
PHYSICAL REVIEW VOLUME 177, NUMBER 5 25 JANUARY 1969

Boson Mass Spectrum and Pion Form Factor from SQ(5,2).
Generalization to SQ(m, 2)*
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The SO(5,2) representation whose basis functions are the solutions of the Bethe-Salpeter equation for two
scalar quarks interacting via the exchange of a scalar zero-mass boson to form a bound state of zero mass is
written as an in6nite-dimensional representation for bosons. A general second-order, infinite-component
wave equation is given with a reasonable mass spectrum. The ground-state form factor corresponding to this
representation is calculated by identifying the electromagnetic current with the current of the equation, in
which case the pion form factor is given by G(t) = L1 —b(coshs)'t/2m j/L1 —(coshs)'t/4m'$'~'. The mass
spectrum and the form factor can easily be generalized to the group SO (m, 2) by a simple substitution, and the
mass spectra and form factors obtained before in the framework of the group SO(4,2) appear as special
cases.

I. INTRODUCTION
' 'N a previous paper' we have considered the Bethe-
l ~ Salpeter (BS) equation for two scalar quarks inter-
acting via the exchange of a scalar boson of zero mass.
It was found that if the mass of the bound state is zero,
the set of all solutions of the equation can be accorn-
modated into a single irreducible representation of the
noncompact group SO(5,2), while if the mass of the
bound state is different from zero, the $0(5,2) repre-
sentation splits as P @SO(4,2). Also, the $0(5,2)
representation was written in the canonical basis and
its commuting generators were identified with the third
component of the isospin, the hypercharge, and a third
quantum number. From its I and I" content we find
that this representation, as well as the corresponding
H-atom representation when written in the canonical
basis, does not seem to be realized in nature as internal
space representations. In the present case we want to
use the SO(5,2) representation completely within the
ordinary space time, i.e., we take its basic functions to
be eigenfunctions of spin and parity and assign bosons
to it. This is a more natural way of looking at the repre-
sentation, since its basic functions are the wave func-
tions of two spinless quarks which can have nonvanish-
ing relative angular momentum forming a bound state
with spin. Of course, the SO(5,2) corresponds to the
unrealistic case of massless bound state and we do not
expect to have an exact SO(5,2). The ratio of the mass
of the bound state to the mass of the quark may be
taken as an indication of how "badly" our SO(5,2) is
broken. Several experiments2 have indicated that this
ratio is small, and so it seems to be not unreasonable to
consider an SO(5,2) group for the mesons.

In Sec. II we give the generators and the Hilbert
space of the $0(et,2) representation with the m-dimen-
sional spherical harmonics as basic functions in terms of
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' E. Kyriakopoulos, Phys. Rev. 174, 1846 (1968).
'L. Leipuner, W. T. Chu, R. C. Larsen, and R. K. Adair,
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creation and annihilation operators. For m=5, eigen-
functions of spin and parity were obtained to be identi-
fied with the wave functions of the particles which
belong to the representation. In Sec. III we obtain from
a Lagrangian by means of the Euler-Lagrange equation
an infinite-component wave equation with a reasonable
mass spectrum, i.e., not monotonically decreasing as in
the Majorana' equation. The requirement that the
electromagnetic interactions can be brought in by the
minimal substitution uniquely determines the electro-
magnetic current to be used in the calculation of the
form factors. In Sec. IV we calculate the ground-state
form factor, which will be identified with the pion form
factor, using the electromagnetic current that we obtain
from the equation of Sec. III. The mass spectrum and
the form factor that we have obtained, as well as other
mass spectra and wave equations obtained in the frame-
work of the group SO(4,2), can be generalized to the
group $0 (m, 2).

We should mention that the form factor and the mass
spectrum, which were obtained by generalizing to
$0(5,2) methods applied to the SO(4,2) group, ~s
depend only on the infinite-component wave equation
that we use, and not on the BS equation. The BS equa-
tion w'as introduced simply because it leads to the same
$0(5,2) representation.

t~. . t
gIo ~ est 8 a gIe ~ est ~ (2.1)

'E. Majorana, Nuovo Cimento 9, 335 (1932); see also the
review article by D. M. Fradkin, Am. J. Phys. 34, 314 (1966).

4 (a) Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppls. 37
and 38, 368 (1966); (b) Phys. Rev. 160, 1171 (1967).' A. O. Barut, Nucl. Phys. B4, 455 (1968).' A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters
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II. SO(5,2) REPRESENTATION

We have shown in a previous paper' that the set of
all m-dimensional spherical harmonics F;,...;,' forms
the basis for a single irreducible representation of the
group $0(m, 2). The harmonic polynomials F;, ;,' are. ..
expressed in terms of the spherical harmonics by the
relation



BOSON MASS SPEC% RUM AND PiON FORM FACTOR

In a specific basis the set of all linearly independent m-dimensional harmonic polynomials was found to be
the following:

p;,...;„"=m(m+2) ~ (m+4t —4)(sl s;„)—m(m+2). (m+4t 6—)skag(b;;s; ~ ~ s; )
+ +(—1)' 'm(m+2) ~ (m+2t —2)s" sZ(b ~ b „„„,s;„,s;«)

+(—1)'m(m+2) (m+2t —4)s"Z(8;„k 8;„„„),
Prr ikg+r+ m(m+2)'''(m+4t 2)(sl'''sjk'r) m(m+2)'''(m+4t 4)sZ(8''s''''s' )+

+(—1)'m(m+2) (m+2t 2)s —Z(b;„, b;„„.„s;„+,),
P. , s ms. s. ssb. . P.l s. Ps 1/(m —2)

(2.2)

L@=3f;;,
~;,wl= s(s~;—~;),
~', +s= s(s~' —~') (2 3)

z)g 1)2) ~ ~ 0 pm

8 8)
M, z8$ 8 )

Bs' as)

8
S=s; +-', (m —2),

BSs

8
P'= —z 7

Bs'

(2.4)

8 8 8
V,=s' —2s;s —(m —2)s;=sIs —2s;S.

8Ss 8' Bsg

In the above expressions summation is assumed over
repeated indices with metric 8;;. The operators L„,
satisfy the relations

where Z is an operator which syrnmetrizes the indices
zj. . i», keeping only distinct permutations of the
indices, i,e., the terms 51g8 4 and '521834 are
counted as one term. Also, the s s are the components
of an m-dimensional vector and 8;;, i, j= 1, 2, ~ ., m,
is the Kronecker tensor. The generators L„„I', u= 1, 2,., m+2, of the group SO(m, 2) are given by

fashion. Indeed, we Gnd

~I l s1 ~ s» Zi"ks~ E'41 s~ Is~+I ~ ~ 4»

bha kl'"4-I&n+I"'') ~

SP;,...;,'=Pt+-,'(m —2)]P;,...;„
(2.7a)

(2./b)

pI 'I- 4 ——sL(m+2t —4)bI'np'1- 's lie+1-'!
b&n&k I&1"'& -1&n+1"'&k-1&k+1"'&I 37 ( '~C)

P . . »+1
spies» ~ g$10 ~ ~ $g (2.M)

where the indices z and ik take all values i~ ~ .i»,
i.e., summation is understood, with the restriction that
in the second term on the right-hand side of Kq. (2.7c)
we have e&k.

The importance of the above representation lies in
the fact that it is realized by several physical systems
and their generalization to higher dimensions. ' For
example, solutions of the "Schrodinger" equation of the
m —1 dimensional analog of the H atom, and more gener-
ally of the "Schrodinger" equation with 0(m) invariant
potentials, are the ns-dimensional spherical harmonics
forming a representation of the group SO(m, 2). The
same thing happens for the ns-dimensional rigid rotator.
In this section we shall be interested in the SO(5,2)
representation which is realized by the BS equation
as argued in the Introduction. The group SO(5) has
been considered before~ as an internal-symmetry group
for hadrons. In our case, however, we shall use an

SO(5) I'cpl'cscll'tatlo11 wlllch ca11 bc extended to SO(5,2)
completely within the ordinary space time.

Let us introduce the creation and annihilation opera-
tors u,~, u;, i=1, 2, ~ ~, m, which satisfy the com-
mutation relations

L~"~k.3=s(g"~"+g"~" g.k~- g-~.—k)—
with the metric

(2 5)
We can express the generators of the group SO(m, 2)
given by Eqs. (2.3) and (2.4) in terms of the operators
u;~ and u; if we make the replacement

gll gss ''' gita 1y gm+I, ma+I gm+s, wa+s 1y (26) s; —+a;t, 8/Bs;-+u;. (2.8)

so that the operators I-„„form the Lie algebra of the '(a) A. Salam and T. C. Ward, Nuovo Cimento 20, 1228
(1961) )observe that S„(2)=O(5)]; (b) R. E. Behrends, J.

group SO(m, 2). Also, they transform the harmonic Dreit]ein, (:.Fronsga] and g. ~. z,ee, Rev. Mod. Phys. $4, 1

polynomials among themselves in an irreducible (&962).
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M3= g (Li2+Ls4),
Aa= —,'(Lim —L34).

(2.11)

However, wlthln an ll reducible 1cpx'cscntatlon, ln
addition to the weights we need' —,

' (r—31) more numbers,
where r is the number of generators of the group and l
is the rank of the group. In the present case the two
additional numbers' are chosen to be the eigenvalues
of the SO(4) commuting spins M= (Mi,M2, Mg) and
A.= (Ai,A~,A~), where

Mi= —',(Lmg+Li4), Mm=-,'(Lai+L24),
A.i———',(L2g —Li4), hs ———',(Lgi —L24).

Our Hilbert space is the space of the Gve-dimensional
spherical harmonics in the basis in which the operators
M', M3, A.', and A3 are diagonal. We Gnd

~&; M, A, M, =+M, A, =aM)=(1+F2)'~55 5, "
0~&M~& —,'t, M=A, (2.13)

where there are (t—2M) 5 indices. The index t, which
is the degree of homogeneity in the et's, distinguishes
the diBerent irreducible representations. In the above
notation only the coeKcients and the tensor indices of
the tensor terms of ~t; M, A, +M, +M) are shown.
For example,

I
3 i 1111)=Fiis &2~Figg' —Fggs

where the F"s have been given before. The states with
M 30AM, ABW&M are obtained from the above states

Lgp= —$(cg cg—og og) )

L~,~i= gi[g~ Sg Cg'2Cg~oj. og —(fS—2)G~ +Gj7 ~

L),~2 = 2(og G)~op —28' GJ Gg
—(St 2—)op~ g~7 ~

Lm+i, ~a=op' og'+s(i' —2) ~

The above operators satisfy Eqs. (2.5) with the metric
of Eqs. (2.6). The replacement s;-+ a;t translates the
space of the harmonic polyno mials F;,...;,' of Eqs. (2.2)
into a Hilbert space if we assume that the operators
that we obtain by this translation operate on the
vacuum state ~0). We have, for example,

F;„,' —+ (mg;Pa;, t a;ta;—tb;„;)i0). (2.10)

The exact de6nition of the scalar product which is
based on the relation (a;~a;)=8;; will be given in
Sec. III.

Consider the SO(5,2) group. We usually label the
basic vectors of a representation by the w'eights which
in the case of SO(5) are the eigenvalues of the operators'
Hi= (1/+5)Lj2 and H2 (1/+5)L34.——Instead, we shall
use here the eigenvalues of the operators

by application of the rising or lowering operators

Mg=-', (Lmg+Li4+iLIi&iL24),

g (L23 L$4+$L3$+$L24)
(2.14)

We combine the commuting operators M and A. to
obtain the spin J:

J=M+x, (2.15)

which will be identified with the spin of the particle.
The states )t,J,JS) are given by

~~;M,~,J,J,)=—~~,J,J,)=(—1)-~ P (2J+1)&~2
1lfg, A3

M A. J
X ~~; M,~,M„X,) (2.1.6)

M3 A3 —J3

2PS'P' ( u'+P~')—P.
Ii'+Ps' p'+Ps'

where p; is an energy-momentum 4-vector and p5 is
the mass of the quark. Under parity the generators of
the group SO(5,2) behave as follows (i, j= 1, 2, 3):

Lg L;4 L;g L45 L67 L;6 L;7 L46 L47 L56 L57

(a) + + — — + — — — — + +
(b) + — — + + — — + + + +
If the parity F is defined as in (2.17a), we get

I'MgI '=3f~, I'A.pI '=Kg.

Then from Eqs. (2.13) and (2.16) we find that the
states ~t; M,A,J,J3) are eigenstates of the parity with
eigenvalue

F—( 1)2M ~.

where e;„~ is the intrinsic parity of thc vacuum. So we
Gnd the following spin parity content of the representa-
tion for ~; t,= —1:

1=0

1=2~

JP—0- ~

)

JP=0, (0+,1+);
J~=0-, (0+,1+), (0-,1—,2-)

etc. To find the parity of the states in case (b), one
observes that

Since 3f=A, only integral spins can be obtained, and
so only bosons can be assigned to the representation.

We can dedne parity in the following two ways:

(a) Gg~ —Gg) cg~ cg, t= 1, ', 4 (2.17a)

(b) G~~ —
Gg~ 84~ 84 ) Cg~ Gg~ $= 1

~
' ' '

) 3. (2.17b)

The second delnition of parity may be more appropriate
in view of the fact that in treating the BS equation we
have made the identification'

G. Racah, CERN Report No. CERN-6j, -68, 1961 (un-
I'M I A .

published).' Vfe recalls that an 0(5) spherical harmonic is labeled by four Then from the symmetry ProPerties of the 3—j
numbers, i.e., as F~ ~ . symbols and the fact that M=A, we 6nd from Eqs.
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(2.13) and (2.16) that the states It; M,A,J,JS) are
again clgcnstatcs of thc parity with cigcnvaluc

F=(—1)~e t, .

Thus the spin-parity content of the representation is
thc foHowlng for 6;g,———1:

t=O J~=O

3=1, J~=O-, (0,1+);
5=2 J~=O (0 1+) (0 1+2 )

etc. The choice (2.17b) for parity implies that the 1
mesons do not exist in the same SO(5,2) representation
with the 0 mesons, and so w'e must consider a parity
doubling. ~o

For both de6nitions of the parity we may choose as
Lorentz group one of the following subgroups ".

(i) (1,2,3,6),
(ii) (1,2,3,7),

1.c., thc subgloup with gcncx'atol's L„„,p, , v= 1, 2, 3, 6
in case (i) and p, v= 1, 2, 3, 7 in case (ii). In case (i)
above we make the following identi6cation:

Lse~ $= j.
q 2q 3—Lolcntz boostC18~

I' = (Lq7 L;7) I' '= (L~~ L;5)—Lorentz 4-vectors,

Lqn, L~7—scalars under parity, and under the 0(3)
subgroup of the Lorentz group which may be
used as mixing operators. .

8 are Hermitian. Also, since the functions F;,...;,' are
harmonic polynomials, we have

a;a;I F)= (F I
a a =0.

Using the above equation we 6nd that Hermiticity of
the operators L;,~~ and L;,~2 implies

2&" '& "I'(-',nz —1)

2si'(S)
(3.2)

which was normalized such that X(S)IO)= IO). The
operator X(S) serves as a metric which makes the
operators L;,~~ and L;,~2 Hermitian.

We shall now return to the group SO(5,2). Let us
choose the Lorentz subgroup (1,2,3,6). The mass spec-
trum of the particles will be obtained from thc solution
(diagonalization) of a wave equation. Consider a wave
equation of the form

(L.p' —pLg7 —v) O'= H4= 0, (3.3)

where L is a Lorentz 4-vector and L57 is a scalar under
SO(3,1) and parity, which is necessary in order to be
able to diagonalize the equation in the rest frame.
Other terms of the form rL„may be added if they are
scalars under SO(3,1) and parity. Equation (3.3) gives
rise to the conserved current CtXL 4, where X is the
operator of Eq. (3.2). Let us assume that Eq. (3.3) can
be obtained from a Lagrangian 2 by means of the
Euler-Lagrange equation

In case (II) we have

L;7, i= I, 2, 3—Lorentz boosters,

I'„= (L76 L;6), I'„'= (L~I,L;5)—Lorentz vector,

L56 & L57—mixing opcx'atox's.

=0
8 (4th) Bx„8(84 tX/8x„)

(3.4)

The above identi6cation is valid if parity is de6ned as
in (2.1'7a) or as in (2.17b). However, if parity is defined
as in (2.17b), we have the additional mixing operators
L46 and L47.

IIL MASS SPECTRUM

To proceed with the calculation of physical quantities,
we must de6ne a scalar product with respect to which
the generators are Hermitian. We introduce the kernel
X(S) which is a function of the diagonal generator
5=L +y,~2 and we require L„„to be Hermitian with
respect to the scalar product (F'IX(S)L„„IF),i.e., we
require

(F'IL.'l (S)IF)= (F'I ~(S)L"IF) (3.1)

We find that the operators L;j, i, j= 1, 2) ~ » ~
) m, and

' Barut (Ref. 5) has found that the states of the meson tower
of SO(4,2} are (0 ), (0,1+},(0,1+,2 ), ~ ~ -. Thus a parity doubl-
ing is necessary to include the vector mesons.

and that the electromagnetic (EM) interactions can be
brought in by the minimal substitution p'~ p' —eA'.
Since the interaction Lagrangian is of the form

(3.5)

where J is the electromagnetic current, the above
assumptions imply that the electromagnetic current to
be used in the calculation of form factors is the current
of the equation multiplied by the charge, i.e.,

(3.6)

Current conservation has been applied before to 6x
the mass spectrum. "We prefer to obtain the mass
spectrum by diagonalizing the wave equation, since its
solutions satisfy the current-conservation equation,
while the current-conservation equation does not in-
volve the operators H L,p of Eq. (3.3), a—nd for each
one of its solutions we must 6nd a wave equation which
gives the same mass spectrlun (if this is possible). It
is much simpler to diagonalize a wave equation than
to solve the current-conservation equation,
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Consider the Lagrangian

—12a-4txi8 F,4+b(8 42)x8,4
+c(8'42) XL» (8.4) 124—

I'LL»4

—»42X4+2 aM, (3.7)

2 zM = e—A'(a42XF.4 ,'—b4—2Xi8.4
c—42—Xi8 L 4').

Assuming that p' is a timelike 4-vector and going to
the rest system, we can diagonalize the above equation
by the rotation e'~&~&6. We find

amg tanh8, +cmP=I2,

(am2/coshe, ) (i+ -'2)+bmP= »,
(3.9)

from which we obtain the mixing angle 0~.

p ctpsg

sinh8& = (t+ 2),
P Stag

(3.10)

and if b and c are not both zero, the mass spectrum

b2 )
—1 2bv

mP= —c'+
I

a'+2cl +
2 (t+2)2I (~+2)2

25p b2
82 2' —4 C2

p2 —j./2

&&I I'+ - (3 11)
1 (~+2)2

For b=c=o we get the mass spectrum

»2

mp= —122+
a' {I'+-22)V

(3.12)

Suppose that we have written the 50(m, 2) repre-
sentation in such a way that linear combinations of its
basis functions have definite spin and parity, i.e.,
particles can be assigned to the representation. Let
us write the equation

$(aF,+bP,+cP,L~ „+2)P' yL„, +2 »]4—=0, —

wllel'C F~= (It»+1,~2)L;,~+2), 2= 1, . . . , 3. T11C 111aSS

spectrum that we obtain if we diagonalize this equation
is given by Eq. (3.11), in which we have made the
substitution

&+2 ~ fy ,'(m 2)-—(3.13)

For m=4 we obtain the mass spectrum of Ref. 5. All
mass spectra obtained before for the group 50(4,2)' "
"C. Fronsdal, Phys. Rev. 156, j.665 (j.967).

From 2—REM we obtain the equation

L( F.+bp.+ p.L. )p .L-—j4=-0. (38)

can be generalized to the group SO(m, 2) with the
substitution"

n +—f+-2'(m —2) . (3.14)

IV. GROUND-STATE FORM FACTOR

Let us identify the electromagnetic current I.„with

L„=e(aF„bi8„ci—8»L»)—, (4 1)

wllel'c F»= (L2I,Lg2), tile LolcIltz boosters w1th L;2,
and the mixing operator with 1.56. We observe that
Eq. (3.8) gives rise to the above electromagnetic current.
This equation can be diagonalized by the rotation
e'~~&6, and since we want to identify the solutions of
the equation with the physical states, we take the
mixing operator to be L22. Then the form factor G(1)
of the ground state corresponding to a spin-zero particle
is given in terms of the vertex function J„by
I»= (0Ie "~&2th(5)L»e —'&~ e"~"I0)—

=G(i) (pf+ p')»/2m, (4 2)

sinh(=
I yI/m, cosh&=8/m, (4.3)

where one of the particles is in its rest frame and the
OthCI' lS boosted 111 thC s dllectlon to 1110111Clltu111p;. We
6nd, commuting e 'z22 and X(5), that

J —(0 I
e igI 22L e i(EN ei 2I—22

I
0)— (4. 4)

In order to fInd G(t), we shall calculate one of the com-
ponents of J„, say, Jo. Details of this calculation,
which is based on a method developed by Nambu, 4b

'2 The index n used in Refs. 4-6 is the eigenvalue of the operator
I.bs of the group 50(4,2), so that in our notation n becomes $+ j..

For f-+~ we obtain for aB 50(m, 2) groups from
Eqs. (3.11) and {3.13) the saturation mass

m„=
I
a2+2cp+a(a2+4cp)'"j/2c2.

The existence of a saturation mass for bosons justifies
somehow, according to our arguments in the Introduc-
tion, the use of an 50(5,2) representation, if we assume
that the saturation mass is much smaller than the mass
of the quarks.

Equation (3.8) has, in addition, spacelike solutions
that are obtained by diagonalizing it under the assump-
tion that p' is spacelike. Equations without spacelike
solutions'b" can be written using generators of the
group 50(m, ,2) in a similar fashion.

We may proceed to assign the mesons with the same
internal quantum numbers to an 50 (5,2) representation,
determining at the same time the constants of Eq.
(3.11) in such a way that their mass is approximately
given by this expression. Having assigned. the particles
to the representation, we may calculate decay rates.
Since, however, the number of known mesons is rela-
tively small, we shall postpone such an assignment.
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E+m t
= 1— = (cosh —',P)',

4m'

(sinh-',&)'=-
4m'

(4.6)

From Eqs. (4.2), (4.5), and (4.6) we get

ss a cosh8+ 2bm+3cmsinh8 —, b (cosh8)'t/2m
G(t)=e

L1—(cosh8)'t/4m']'"

Charge normalization implies
(4 7)

G(0) =e(sa cosh8+2bm+3cm sinh8) =e, (4.8)

and so our final expression for the ground-state form
factor obtained from the current of Eq. (4.1) is

are given in the Appendix. We find

Js——e(-', a cosh8+ 2bmr 1+ (sinh-', g cosh8)']+3cm sinh8)

(cosh-'&)'
X (4.5)

f1+ (cosh8 sinhs &)']'t'
Also, we have

o

GE

0.5

I

Os2
1

Os4
t

-t (Bev)

Fio. 1.Calculated form factor of the pion for p (cosh'))/2333/3 = 1.5
BeV ', mb=~ {solid line), and comparison with the form factor
obtained from vector-meson dominance, G (t) = (1 t/sa—ss) 3

{dashed line), and the experimental points.
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We observe that we get the same from factor if we use

the current L„'=e(al'„bi8„), w—hile the mass spectrum
of Eq. (3.11) does depend on the constant c. The above
result can easily be generalized to the group SO(m, 2).
If we consider the electromagnetic current of Eq. (4.1)
with I'„= (L +i, ~s, L;,~s), the mixing operators
L, +~, and the Lorentz boosters L;, +~, and proceed as
before, we find the same expression for the ground-state
form factor except that the exponent in the denominator
is now ~m. The ground-state form factor of the meson
representation has been calculated by Barut' in the
framework of the group SO(4,2). The expression of the
form factor that he found has the exponent 2 instead of
~5 in the denominator.

We shall identify the G(t) of Kq. (4.9) with the form
factor of the pion. This form factor has been measured"
recently in the electroproduction reaction e+p —+

e+75+or+ for three values of the momentum transfer:
—0.039, —0.117, and —0.234 (BeV/c)'. Its value at
—0.234 (BeV/c)' seems to deviate significantly from
the prediction of the vector-meson-dominance model.
However, the data and the theory on which the calcu-
lation was based are not accurate enough to permit
definite conclusions. ' The evidence rather favors a

"C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lichtenstein,
A. Ramanauskas, and R. H. Siemann, Phys. Rev. 163, 1482
{196'tt).

"S.D. Drell and D. J. Silverman, Phys. Rev. Letters 20, 1325
(1968).

G» ——-', (L35+L57),

Gsi ——s (—L37+Lss),
Gss' ——s (Lss—L57),

G23 s (Lss+L57) 3

Gis'=-', (Lss —L57), (A4)

Gsi'= s (L37+Lss),

which form an 0(2,1)0(2, 1) algebra Pgs„= (——+)].
We get

(A5)Lss= Gss+Gss' 3Lss ——Gis+G»' 3

and so Ã(&,8) becomes

g (0 gl —e—ip(cosh8 623+sinhtt 612)
Xs) J

)('e—it(oosh8 G33'+sioh8 G33') (A6)

APPENDIX: CALCULATION OF FORM
FACTOR

We want to calculate Js of Kq. (4.4). Since

e "L33LaL57+b(m+E)+c(m+E)L57]e 8~33

= La cosh8+2cm sinh8 (coshsr $)s]L57+2bm(cosh-', &)s

+Ln sinh8+2cm (cosh-,' &)' cosh8]I 57, (A1)
we get

j()——e[ssa cosh8+2bm(cosh-, ' $)s

+3cm(cosh-', $)s sinh8](0
~
lV($,8) t 0)

+t a sinh8+2cm(cosh —',P)s cosh8]

X (0~L57X($,8) ~0), (A2)
where

tV (C 8') —e i8Lsse itL33e%8L—33 e -if(L33 oosh8+—L33 sinh8) (A3)

To evaluate the above expression consider the operators
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Each factor of the above product is an 0(2,1) element From Eqs. (A13) and (A14) we get
and can be written" in the form

g
—iPMgme —iyM31g—ibM1g

7 (A7)
&asle '1'L«lo)= —3 tanh-2'y (ole '2'L«lo). (A15)

sinh-', y =+sinh-,' $ cosh8,

cosp=& (sinh2$ sinh8)/coshsy,

sinp =W (cosh-', $)/cosh-,'y,
sln8 = —slllP cos8 = —cosP.

(A9)

We find the same angles p, y, and 8 for the second factor
of the expression (A6). So we have

+($ 8) —. e ieLsse i7-Lsse ii—Lss— (A10)

where 3f12 and Msl are 0(2,1) generators.
To calculate the coefficients P, y, and 8 we shall use

the spinor representation of 0(2,1) whose generators
are —1 1' 1'~12 2e31 ~28 22e1 y ~32 28(r2 ~ (Ag)

Substituting (A8) in the first factor of the expres-
sion (A6) and in (A7), we calculate the Euler angles

P, y, and 8, in terms of $ and 8. We find

We have

(0 I
e ')'L«I 0)= (0I expL —-'y(a8"2as+3ast —a8)j I 0)

8 8
=em --2,p z82 — +3z8

I 1l,s, . (A16)
8Z8 8Z3

Introducing the variable p,

1 25p=2», pl., 8=0,
1 85

(A17)

we find that the exponent of Eq. (A16) becomes

8 8 8
Z82 — +3Z8=—3 'tallllp

8Z8 8Z8 8p
8

es ln(coshs) e—3 In(coshs) (Alg)
8

Also, we 6nd

( 8 8

(A12) exp —
2&i »2 — +3zs

I 1I *3=o
8Z8 8Z8

&OI A'(g, 8) IO&= &OI e-'»-IO&,

(OIL82X(&,8) Io)=2(asle ' I0).
We shall calculate (ole '2L«lo) and (asle '2LsslO)

using a method developed by Nambu. "From

(0IL83e '1'L«lo)= (ole '1'L"L83lo)

t'
e8 In(ecch@) e

—3 ln(ecch@)

8

—~3 ln(cosh@)~)y8/Bye —3 1n(cosh@) —&3 1n(cosh@)

Since any function f of the operator U IOU can be
Lsle ' =e ' «(L82 cosp+L82 sinp). (A11) written in the form f(U 'Op)= p 'f(0)U, we get

From pqs. (2.3), (2.7), (2.9), (A10), and (A11) we from Eqs. (A16) and (A18)

get

we get, using Eqs. (2.9),

(asle '2 "I0)= 3(ole '2—L«Ias). (A13)
8 In[cosh(p —$2)I

I (cosh ~)
— (A19)

Also, from

&0IL»~'""'Io&= &ole '"«(«»hv L82—»nh& L82) Io&

From Eqs. (A15), (A16), and (A19) we find

&0 I
e-'& «

I 0)= (cosh-,sy)-8, (A20)

we get

(asle ')'L«lo)=3 cosh' (ole '2L«las)
—3 sinhy (ole '1'Lsslo).

"V. Bargmann, Ann. Math. 48, 598 (j.947), p. 595."Reference 4(b), Appendix 3.

&as I
e '2'L«

I 0)= —3 (sinh-', y)/(cosh22y)'. (A21)

From the above calculation we see that the exponent
of cosh2'y in Eq. (A20) becomes —282+2 for the group
SO(m, 2). From Eqs. (A2), (A9), (A12), (A20), and
(A21) we find Eq. (4.5).


