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Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor
electrodynamics has anomalous properties which disagree with those found by the formal manipulation of
field equations. Specifically, because of the presence of closed-loop “triangle diagrams,” the divergence of
axial-vector current is not the usual expression calculated from the field equations, and the axial-vector
current does not satisfy the usual Ward identity. One consequence is that, even after the external-line
wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-)
order perturbation theory. A corollary is that the radiative corrections to » elastic scattering in the local
current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless
electrodynamics, despite the fact that the theory is invariant under v; transformations, the axial-vector
current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and
discuss a possible connection between our results and the =% — 2y and n — 2v decays. In particular, we
argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector
current (PCAC) for the neutral members of the axial-vector-current octet must be modified in a well-
defined manner, which completely alters the PCAC predictions for the #° and the » two-photon decays.

25 JANUARY 1969

INTRODUCTION

HE axial-vector vertex in spinor electrodynamics
is of interest because of its connections (i) with
radiative corrections to i scattering and (ii) with the s
invariance of massless electrodynamics. We will show
in this paper, within the framework of perturbation
theory, that the axial-vector vertex has anomalous
properties which disagree with those found by the formal
manipulation of field equations. In particular, because
of the presence of closed-loop “triangle diagrams,” the
divergence of the axial-vector current is not the usual ex-
pression calculated from the field equations, and the
axial-vector current does not satisfy the usual Ward iden-
tity. One consequence is that, even after external-line
wave-function renormalizations are made, the axial-
vector vertex isstill divergent in fourth- (and higher-) or-
der perturbation theory. A corollary is that the radiative
corrections to »j elastic scattering in the local current-
current theory diverge in fourth (and higher) order. A
second consequence is that, in massless electrodynamics,
despite the fact that the theory is invariant under
vs transformations, the axial-vector current is not
conserved.

In Sec. I we derive the usual formulas for the axial-
vector divergence and Ward identity, and then show
how they are modified by the presence of triangle
diagrams. In Sec. IT we discuss various consequences of
the additional term found in Sec. I. In the Appendix
we show that it is not possible to redefine the triangle
diagram in a physically acceptable way so as to elim-
inate the anomalous behavior discussed in Secs. I and IT.
We also discuss in the Appendix a possible connection
between our results and the 7°— 2y and y — 2y decays.
In particular, we argue that as a result of triangle
diagrams, the equations expressing partial conservation
of axial-vector current (PCAC) for the neutral members
of the axial-vector current octet must be modified in a

well-defined manner, which completely alters the PCAC
predictions for the #° and the » two-photon decays.

I. AXIAL CURRENT DIVERGENCE AND
WARD IDENTITY

We work in the usual spinor electrodynamics,
described by the Lagrangian density?

L (@) =9() (iy- O—moly (x)— 1F 1 () F ()
— e (@) ()44 (x):, (1)
aAu(x) aAv(x) d

Fou(x)= - , v-O=sy—.
dx Ax# dx*

We define the axial-vector current j7,5(x) and the
pseudoscalar density 75(x) by

I @)= @) yeysp(x):,
7@ =P @)y (x):;

the corresponding vertex parts I'.*(p,p’) and T'*(p,p")
are defined by

Sr' ()T (p,0")S¥' (")

2

= [ d*xdy e e~ " (T (Y (x) 7,50 (9)))o, 3

e (P (p,9)S¥' (')
—_ / dixdty e 27 KT () 7500 (9o

Using the equations of motion which follow from Eq.
(1), the divergence of the axial-vector current may

! We use the notation and metric conventions of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill Book
Co., New York, 1965), pp. 377-390. Note that epos= — ?128=1,
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easily be calculated to be

]
—Ju (%) = 2imo* (). (4)
0xy

From Egs. (3) and (4), we obtain the usual axial-vector
Ward identity

(p— 2" )T (p,p") = 2meT%(p,p")
+S¥ () vs+vsSE (). ()

Our task in this section is to see whether Eqs. (4) and
(5), which we have formally derived from the field
equations, actually hold in perturbation theory.

To this end, let us rederive Eq. (5) in perturbation
theory. It is convenient to write

Fu5 =vuvs+AL°,
To=1y5+AS, (6)
SF' (p)'=p—mi—Z2(p),

where the vertex corrections A,5 and A® and the proper
self-energy part = (p) are calculated using (p—mq)~! as
the free propagator. (Use of the bare mass mo=m—ém
in the free propagator automatically includes the mass-
renormalization counter terms.) In terms of A,5 AS,
and =, Eq. (5) becomes

(0= ") A5 (0,0") = 2moh (") —Z (p)vs—vs2(p). (V)

In order to derive Eq. (7), let us divide the diagrams
contributing to A,5(p,p’) into two types: (a) diagrams
in which the axial-vector vertex v,ys is attached to the
fermion line beginning with external four-momentum
9’ and ending with external four-momentum p; (b)
diagrams in which the axial-vector vertex v,vs is
attached to an internal closed loop [See Figs. 1(a) and
1(b), respectively]. A typical contribution of type (a)
has the form

2n—1 k—1

Z [(i) ]'y(") Y Y5 1
Fisl ptpmod ptpe—me BB

2n—1
X 1T [y, @
i=k+1 p'+pj— my
where we have focused our attention on the line to which
the yuyys vertex is attached and have denoted the
remainder of the diagram by (- - -). Multiplying Eq. (8)
by (p—p')* and making use of the identity

—— (=5 = (2mays)
Dt+Dr—myg DHDi—mo  Pppr—mo
1 1 1
X } ¥5+vs (9)
P+bi—mo  Dp+Dr—my D Dr—myg
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(b)

Fic. 1. Diagrams contributing to the axial-vector vertex.
(a) The axial-vector vertex is attached to the fermion line begin-
ning with external four-momentum p’ and ending with external
four-momentum p. (b) The axial-vector vertex is attached to an
internal closed loop.

gives, after a little algebraic rearrangement,

2n—1 k—1

2mays

z [7(1') ]’Y(k)
k=1 j==1 p+pi—mo Dt pr—mo
1 2n—1

e [.Yw__._._.:l am(...)
PApe—moi=kril p'+pi—mo

2n—1| 1
—(-II [7(:')__.._]7(2’»)75
=1 DDi—my

2n—1

1
oI [y [y o). (10)
=1 D 4D,—m

The first, second, and third terms in Eq. (10) are,
respectively, the type-(a) piece of A% and the pieces
of —Z(p)vs and —vs=(p’) corresponding to the type-(a)
piece of A% in Eq. (8). Summing over all type-(a)
contributions to A,5, we get

(p— ) AS® (p,p)

=2moA5® (p,p")—Z(p)ys—vs=(p’). (11)

We turn next to contributions to A% of type (b). A
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typical term is

r—1 1

2n 1
/d47’ Tr[ > II ['Y(D ]’Y(k) VY5
k=1 j=1 r+pi—mo r+pi—mo

X ! 0 l}(n :”
1+ pitp'— p—mg i=k+1 r+pi+p'— p—mo
X(-). (12)
Multiplying bY (P —P,)M and using Eq, (9) gives

k—1

2n.
[d“r Tr{ > II l:’)’(j) :I’Y(k)
k=1 j=1 1+ pi—mg T+ pr—mo

2myys

1 2n

Rl ]
T+ putp'— p—mo i=k+1 r+pi+p'—p—mo

2n 1
dirt [ (i)__.._.__]
X H/ ’ r{%gl T bi—mo
2n

I [Y(i)r+pj+p1'—p—mo]] SRS

The first term in Eq. (13) is the type-(b) contribution
to A® corresponding to Eq. (12), while making the
change of variable r— r4p’'—p.in the integration in
the second term causes the second and third terms to
cancel. This gives, when we sum over all type-(b)
contributions,

(0—0")"05® (p,p") =2mod5 P (p,p)).  (14)

The Ward identity of Eq. (7) is finally obtained by
adding Eqgs. (11) and (14).

Clearly, the only step of the above derivation which
is not simply an algebraic rearrangement is the ckange
of integration variable in the second term of Eq. (13).
This will be a valid operation provided that the integral
is at worst superficially logarithmically divergent, a
condition that is satisfied by loops with four or more
photons, that is, loops with #>2. However, when the
loop is a triangle graph with only two photons emerging
(See Fig. 2) we have n=1, and the integral in Eq. (13)

R

% \ %

—7s

r+ky

p-p'==(k+ kz)
Yuls

p-p’

Fic. 2. The axial-vector triangle graph. There is a second
diagram, with the photon four-momenta and polarization indices
interchanged, which makes a contribution equal to that of the
diagram pictured.
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appears to be quadratically divergent. Actually, since

tr{ysyPry®r}=0, (15)
the integral in the n=1 case is superficially linearly
divergent. Since it is well known that translation of a
linearly divergent integral is not necessarily a valid
operation,? we must check carefully to see whether
Eq. (14) holds for the triangle graph.

To do this we make use of an explicit expression for
the triangle graph calculated by Rosenberg.? The sum
of the diagram illustrated in Fig. 2 and the correspond-
ing diagram with the two photons interchanged is

—ieozR 2/‘ d;‘r( n { i (—ieoy)
—Rpp= —D)tr | —————(—deqye
ant ™) mne rrhi—mo
X (—wm)———“-vm}. (16)
r—myo T—Re— My

Evaluation of Eq. (16) by the usual regulator techniques
leads to the following expression for R,,, [4; denotes
Aj(ka,ks)]:
Ropu(lrke)=A1k1"€rgput+4 oko" €raon
A k1 krtka €trout A dkokithe €tron
+Askicki ke egroutAokockikaT €trpn s
Ar1=ky-koAs+ko?4,4,
Ar=kA5+k1 keds,
As(kryke)=—Ag(ko,k1)=—16m2111(k1,k2) ,
As(kryks) = — As(kakr) =167 Lo (k1,k2) — I10(R1,k2) ],

an

where

1 11—z
I.g(kl,k2)=/ dx/ ay x>y y(1—)ks?
0 0

+x(1—x)k22+2xyk1-kg—mo"']“l. (18)

2J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publishing Co., Inc., Cambridge,
Mass., 1955), pp. 458-461. )

8 L. Rosenberg, Phys. Rev. 129, 2786 (1963). In Eq. (16) and
Fig. 2, we have labeled the legs of the triangle in accordance with
Rosenberg’s notation, which differs from the labeling convention
used in Eqgs. (12) and (13). Because the integral defining the
triangle graph is linearly divergent, the value of the triangle
graph is ambiguous and depends on the labeling convention and
the method of evaluation of the integral. For example, if Eq. (16)
is evaluated by symmetric integration about the origin in 7 space,
the value of R,,, so obtained satisfies the usual axial-vector Ward
identity (but is not gauge-invariant with respect to the vector
indices). If, on the other hand, Eq. (16) is evaluated by symmetric
integration around some other point in r space, say r=%k; [or,
alternatively, if we integrate symmetrically around =0 but label
the triangle using the convention of Egs. (12) and (13)], then the
result has an anomalous axial-vector Ward identity. The value in
Eq. (17) which we have assigned to R,,, is the unique value which
is gauge-invariant with respect to the vector indices. Further
discussion of the ambiguity in the definition of Eq. (16), and a
justification of the specific choice in Eq. (17), are given in the
Appendix.
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We will also need an expression for the triangle graph
with y,ys replaced by 2mqys. Defining

—-ieo22 » 2/ d“r( n { 7 (—ieor)
Mollgp= —Dtri——m —1€Ys
(2m)* ’ (2r)* -+ Ry—mo
X (it men) (19
r—my TY—Ra— My

we find that
R¢p= kxekzrég",,B1 s

(20)
By=8umol o(k1,k2) -

We are now ready to calculate the divergence of the
axial-vector triangle diagram. If the Ward identity
holds, we should find

- (k1+k2)"pru=2m0Ram (21)
Ken p-p’-eff""'ql
k2=€q, kan-128q,,_,

r+pp-p

r+p,

A

k=€,
: pip’ Kies= €40y

i )
Pi=Z k=42 g , i<2n-

Pap = p-p’

Fic. 3. Diagram for calculation of the asymptotic behavior
of the general axial-vector loop.

but from Egs. (16)-(20) we find, instead,

— (k1t+k2)"Ropu=2moR ;p+ 871 ks €trap.  (22)
We see that the axial-vector Ward identity fails in the
case of the triangle graph. The failure is a result of the
fact that the integration variable in a linearly divergent
Feynman integral cannot be freely translated.

The breakdown of the axial-vector Ward identity
which we have just found is related to another anom-
alous property of the triangle graph. To see this, let
us consider the behavior of the general axial-vector
loop diagram with 2% photon vertices (See Fig. 3),
as the 2z—1 independent photon momenta ki, - -,
k2n—1 approach infinity simultaneously in the manner

ki=%g;, j=1,-++,2n—1;

23
g; fixed, 23)

§— o,

Tl WX
Subgraph 4 Subgraph 2
Q)=-(2n-1) Q(2)=-(2n+1)+4

F1G. 4. Subgraphs (doubled lines) which determine the
asymptotic behavior of Fig. 3.

while the momentum p—p’ carried by the axial-vector
current is held fixed. According to Weinberg’s theorem,*
the asymptotic behavior of the loop graph in this
limit is

gx(Ing)?,

where 8 is undetermined by Weinberg’s analysis and
where a is the maximum of the superficial divergences®
alg) of the subgraphs® g linking the 2% photon lines
(i.e., linking the momenta which are becoming infinite).
For the diagram of Fig. 3 there are two such subgraphs,
illustrated in Fig. 4, with superficial divergences a(1)
=—2n+1 and «(2)=—2n+3. Thus, the asymptotic
coefficient « is @(2)=—2n+3, and comes from the
subgraph in which all propagators in the loop are
involved. Now Weinberg’s theorem always tells us
what the maximal asymptotic power of a graph is, but
it does not guarantee that the coefficient of the maximal
term is nonvanishing. In fact, in the case of the axial-
vector loop diagram we will show that the coefficient
of the £27t3(In£)? term does vanish, so that the leading
asymptotic behavior is £27+2(In§)?, one power. lower
than is predicted by naive power counting. Let us denote
by L(p—p', mo;p1, <+, pan—1) the graph illustrated
in Fig. 3,

(24)

L(p—p', mo; p1, +* +, p2a—)

2n k-1 1

=/d4r Tr{ > II [V(j’—“—-—, :I
k=1 i=tL  r4+pi—mo
1 1

Xy® YiYs
r+pi—mo  T+putp'—p—m

% (Lo - |
=etil 1pip'— p—m

¢S. Weinberg, Phys. Rev. 118, 838 (1960). For a simplified
exposition of Weinberg’s results, see J. D. Bjorken and S. D.
Drell, Ref. 1, pp. 317-330 and pp. 364-368. Weinberg’s theorem
applies for arbitrary spacelike four-vectors g;. There can also be
powers of InIng, Inlnlng, etc., in Eq. (24), which we do not
indicate explicitly.

5 The superficial divergence of the subgraph is obtained, as
usual, by adding —1 for each internal fermion line, —2 for each
internal boson line, and +-4 for each internal integration. For the
precise definition of subgraph in the general case, see Ref. 4.

(25)
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Clearly we can write

L(P“‘p’,’”’lo; Ply' : ';P2n—-l)

(A) =L(p—1', mo; p1,* * *,p2n)

—L(0ymo; p1,-  +,pan—-1) (26)
(B) +L(0mo; p1,- -+ ,p20-1)—L(0,0; p1, * -, p2n1)
(C) +L(0:O; b1, ’P?ﬂ—l) .

Because differencing the loop graph with respect to
either the axial-vector current four-momentum p—p’ or
the fermion mass m, decreases the degree of divergence
by one, terms (A) and (B) on the right-hand side of
Eq. (26) have a(2)=-—2n-+2, and therefore behave
asymptotically as £2*2(Ing)#. Term (C) on the
right-hand side of Eq. (26) can be rewritten as

L(O, O; Py oy P2n—l)
2n k-1 :
= / d*r Tr{ > 11 I:v"" :]'y“"——-ﬁm
k=1 =1L r4+p;d  r+pe

x—— i [.,w ]}
r+pri=kal r+p;

| 9 2 1
=/d4r Tr lys——- II [y‘f’ :|} .
or# j=1 r+p;

Integrating by parts with respect to 7 gives
L(0,0, Py '5?2"—1)':0)

proving that the asymptotic behavior of the loop graph
is one power better than given by Weinberg’s theorem.

The only nonalgebraic step. in this proof is the
integration by parts with respect to 7, an operation
which is valid provided that the integration variable in

2n 1
i)
/ rv e =1 4+,

can be freely translated. This is the same condition as
we found above for validity of the axial-vector Ward
identity. Thus again, our proof is valid for n>2, but
we expect possible trouble in the case of the triangle
graph (n=1). From the explicit expression.for the
triangle graph in Egs. (17) and (18), we see that if we
write k1= £q, ko= —£g+p'—p, then as £ — » we find

Ropu(lrke) = —8m%Eq €rgputO(Ing). (29)

In other words, the asymptotic power is a= 1= —2n-+3,
as given by Weinberg’s rules, rather than one power
lower, as is the case for the loop graphs with #n>2.
It is easy to check that when Eq. (29) is multiplied by
— (k1+k2)#, the term with the anomalous asymptotic
behavior agrees, for large £ with the term in Eq. (22)
which violates the Ward identity. Thus, the breakdown
of the axial-vector Ward identity in the triangle graph

27

(28)
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F1. 5. Contribution of the triangle diagram to the general
axial-vector vertex. We have not drawn the second diagram in
which the photon lines emerging from the triangle are crossed.

and the anomalous asymptotic behavior of the triangle
graph are basically the same phenomenon.

It is clear that the breakdown of the Ward identity
for the basic triangle graph will also cause failure of the
Ward identity for any graph of the type illustrated in
Fig. 5, in which the two photon lines coming out of the
triangle graph join onto a “blob” from which 2f
fermion and & boson lines emerge. From Eq. (22) for
the divergence of the basic triangle graph, it is possible
to show that the breakdown of the axial-vector Ward
identity in the general case is simply described by
replacing Eq. (4) for the axial-vector-current divergence
(which we have shown to be incorrect) by

i) ap
— 75 (%) = 2imo 75 (%) +—: F¥ (£) F 77 () : €z5rp.  (30)
0%, 4

[Equation (30) is easily verified by using the Feynman
rules for the vertices of 7,5, 75, and (ao/4r): FEF*: e4,rp,
which are given in Fig. 6.] For example, if we define
F(p,p') by

Se' (D)F (p,0")S¥' (¢) =~ / diad'y e'®-eeir' v

X(T @ () :Ft(0)F2(0): egorst (3)))o, (31)

then the axial-vertex Ward identity of Eq. (5) is
modified to read

(=)' Tu5(p,p") = 2meT5 (p,p") — i (cro/Am)F (p, ")

+SF (B) s tvsSE (). (32)
OPERATOR VERTEX FACTOR
.5 P
Jpx) (—_——— e yF)g
.8 ¢
1) ——— b )’5
ko kz, -
;‘-‘#:F“’(x)F"'P(xnseﬂP L eZl s -"’#skszesnp

Fic. 6. Feynman rules for the vertices appearing in Eq. (30).



177 AXIAL-VECTOR VERTEX IN
Equation (30), which is the principal result of this
section, states the surprising fact that the axial-vector-
current divergence, as calculated in perturbation theory,
contains a well-defined extra term which is not obtained
when the axial-vector divergence is calculated by formal

use of the equations of motion.’

II. CONSEQUENCES OF THE EXTRA TERM

In this section we investigate the consequences of
the extra term which we have found in the axial-vector-
current divergence [Eq. (30)] and in the axial-vector-
current Ward identity [Eq. (32)]. We consider, in
particular, the questions of (A) renormalization of the
axial-vector vertex, (B) radiative corrections to v/
scattering, and (C) the connection between +y; invar-
iance and a conserved axial-vector current in massless
quantum electrodynamics.

A. Renormalization of the Axial-Vector Vertex

Recently, Preparata and Weisberger” have proved
the following theorem: If a local current, constructed
as a bilinear product of fermion fields, is conserved apart
from mass terms, then the vertex parts of both the
current and its divergence are made finite by multi-
plication by the wave-function renormalization con-
stants of the fields from which the current is constructed.
If Eq. (4) correctly described the divergence of the
axial-vector current in spinor electrodynamics, then the
theorem of Preparata and Weisberger would apply in
this case. However, we have seen that the divergence
is actually given by Eq. (30), and involves an additional
term which is #ot a mass term. The effect of this extra
term, we shall see, is to cause the Preparata-Weisberger
argument to break down.

First let us review how the Preparata-Weisberger
result could be derived if Eq. (4), and the corresponding
Ward identify of Eq. (5), were true. Since both 7,5 and
45 are local bilinear products of fermion fields, the vertex
parts I',% and I are multiplicatively renormalizable. Thus
we can write

I‘“5 (?1?9 = ZA~1TM5 (P:PI) ) ‘
T3 (p,p")=Zp7T5(p,0"),
S¥' (p)=2:5¥ (p),
where the tilde quantities are finite (cutoff-independent)
and where Z4, Zp, and Z, are cutoff-dependent re-

normalization constants. Substituting Eq. (32) into
Eq. (5) we get

(p— )T (p,p")= (2mZ 4/ ZD)T*(p,p)
+(Z4/Z)LSF () s tvsSe (9], (34)

6 We show in the Appendix that this extra term cannot be
eliminated by redefining the triangle graph.

7 G. Preparata and W. I. Weisberger, Phys. Rev. 175, 1965
(1968), Appendix C.

(33)
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P P

k'ﬁ' : kz-P

. =200 £
_772 kl kg efvvp

F1e. 7. Diagram giving the lowest-order contribution of the
extra term in Eq. (32). The heavy dot denotes the vertex of
(ao/41r) tFéoFre; €orp.

and varying the cutoff gives

0=256(2moZ 4/ Zp)T® (p,p’2+ 8(Z4/Z5) ~
XS (p)Mvs+vsSe' (p') 1], (35)

Putting p,p’, or both on mass shell then implies that
8(2moZ 4a/Zp)=06(Z4/Z2)=0, (36)

which means that both 2mZ4/Zp and Z4/Z, are
cutoff-independent, and hence finite. Thus, if Eqgs. (4)
and (5) were correct, multiplication by the wave-
function renormalization constant Z, would make I',8
and I' fiinte.

Let us now consider the actual situation, in which
the divergence of the axial-vector current is given by
Eq. (30) and the axial-vector Ward identity by Eq. (32).
The extra term in Eq. (32) first appears in order ao? of
perturbation theory. [See Fig. 7.] This lowest-order
contribution is already logarithmically divergent;
introducing a cutoff by replacing the photon propagator
1/(¢*+ie) with [1/(¢*+ie)J[— A%/ (—A+g*+ie)], we
find that

~i(ao/4m)F (p,p") = — 4 (co/7)? In(AZ/m2) (p— p)*
XvuystadXfinite+0(a®).  (37)

We will also need part of the expression for I'(p,p’) to
order aq,

s (PaP') =75[1+O(00)]+ (ao/2m)mo

XI(p,p") (p— ") vuvs+0(a®) ,
(38)

1 1—z
I(pp)= f dx f dyLa(l—x) pity (1= y)p
0 0
— 2y pr— (wby)me T,

Comparing Egs. (37) and (38), we see that 4t is imposs-
ible to cancel away the divergence in Eq. (37) by adding to
it @ constant multiple of Eq. (38): A constant counter
term of order a¢® multiplying the leading vs term in
Eq. (38) cannot cancel the divergence in Eq. (37),
because the latter is proportional to (p—p')ey,ys,
while a constant counter term of order ay multiplying
the (p—p')*yuys term in Eq. (38) cannot cancel the
divergence in Eq. (37) because of the nontrivial func-
tional dependence of I(p,p’) on p and p’. In other
words, the axial-vector divergence with the extra term
included,

2mel3(p,p")—i(ao/4m)F (p,p')

is not multiplicatively renormalizable.

(39)
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F16. 8. Lowest-order contribution of the triangle diagram to the
axial-vector vertex. We have not drawn the diagram in which the
photon lines are crossed.

Since multiplicative renormalizability of the diver-
gence was essential to the Preparata-Weisberger argu-
ment outlined above, this argument no longer applies.
We expect, then, that even after multiplication by Z,
there will still be logarithmically divergent terms in the
axial-vector vertex. Such terms first appear in order ag?
of perturbation theory, as a result of the diagram shown
in Fig. 8; the divergence of Fig. 8 is just a consequence
of the anomalous asymptotic behavior of the triangle
graph pointed out in Sec. I. Introducing a cutoff in
the photon propagator as above, we find that

ZLS(pp") =vuvs[1—3(ao/m)* In(A%/m?)]
+aoX finite+ae? X finite+0(a®) . (40)

Equation (40) shows explicitly that the axial-vector
vertex, while still multiplicatively renormalizable, is not
simply made finite by multiplication by the wave-
function renormalization constant Z,. Rather, we have
[see Eq. (33)]

Za=Zs[14+2(ao/x)? In(A/m2)+0(a®)].  (41)

B. Radiative Corrections to v;! Scattering

As an application of Eq. (40), let us consider the
radiative corrections to v scattering, where / is a u or
an e. According to the usual local current-current theory,
the leptonic weak interactions are described by the
effective Lagrangian

Lott= (G/VN2) AT, (42)

where G=~10"8/Mproton? is the Fermi constant and
where?

A= (—vsutrar (1—vs)e (43)
is the leptonic current. In addition to the usual terms
describing muon decay, Eq. (42) contains the terms

GV (=5 vy (1 —vs)u
+57h(1—'y5)ve1707)‘(1_75)e]: (44)

which describe elastic neutrino-lepton scattering. In

order to study radiative corrections to the basic v

scattering process, it is convenient to use a Fierz trans-
formation to rewrite Eq. (44) in the form (the so-called

&L 8 We omit the normal ordering signs.
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““charge retention ordering”)
GNZ) e A —vs)uy* (1 —vs)v,
+en(d—vs)eray*(1—vs)v.]. (45)

The radiative corrections to Eq. (45) may then be
obtained simply by calculating the radiative correc-
tions to the charged lepton currents gyx(1—vs)u and
eya(1—1vs)e, without any reference to the neutrino
currents.

Now, application of standard electrodynamic pertur-
bation theory shows that the effect of the radiative
corrections to the charged lepton currents is to replace
the matrix elements gya(1—vs)u, eyr(1—7vs) e (we use
&, e to denote spinors here) by

ALy [T\ —T\6w Ty | éZz(e)[I’)‘(e)_I‘)‘E(e)]e_ (46)

In Eq. (46), T\® 9 and T'\5( denote the proper vector
and axial-vector vertices, while the wave-function
renormalization factors Z;*® come from self-energy
insertions on the external lepton lines which run into
and out of the proper vertices. From the usual electro-
dynamic Ward identity for the vector part, we know
that Z;WTh® and Z,(OT\(® are finite. On the other
hand, Eq. (40) tells us that

Zy T80 = sy 1— 3 (o/)? In (A2/m2) ]
+aoX finite+ae? X finite+0(ae®), (47)

which means that, on account of the presence of axial-
vector triangle diagrams, the radiative corrections fo v.e
and vy scatlering diverge in the fourth order of perturba-
tion theory. This result contrasts sharply with the fact
that the radiative corrections to muon decay or to the
scattering reaction v,+e—> v,4u are finite to all
orders in perturbation theory.” The crucial difference
between the two cases, of course, is that because of
separate muon and electron-number conservation, the
current @ya(1—vs)e cannot couple into closed electron
or muon loops, and thus the troublesome triangle
diagram is not present.

Two points of view can be taken towards the diver-
gent radiative corrections in »j scattering. One view-
point is that we know, in any case, that the local
current-current theory of leptonic weak interactions
cannot be correct, since this theory leads at high energies
to nonunitary matrix elements, and since it gives
divergent results for higher-order weak-interaction
effects.® Thus, it is entirely possible that the modifica-
tions in Eq. (44) necessary to give a satisfactory weak-
interaction theory will also cure the disease of infinite
radiative corrections in »J scattering. The other view-
point is that we should try to make the radiative
corrections to »i scattering finite, within the framework
of a local weak-interaction theory. It turns out that this

9 For recent discussions of the sicknesses of the local current-
current theory and their possible remedies, see N. Christ, Phys.
Rev. 176, 2086 (1968); and M. Gell-Mann, M. L. Goldberger,
N. M. Kroll, and F. E. Low, Phys. Rev. (to be published).
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is possible, if we introduce ».u and »,e scattering terms
into the effective Lagrangian, so that Eq. (44) is
replaced by

(G/V2)[ar(1—y5)u—eya(1—vs)e]
X[ A—vs)vu— sy (1 —75)7e].

This works because the troublesome extra term in
Eq. (30) is independent of the bare mass m,, so that it
cancels between the muon and electron terms in Eq.
(48), giving®®

(48)

i)
— iy aysu— eyayse = 2imo™ gy su— 2imo O eyse.
HO

(49)

Application of the Preparata-Weisberger argument to
Eq. (49) then shows that the radiative corrections to
Eq. (48) are finite in all orders of perturbation theory.
Experimentally, it will be possible to distinguish
between Eq. (48) and Eq. (44) by looking for elastic
scattering of muon neutrinos from electrons.

C. Connection Between +; Invariance and a
Conserved Axial-Vector Current in
Massless Electrodynamics

Finally, let us discuss the effects of the axial-vector
triangle diagram in the case of massless spinor electro-
dynamics [Eq. (1) with mo=0]. We will find that the
triangle diagram leads to a breakdown of the usual
connection between symmetries of the Lagrangian and
conserved currents. As in our previous discussions, we
begin by describing the standard theory, which holds
in the absence of singular phenomena.® Let {®(x)}
= {®;(x), P2(x), - -} and {6:®} be a set of canonical
fields and their space-time derivatives, and let us
consider the field theory described by the Lagrangian
density

L(x)=L[{2}, {n2}].

To establish the connection between invariance proper-
ties of £ and conserved currents, we make the infinites-
imal, local gauge transformation on the fields,

(50)

®;(x) — 2;(x)+A@)GL{2()} ], (51)
and define the associated current J¢ by
Jo=—568/8(3.A). (52)

Then, by using the Euler-Lagrange equations of motion
of the fields, we easily find" that the divergence of the
current is given by

daJe=—58/5A. (53)

10 What is happening here is that the muon triangle diagram
and the electron triangle diagram contribute with opposite sign,
and so regularize each other.
| 1 For details, see S. L. Adler and R. F. Dashen, Current Algebras
(W. A, Benjamin, Inc., New York, 1968), pp. 15-18.
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In particular, if the gauge transformation of Eq. (51),
with constant gauge function A, leaves the Lagrangian
invariant, then 6£/6A=0 and the current J¢ is con-
served. Thus, to any continuous invariance trans-
formation of the Lagrangian there is associated a
conserved current. It is also easily verified that the
charge Q(f)= [d* JO(x,{) associated with the current
J< has the properties

dQ(@)/dt=0, (54a)
[0,8;(x)]=1G;(x). (54b)

Equation (54b) states that Q is the generator of the
gauge transformation in Eq. (51), for constant A.

Let us now specialize to the case of massless electro-
dynamics, with Eq. (51) the gauge transformation

¥(x) = [1+ivsA (@) W (@) (55)

When A is a constant and =0, this transformation
leaves the Lagrangian of Eq. (1) invariant, so that
according to Eq. (53), the associated current J< should
be conserved. But calculating J¢, we find

@=—3L/8(0aA) =Yv*vsy, (56)
which according to Eq. (30) has the divergence
duTo= (/AP @ F P (W eterp.  (5T)

Thus, Eq. (53), which was obtained by formal calcula-
tion using the equations of motion, breaks down in this
case. We see that because of the presence of the axial-
vector triangle diagram, even though the Lagrangian (and
all orders of perturbation theory) of massless electro-
dynamics are vs invariant, lhe axial-vector current
associated with the s transformation is not conserved.

However, it is amusing that even though there is no
conserved current connected with the y; transformation,
there is still a generator Q° with the properties of Eq.
(54). To see this, let us consider the quantity 75 defined
by

. . [¢ 7)) 94" (x)
78 ()= 7S (x)——A¢ (x) €turp s (58)
T %,
referring to Eq. (30), we see that
6 K
—7.5(x)=0. (59)
X

Although 7, is conserved, it is explicitly gauge-dependent
and therefore is not an observable current operator. But
the associated charge

Q= / Pr 35 @)

- [e] emperZavxa] oo
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is gauge-invariant and therefore observable. According
to Eq. (59), @° is time-independent, and its commutator
with ¥(x) (calculated formally by use of the canonical
commutation relations) is

[Q%¥ () 1= —vsp (&)= ilivsp (x)]. (61)

Comparison with Eq. (59) then shows that Q5 is the
conserved generator of the v; transformations.!?

After this manuscript was completed, we learned that
Bell and Jackiw® had independently studied the
anomalous properties of the axial-vector triangle graph,
in the context of the ¢ model. In the Appendix we
discuss certain questions raised both by the paper of
Bell and Jackiw and in conversations with Professor
S. Coleman.

Note added in proof. (1) All field quantities appearing
in the paper denote unrenormalized fields, with the one
exception that in Egs. (A29), (A30), and (A34), ¢,°
and ¢, denote, respectively, the renormalized pion and
7 fields.

(2) It is our claim that Eq. (30) is an exact result,
valid to all orders in electromagnetism, and similarly
that the s-model analog, Eq. (A22), is exact to all orders
in both the electromagnetic and strong couplings. These
conclusions follow in our diagrammatic analysis from
the fact that electromagnetic or strong radiative correc-
tions to the basic triangle always involve axial-vector
loops with more than three vertices, which satisfy the
normal axial-vector Ward identities. A more detailed
discussion of this question will be given by the author
and W. A. Bardeen (to be published).

(3) Field-theoretic derivations of Eq. (30) have been
given by C. R. Hagen (to be published), R. Jackiw and
K. Johnson (to be published), B. Zumino (to be
published), and R. A. Brandt (to be published). Jackiw
and Johnson point out that the essential features of
the field-theoretic derivation, in the case of external
electromagnetic fields, are contained in J. Schwinger,
Phys. Rev. 82, 664 (1951).

(4) In Eq. (A1) we state that the general form of the
triangle diagram is R,,,, Rosenberg’s gauge-invariant
expression, plus an arbitrary multiple of €;50,(k1—%2)7;
we infer this form for the extra term by studying how
the triangle graph is changed by shifts in the integration
variable. It is easy to see that this is the only allowed
form for the ambiguity, by noting that the extra term
must satisfy the following conditions. (i) The extra
term must have the dimensions of a mass; (ii) the extra
term must be a three-index (opu) Lorentz pseudotensor;
(iii) the extra term must be symmetric under inter-
change of the photon variables (k1,0) and (ks,p);
(iv) the extra term must have no singularities in any
of the variables k%, ks% ki-k2 and m,, since the dis-

12 Because of an implicit photon field dependence of j7o®(x)
implied by Eq. (30), @ does commute with all the photon field
variables. The details of showing this are complicated, and will

be given elsewhere. .
B 7, S. Bell and R. Jackiw (unpublished).
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continuities of the triangle diagram across its singulari-
ties involve no linear divergences and hence are un-
ambiguously contained in Rosenberg’s expression R, ,,.

(5) The statement in Ref. 20, that the simultaneous
presence of isoscalar and isovector vector mesons
affects the #%— 2y prediction, is not correct. There
will, of course, be an extra term of the form

dBE(I=1)/3x,0B7(I=0)/3%¢s0rp

in the PCAC equation. However, the matrix element
of this term relevant to the 7 — 2y low-energy theorem,
when expressed in terms of Fourier transforms of the
vector-meson fields, is proportional to

[ ia) Brsni (= 0B-s71=0)]0)
X (k1+k2)kaefo~rp .
Because of photon gauge invariance, the matrix element

(v (kyer)y (kosen) | Brskyrr,f (I =1)B_,7(I=0)|0)

is proportional to kiks, and so the two-vector meson
term is of order kiks(ki-+ks). Since the low-energy
theorem involves only terms of order kik;, the two-
vector meson contribution is of higher order and does
not affect our result. This also means that the extra
terms in the PCAC equation proposed recently by
R. Arnowitt, M. H. Friedman, and P. Nath, Phys.
Letters 27B, 657 (1968), do not in fact lead to a non-
null PCAC prediction for #°— 27.
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APPENDIX

We discuss here the following questions raised both
by the recent paper of Bell and Jackiw and in conversa-
tions with Professor S. Coleman: (1) Is the expression
Rg,u [see Eq. (17)] which we have used for the triangle
graph unique, or is it possible to redefine R,,, by a sub-
traction in such a way as to eliminate the anomalies
discussed in the text? (2) What is the connection
between our results and the ¢-model discussion of Bell
and Jackiw, and between our results and the physical
70— 2y and n— 2y decays?

A. Uniqueness of the Triangle Graph

The expression for R,,, in Eq. (17) is obtained from
Eq. (16) by the regulator technique of subtracting from
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Eq. (16) a loop with m, replaced by M, performing the
7 integration, and then letting M — . Clearly, any
mass-independent terms in Eq. (16) will be lost in this
process. That a mass-independent term is present can
be seen from the fact that when we make the change of
integration variable r — r+-ak;+bk; in Eq. (16), the
result is not left invariant, but rather is changed by
multiples of €;5puk1” and €rqpuka”. If we are careful to
preserve symmetry with respect to the photon variables,
the change will be proportional to €spu(k1—%2)". The
noninvariance of the triangle graph under changes
of integration variable is of course just a result of the
linear divergence in Eq. (16), and means that in a
nonregulator calculation the results obtained for the
triangle graph will depend on how the external momenta
ki and ks are taken to run through the internal lines.
We may express this ambiguity formally by writing
that the general expression for the triangle graph is

Rvpn[§]=Rapu'*'g'frvpu(kl—k?)r, (Al)

with R,,, the regulator value in Eq. (17).
We easily find the following properties of R,,,[¢]:

(i) vector index divergence:

kldepM[§]= ——g-klvk?refvpu y

(A2)
k2pRvpu[§']=§‘k2pklfprM§
(ii) axial-vector index divergence:
— (k1t+ka)*Ropu[$]
= 2moR o+ (872 —20)k1tko" €4rap;  (A3)

(iii) asymptotic behavior: Writing k1= £g, ko= —§&q
+p'—p, a8 £ o

Ropl[§]1— — £(8m*—28)q €rapu; (A4)

(iv) axial-vector meson to two-photon matrix ele-
ment: If I- (ki+k2) = e1- k1= €2- ko= k12=Fks?=0, then3

1“61’62"Rapu[§']= ¢l er? e (k1— ko) €ropn; (AS)
(v) large m, behavior:
}L%Eleapy[§]= Ceropu(kr—ka)T. (A6)

Referring first to Egs. (A2)-(A4), we see that when
¢ =0, which is the case discussed in the text, the triangle
graph is gauge-invariant with respect to the photon
indices but has an anomalous axial-vector Ward identity
and anomalous asymptotic behavior. By contrast, when
¢=4nx? there is no longer gauge invariance with respect
to the photon indices, but the axial-vector Ward
identity and the asymptotic behavior as §— « are
normal. Since the formal proof of gauge invariance for
the triangle graph suffers from the same difficulties as
does the formal proof of the axial-vector Ward identity,
there is no @ priori reason to demand gauge invariance
with respect to the photon indices as opposed to a normal
axial-vector Ward identity, or, for that matter, to
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demand either. In other words, as long as we consider
only the divergence properties of R,,[¢], there is no
requirement fixing {.

There are, however, two additional restrictions on
R, which force us to choose ¢ =0. First of all, we recall*¢
that two real photons can never be in a state with total
angular momentum 1, which means that the matrix
element for an axial-vector meson to decay into two
photons must vanish. In order for our triangle graph
to satisfy this requirement, we must have l4e;” e2°R,,,,[ ¢ ]
=0 when / is an axial-vector meson polarization vector
satisfying /- (k1+k2)=0 and when the photon variables
satisfy e1-k1= ea-ka=k*=ks?=0. Referring to Eq.
(AS5), we see that this requirement forces us to choose
¢=0. [To check that, even with the constraints on
1, €, etc., the expression I# e, 2P (k1— k2) €1 4o 18 in general
nonvanishing, choose ki1=(—1,1,0,0), &=/(0,0,1,0),
ke=(—2,0,2,0), e=(0,1,0,0), kitk:=(-3,1,2,0),
1=(0,0,0,1), ki—k:=(1,1,—2,0).] Secondly, it is
physically unreasonable that a loop diagram such as
our triangle graph should influence low-energy phenom-
ena in the limit as the mass of the loop fermion becomes
infinite. In other words, we expect

lim R,, [¢]=0, ki, &k, fixed (A7)
mo >0

which according to Eq. (A6) again requires { =0. Thus,
there are strong physical restrictions which uniquely
select the regulator value for the triangle graph; in partic-
ular, it is not permissible to make the choice {=4x?
which eliminates the anomalies discussed in the text.

B. Connection with Bell and Jackiw and with
«’ — 2¢ and n— 2y Decay

In a recent paper, Bell and Jackiw discuss 7°— 2 in
the o model; they find and attempt to resolve a paradox
arising from the presence of triangle diagrams. We briefly
summarize their work, and then discuss our own inter-
pretation of the paradox, which differs from"theirs.!s
Bell and Jackiw use a truncated version of the ¢ model,
in which the charged pion and the neutron fields are
omitted. Letting ¢, ¢, and o be, respectively, the fields
of the proton, the neutral pion, and the scalar meson,
the Lagrangian density is8

L=yLiv-O—motgo(o+igys) W+3[(9¢)+ (90)*]
— ma’0?— 5 (we®+2No/ f?)o?—No[ (¢*+02)?

—2fi o (¢*+02) ]—iF wFP»—eapybA*, (A8)
with the coupling constant f, given by
fo=go/ (2my). (A9)

14 C. N. Yang, Phys. Rev. 77, 242 (1950).

15 Qur results do not contradict those of Bell and Jackiw, but
rather complement them. The main point of Bell and Jackiw is
that the o model interpreted in the conventional way, does not
satisfy the requirements of PCAC. Bell and Jackiw modify the
o model in such a way as to restore PCAC. We, on the other hand,
stay within the conventional ¢ model, and try to systematize and
exploit the PCAC breakdown.
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The axial-vector current is

d
jﬁ(x)=$(x)7m¢(x)+2[a(x)é;¢(x)

i) : 9
—¢(x)———a(x)]—fo‘1-—¢(x), (A10)
xH dx*

and the divergence of the axial-vector current, as
calculated by formal use of the equations of motion, is

2

ad Mo
— 75 (%) =—¢(x). (Al1)
6x,, fo

This is, of course, the usual operator PCAC equation.

The paradox noted by Bell and Jackiw is obtained by
applying Eq. (A11) to the calculation of #°— 2y decay.
Let us concentrate first on the left-hand side of Eq.
(A11). The matrix element 9, of the axial-vector
current between the vacuum and a state with two
photons has the following general structure, imposed by
the requirements of Lorentz invariance, gauge in-
variance, and Bose statistics [cf. Eq. (17)]:

M= €1U€2pSapﬂ(k1¢k2) y
Svpu(kl,k2)=Clk1fe‘ropn+c2k2751¢pn+vc3k1pk1£k2feérdu
FCikopkstha™ €gr ot Cokiok1*haT egrpu
+Cekaokitka €tron
C1= k1 : k2C3+k22C4 )
Co=k*Cs+k1-k:Ce,
Ci(kka)=—Cg(k2k1) ,
C4(k1,k2) = —Ca(kz,kl) .
As in Eq. (17), k1 and k. denote the photon four-
momenta. The matrix element of the divergence of the
axial-vector current is proportional to (ki4ks)*d,,

and a straightforward algebraic rearrangement?® using
Eq. (A12) shows that

(k1+k2)"61”€2p5¢pu (klsk2) I ky2=kg2=0
=1(C3—Cs) (k1tka)krtks™ 1% €27 €trgp -

(A12)

(A13)

Thus, if we write the matrix element for #°— 2y in
the form

STZ(WO-—> 2’Y)=k1£k2761v52P€£11pF ) (A14)

then Eqgs. (A11) and (A13) tell us that in the o model
(or any other PCAC model), F vanishes when the pion
mass (k1+ks)? is extrapolated to zero. This statement,
of course, must hold in each order of perturbation
theory. So let us check by calculating M (x"— 2v)
directly in the o model in lowest-order perturbation
theory, where the only diagram which contributes is the
pseudoscalar coupling triangle diagram (i.e., Fig. 2 with
vuxvs replaced by the pion-nucleon coupling igeys). We
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find, comparing with Egs. (19) and (20), that

—_— ieo‘l
NM(7® — 27)1owest order=——1go€1” €2°Ro,
(2m)
= klfkgrelvez”eg”p (zao/'n')gomoloo (k],,kz) , (AlS)
so that
2a
Flowest order= '_‘—go’moloo (klyk‘-*) | k1 2=ko?=0. (A16)
™
Setting (k1+k2)2=0 then gives
ao o
Flowest orderl (kytke) 2=0=—"—"—"", (A17)
m™ Mo

which does not vanish, contradicting the conclusion
obtained indirectly from PCAC. The nonzero value of
Eq. (A17) is the paradox of Bell and Jackiw.

Bell and Jackiw attempt to circumvent this contradic-
tion by introducing a regulator nucleon field y; which is
quantized with commutators rather than anticom-
mutators. The coupling of the regulator field to the
mesons is described by the interaction Lagrangian
density

Yigi(o+idyshys; (A18)

to maintain the PCAC equation the regulator coupling
and mass must satisfy the relation

g1/m1= go/m. (A19)

Thus, as the regulator mass approaches infinity, the
regulator coupling to the mesons becomes infinite as
well. As a consequence, even in the limit of infinite
regulator mass the regulator field triangle diagram
makes a contribution to the amplitude for #°— 2y
decay,

ap g1 ao go
F regulator triangle diagram —> — —=——_
M0 oMy T Mo

(A20)

The total amplitude is the sum of Eqgs. (A16) and (A20),
and does vanish at (ki+k2)?=0, in accord with the
PCAC prediction.

Unfortunately, however, the regulator procedure of
Bell and Jackiw leads to grave difficulties when we
turn to purely strongzinteraction phenomena. Let us,
in particular, consider,the regulator loop contribution
to the scattering of 2z o particles. In the limit of large
regulator mass, this loop is proportional to

1 2n g1 2n
gﬁ"/d“r Tr“: ] } o mf‘(——) , (A21)
r—my M1

and thus, on account of Eq. (A19), becomes infinite as
my—> . This means that the regulator procedure of
Bell and Jackiw introduces unrenormalizable infinities
into the strong interactions in the ¢ model, and therefore
is not satisfactory.
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We now suggest a different resolution of the paradox,
utilizing the ideas developed in the text.s As we saw,
when triangle graphs are present we cannot naively use
the equations of motion to calculate the divergence of
the axial-vector current. Rather, we must infer the
correct divergence equation from perturbation theory,
which tells us that the extra term of Eq. (30) is present.
In the o model, the effect of this extra term is to replace
Eq. (A11) by

J Ho? ag
— 35 (#)=—¢(x)+—F*Frerr,.  (A22)
ax,,; fo 4

In other words, the PCAC equation must be modified
in the presence of electromagnetic interactions. As a
result, the argument leading to the conclusion that F
vanishes at (k1+k2)?=0 must be modified. As before,
we conclude that the matrix element of the left-hand
side of Eq. (A22) between vacuum and two photons
vanishes at (k1+k2)?=0. But instead of implying that
M (x® — 2v) vanishes, this now tells us that

M (x® — 2vy)=Z;V2X matrix element of (u’p)
= —u2(fo/me?)Z5 V2 X matrix element
of [(ao/4m)FEF P egor, ]
u? a go
=—Zy W ——— |kifko" €1% €2 €trap; (A23)
M02 T Mo

in other words,

u a go
F| phy?mo=—2Z5 V2 ——— .
Ko? ™ Mo

(A24)

[In Egs. (A23) and (A24), Z; is the #° wave-function
renormalization constant.] To lowest order in perturba-
tion theory, Eq. (A24) agrees with Eq. (A17), so our
modified PCAC equation leads to no paradox. In
addition, Eq. (A22) yields a bonus: From the derivation
of Eq. (A24) it is clear that Eq. (A24) is not just a
lowest-order perturbation theory result, but in fact is an
exact statement in the ¢ model. We can reexpress
Eq. (A24) in terms of physical quantities using the
equation!6
g(0) 1

my g4

8o u?
— —23—1/2=

Mo Mol

: (A25)

where my, g.(0), g4 are, respectively, the renormalized
nucleon mass, the renormalized pion-nucleon coupling
constant (evaluated at pion mass zero), and the nucleon
axial-vector coupling constant in the ¢ model. Thus
Eq. (A24) becomes

a ¢-(0)

F| (kybhgy?mo=—— .
™ MNEA

(A26)

18 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
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Let us now make the standard PCAC assumption that
F is slowly varying as the pion mass (k1-k2)? is varied
from u? to 0, so that we can use Eq. (A26) for the
physical #%-decay matrix element. We also replace
g-(0) by the on-shell coupling constant g,. Using the
physical values for u,mn, g,, g4, we find for the pion
lifetime

1= (u¥/64m)F?=9.7 eV, (A27)
in good agreement with the experimental value!
Texpt = (1.1240.22) X 106 sec?
=(7.37£1.5) eV. (A28)

So we see that the o model, as interpreted with Eq.
(A22), gives a reasonable account of 7®— 2y decay.?
This also makes it clear that the use of regulators to
cancel away the triangle graph contribution to F up to
terms of order u?/my? will tend to give much too small
a value for the 7°— 2y matrix element.

The above ideas are readily extended to other field
theoretical models, and hopefully, to the physical
axial-vector current as well. Let F3%* be the third
component of the axial-vector octet. (It corresponds
to 375 in the model discussed above.) Let us suppose
that the world is really described by a field theory, and
that there are only spin-0 or spin-} elementary fields.?
We then make the following two assumptions:

(i) The usual PCAC equation,

d
—‘535)‘ = C‘lr/‘2¢'n'° )

(A29)
ox?

Cr=mnga/2:(0),

17 We take g,=~13.4, g4~1.18. If we used ga~1.24, then we
would get 771=8.9 eV. We can also evaluate Eq. (A26) by using
the relation g.(0)/(mnga)=V2u42/fx, with fr the charged-pion
decay amplitude and g, the charged-pion mass. (See S. L. Adler
and R. F. Dashen, Ref. 11, pp. 41-45.) This gives F| (r1kg)?=0
= — (a/m)V2ps2/ f=. Using the experimental value fr=~0.96 u.3,
we find from Eq. (A27) that +1=7.4 eV.

18 A, H. Rosenfeld e al., Rev. Mod. Phys. 40, 77 (1968).

19 Comparing Eqs. (A26) and (A17), we see that apart from a
factor of g472, our PCAC expression for the #° lifetime is the same
as the expression obtained from the pseudoscalar coupling triangle
graph if one uses the physical nucleon mass and pion-nucleon
coupling rather than the bare mass and coupling appearing in
Eq. (Al7). That the triangle graph, evaluated using physical
quantities, gives a good value for 79 — 2y decay has been noted by
J. Steinberger, Phys. Rev. 76, 1180 (1949); and J. Steinberger
(private communication).

20 This assumption is not strictly necessary for the calculation
of the % — 2y rate. If there is also a single elementary neutral
vector-meson field B*, then there will be an additional term in
Eq. (A30) proportional to Ft9B7/dx,etqr,. However, because the
gauge-invariant coupling of a massive vector boson to a physical
photon vanishes [G. T. Feldman and P. T. Matthews, Phys. Rev.
132, 823 (1963)7], this term makes no contribution to the physical
#% — 27y decay. In general, there will be no change in the 7% — 2y
prediction if only isoscalar vector mesons or only isovector vector
mesons are present. If botk isoscalar and isovector vector meson,
are present, there will be additional terms like dB¢(I=1)/dxs
dB7(I=0)/0%,€ts rp, which do affect the #° — 2y prediction.
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should, on account of triangle graphs, be replaced by

6 (s 1))
—535)‘ = C1F2¢10+S—FE‘7FTP €iorpy (ASO)
9z 4

with S a constant.?!
(if) If 35 is expressed in terms of the elementary
fields by

F =3 gﬂj 177\751//,-—}— meson terms, (A31)
i

then S is given by

5=% 607, (A32)
1

where the charge of the jth fermion is Q;eo. Equation
(A32) means that we count only triangle graphs of the
elementary fermions, but do not include triangles
involving nonelementary bound states. It may be
possible to decide in model calculations whether this
rule, which we conjecture, is really correct.

Using Eq. (A30) to calculate the #°%— 2y matrix
element then gives

Fa—(o/m)25(g:/mnga) .-

The experimentally measured #° lifetime corresponds?
to |S|=0.44; for comparison, S in the ¢ model is
$12—302=1, while S in the quark model is 3(%)?
—3(—%)?=%. More generally, in any triplet model in
which the electromagnetic current is a U-spin singlet,
the triplet charges will be (Q,,0,00)=(Q, 0—1, 0—1)
and we have S=30Q?—31(Q—1)’=Q—1%. That is, in
triplet models we have S=(Q)ay, Where (Q)s, is the
average charge of the triplet particles taking part in
both the AS=0 weak V—A4 current and the |AS|=1
weak V—A current. This means that the condition
{Q)av=—1%, necessary® for the radiative corrections to
the AS=0 and |AS|=1 weak currents to be finite,
also predicts a #%— 2y rate in good accord with
experiment.?

(A33)

2 Tn Eq. (A30), ¢x0 does not necessarily mean a canonical pion
field, but only a suitable interpolating field for the pion. For
example, in the quark model, ¢-0 would be proportional to ysra.
The separation of 9,Fs* into two terms in Eq. (A30) is made
unique by the requirement that ¢ and the photon field be
dynamically independent, in the sense that [¢ro,4dr]=[pr0,42]=0
at equal times.

2 If we use instead of Eq. (A33) the formula F~ — (a/7)(25)
X (V2p42/ fx), as in Ref. 17, then the experimentally measured #°
lifetime gives |.S|=0.50.

2 N. Cabibbo, L. Maiani, and G. Preparata, Phys. Letters 25B,
132 (1967); K. Johnson, F. Low, and H. Suura, Phys. Rev.
Letters 18, 224 (1967).

24 This result was noted previously, in the context of the vector
dominance model, by N. Cabibbo, L. Maiani, and G. Preparata,
Phys. Letters 25B, 31 (1967).
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The two-photon decay n— 2y can be treated in a
similar manner. The analog of Eq. (A30) for F** is

a 1 a
5_)‘585)‘ = Cﬂ“n%’n'*‘%sthF” €torp,  (A34)
X ™

where S is the same constant as in Eq. (A30) and where
the factor 3-Y/2 appears because the electromagnetic
current is a U-spin singlet.?s If there were no n — X°
mixing, then ¢, would be the 7 field; in the presence of
mixing, ¢, would be a mixture of the n and X° fields.
In the SUj; limit, one has, of course, C,=C,. To get a
prediction for the n— 2y rate from Eq. (A34), we
sandwich Eq. (A34) between the 5 state and a two-
photon state and make the following three approxima-
tions: (i) We neglect n— X° mixing; (ii) we take C,=Cr;
(iii) we ngelect the left-hand side of Eq. (A34), which
makes a contribution of order u,* [equivalently, we
assume that the exact prediction F,(u.2=0)=— (a/7)
X (25/¥3)(1/C,) can be smoothly extrapolated from
pr2=0 to the physical n mass]. These approximations
give the standard SU; prediction?6

T'(n— 2v)=%(u,/u)’T (x°— 2v)= (16534) eV, (A35)

about a factor of 8 smaller than the experimental

value of
T'(p— 2v)=(1210£260) eV. (A36)

In view of the approximations made, the discrepancy is
not too disturbing; in particular, the terms of order u,?
are by no means negligible, and could easily make a
contribution to the  — 2y matrix element as important
as the S/V3 term which we have retained.?”

% The correctness of the factor 1/V3 is easily verified in the
triplet model.

26 The factor (u,/r)® comes from phase space.

27 We discuss briefly two other electromagnetic decays to which
current algebra methods have been applied : & — #% and # — 3.
In the case of w — #¥ it has been argued by D. G. Sutherland
ENucl. Phys. B2, 433 (1967)] that the usual PCAC equation

Eq. (A11)] implies vanishing of the decay amplitude at zero x°
four-momentum. This conclusion, however, is erroneous, and
results from the use by Sutherland of an insufficiently general form
for the axial-vector-current-vector-meson—photon vertex. The
most general such vertex is given by Eq. (A12); an examination of
the reasoning leading to Eq. (A13) shows that Eq. (A13) is valid
only when k2=Fks2=0. When one of the vectors is massive, as in
the case of w decay, we find instead that

(B1tRo) €17 €2PSpu (k1,k2) | (heythg) 2ty 0
=[C4+Cs—3% (Cs+Co) Jk?k1ks™ €17 €2° €0 %0,

contradicting Sutherland’s conclusion. This equation also means
that our modified PCAC prediction for #®— 2y will be altered
wéxen one of the photons is virtual, as is the case in the Primakoff
effect.

In the decay n — 3, the only point which we wish to make is
that the triangle graphs which we have considered (involving
either photons or strongly interacting vector mesons) cannot alter
the usual PCAC predictions. The reason is the presence in all
matrix elements coming from our extra term of the factor kitks"
X e1%€2”€grop, which vanishes at zero four-momentum for the
axial-vector vertex. (In the 7% — 2y case we were always talking
about the matrix element left after removal of this factor.)



