the same from factor if we use

the current L,’=e(al',— bid,), while the mass spectrum
of Eq. (3.11) does depend on the constant ¢. The above
result can easily be generalized to the group SO(m,2).
If we consider the electromagnetic current of Eq. (4.1)
with Tu= (Lmy1,ms2, Limi2), the mixing operators
Lu,my1, and the Lorentz boosters L m41, and proceed as
before, we find the same expression for the ground-state
form factor except that the exponent in the denominator
is now im. The ground-state form factor of the meson
representation has been calculated by Barut® in the
framework of the group SO(4,2). The expression of the
form factor that he found has the exponent 2 instead of
£ in the denominator.

We shall identify the G(f) of Eq. (4.9) with the form
factor of the pion. This form factor has been measured®
recently in the electroproduction reaction e-4p—
e+n-+nt for three values of the momentum transfer:
—0.039, —0.117, and —0.234 (BeV/c)2 Its value at
—0.234 (BeV/c)? seems to deviate significantly from
the prediction of the vector-meson-dominance model.
However, the data and the theory on which the calcu-
lation was based are not accurate enough to permit
definite conclusions.”* The evidence rather favors a

138 C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lichtenstein,
A. Ramanauskas, and R. H. Siemann, Phys. Rev. 163, 1482
(1967).

( 148, D. Drell and D. J. Silverman, Phys. Rev. Letters 20, 1325
1968).
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F1c. 1. Calculated form factor of the pion for [ (coshd)/2m 2=1.5
BeV~2, mb=1% (solid line), and comparison with the form factor
obtained from vector-meson dominance, Gi(f)=(1—2/mz?)™*
(dashed line), and the experimental points.

pion form factor decreasing more rapidly, as —¢
increases, than the one predicted by the vector-meson-
dominance model, and not very different from the
Gg? of the proton. The lack of experimental informa-
tion does not allow us to fix the constants b and 6 in
Eq. (4.9). However, a form factor decreasing more
rapidly than the one predicted by the vector-meson-
dominance model can be easily obtained, as we see in
Fig. 1, where we have chosen [ (coshf)/2m *=1.5 BeV—2
and mb=1%.
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APPENDIX: CALCULATION OF FORM
FACTOR
We want to calculate Jo of Eq. (4.4). Since

e~ 0L g Lgz+b(m~+E)+c(m~+E) Ly Je?07ss
=[a coshf-+2cm sinhé (cosh}£)?]Ler+2bm(coshy£)?

+[a sinh0+2¢m(cosh}£)? coshf]Ls7, (A1)
we get
Jo=-e[3a coshf-+2bm (cosh} £)?
+3cm(coshi £)? sinh6(0| NV (,6) |0)
+[a sinh8+2¢cm (cosh} £)? coshé]
X (0| Ls:N (£,6)|0), (A2)
where
N(Eﬁ) = ¢~ 10Ls6g— 1§ L3610 Ls6 — g—1§(L3s cosh+Lss sinhf) | (A3)

To evaluate the above expression consider the operators
Gio=3(Lss+Ler), Gas=5(Las+Lsr) ,
Gu=%(—Lsr+Lss),  Gi'=3(Lass—Ler), (A4)
G23,=%(L36—L57) ) G3ll=%(L37+L5G) )

which form an 0(2,1)®0(2,1) algebra [g,,= (— — +)].
We get
L35= GI2+G12, )

and so N (&,6) becomes

N(g,e) — p—tt(coshf G23+sinhf G12)

L36=GZ3+G23I ) (As)

—1i§(coshf Gag’+sinhf G12’)
Xe .

(A6)
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Each factor of the above product is an 0(2,1) element

and can be written!® in the form
Mo mi .
e iBM12g—iyM31,—i0M 12,

(A7)

where M1 and M3, are O(2,1) generators.
To calculate the coefficients B, v, and & we shall use
the spinor representation of 0(2,1) whose generators

are ( A 8)

Substituting (A8) in the first factor of the expres-
sion (A6) and in (A7), we calculate the Euler angles
B, v, and §, in terms of £ and 6. We find

sinh}y=sinhi¢ coshf,
cosB= == (sinh} £ sinhd)/coshivy,
sinB= F (cosh}£)/cosh}y,

sind= —singB,

—_1_ —1, — 17
M12—‘z‘0'3, M23—§10'1, Mal—%’wz.

(A9)

cosd= —cosf.

We find the same angles 8, v, and 6 for the second factor
of the expression (A6). So we have

IV (£,6) = o~ Lasg—irLang—tLas (A10)
Also, we find
Lge~ihLss= ¢—6Lss( [ sy cosB+Lgy sinB).  (A11)

From Egs. (2.3), (2.7), (2.9), (A10), and (A11) we
“ 0| N (£6)|0)=(0]e~=|0),
(0| LN (£,6) |0)=1%(as| =] 0).
We shall calculate (0|e~"Ls¢|0) and {as|e~"rLs|0)
using a method developed by Nambu.!® From
(0] Lsse=#r=5] 0)= (0| e=#%5 L5 | 0)
we get, using Eqgs. (2.9),
(as| =775 ] 0)=—3(0|¢~*7"50  as).

(A12)

(A13)
Also, from

(0| Lgze—ive8| 0)= (0| e~rLss(coshy Lsz—sinhy Lgyz) | 0)
we get

(as| e8| 0)=3 coshy (0]e—i7Lss|a;)
—3 sinhy (0|e~#Lss|0).

16 V. Bargmann, Ann. Math. 48, 598 (1947), p. 595.
16 Reference 4(b), Appendix B.

(A14)
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From Egs. (A13) and (A14) we get
(as| L8| 0)= —3 tanhiy (0|e—Ze|0). (A15)
We have

(0] értas| 0)= (0] exp[— ¥ (asast 3as'—a5)]|0)

i} i)
= eXP[“%’Y(ZsZ———+3z5):|1 lssmo.  (A16)

(92"5 625

Introducing the variable p,

1—25
p=3%In ,  Plas=0=0, (A17)
%5
we find that the exponent of Eq. (A16) becomes
a 0
25 }325= 3 tanhp
625 (925 ap
7}
= ¢8 In(coshp)___o—3 In(coshp) (A]_S)

ap

Since any function f of the operator U~-'OU can be
written in the form f(U~QU)=U-1f(O)U, we get
from Eqgs. (A16) and (A18)

I¢] 0
exp[— %7(.252———— ——+325):|1 | 25=0
0z 025

a
—_ exp[_%,y(e:i ln(coshp)_._e—a ln(coshp)):ll p=0
ap

= ¢3 In(coshp) ;—173/3p—3 1n(coshp) — 3 In(coshp)

X8 Inleosh(—in]| o= (coshfy)—®. (A19)

From Egs. (A15), (A16), and (A19) we find
(0] =B 0)= (coshiv)~2, (A20)
(as| 58| 0)= — 3(sinh}vy)/(coshdy)t. (A21)

From the above calculation we see that the exponent
of cosh}y in Eq. (A20) becomes —m-2 for the group
SO(m,2). From Eqgs. (A2), (A9), (A12), (A20), and
(A21) we find Eq. (4.5).



