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Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor
electrodynamics has anomalous properties which disagree with those found by the formal manipulation of
field equations. Specifically, because of the presence of closed-loop "triangle diagrams, " the divergence of
axial-vector current is not the usual expression calculated from the field equations, and the axial-vector
current does not satisfy the usual Ward identity. One consequence is that, even after the external-line
wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-)
order perturbation theory. A corollary is that the radiative corrections to v&l elastic scattering in the local
current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless
electrodynamics, despite the fact that the theory is invariant under ys transformations, the axial-vector
current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and
discuss a possible connection between our results and the m' ~ 2p and y ~ 2p decays. In particular, we
argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector
current (PCAC) for the neutral members of the axial-vector-current octet must be modided in a well-
defined manner, which completely alters the PCAC predictions for the m and the p two-photon decays.

INTRODUCTION '

HE axial-vector vertex in spinor electrodynamics
is of interest because of its connections (i) with

radiative corrections to v~l scattering and (ii) with the y~
invariance of massless electrodynamics. We will show
in this paper, within the framework of perturbation
theory, that the axial-vector vertex has anomalous
properties which disagree with those found by the formal
manipulation of field equations. In particular, because
of the presence of closed-loop "triangle diagrams, " the
divergence of the axial-vector current is not the usual ex-
pression calculated from the field equations, and the
axial-vector current does not satisfy the usual Ward iden-
tity. One consequence is that, even after external-line
wave-function renormalizations are made, the axial-
vector vertex is still divergent in fourth- (and higher-) or-
der perturbation theory. A corollary is that the radiative
corrections to v~l elastic scattering in the local current-
current theory diverge in fourth (and higher) order. A
second consequence is that, in massless electrodynamics,
despite the fact that the theory is invariant under

y~ transformations, the axial-vector current is not
conserved.

In Sec. I we derive the usual formulas for the axial-
vector divergence and Ward identity, and then show
how they are modified by the presence of triangle
diagrams. In Sec. II we discuss various consequences of
the additional term found in Sec. I. In the Appendix
we show that it is not possible to redefine the triangle
diagram in a physically acceptable way so as to elim-
inate the anomalous behavior discussed in Secs. I and II.
We also discuss in the Appendix a possible connection
between our results and the x' —+ 2y and g

—+ 2y decays.
In particular, we argue that as a result of triangle
diagrams, the equations expressing partial conservation
of axial-vector current (PCAC) for the neutral members
of the axial-vector current octet must be modified in a

well-defined manner, which completely alters the PCAC
predictions for the x' and the p two-photon decays.

I. AXIAL CURRENT DIVERGENCE AND
WARD IDENTITY

Ii„.(x)=
BA„(x) BA, (x) 8

7' & =V"
Bx" 8x~

We de6ne the axial-vector current j„'(x) and the
pseudoscalar density j'(x) by

the corresponding vertex parts F„'(P,P') and P'(P,P')
are defined by

Sp'(p) I'„'(p,p')Sp'(p')

d xd'y e'"'*e '"'"(T(P(x)Z' '(0)P(y)))0
(3)

S '(p)r'(p, p')S '(p')

d'*d'y "* "'"P'(0'(*)j'(0)k(y))) .

Using the equations of motion which follow from Kq.
(1), the divergence of the axial-vector current may

' We use the notation and metric conventions of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Fields (Mcoraw-Hill Book
Co., New York, 1965),pp. 377-390.Note that epgmg = —6 '23= i.

We work in the usual spinor electrodynamics,
described by the Lagrangian density'

Z(x) =y(x)(iy D m, )P—( x) ',F„„—(x)-F"(x)

—:e,g(x)q„g(x)A~(x):, (1)
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easily be calculated to be

j„'(x)=2impjo(x).
8Xp

(4)

p p

y(&) yt2) y(k) y y y(k+() y(2n-l) y(2a)
P P+Pl P+Pk P+ Pk P+Plel P+Pan-l P

pp

From Eqs. (3) and (4), we obtain the usual axial-vector
Ward identity

(p- p')"r.'(p, p') =2 .r'(p, p')

+SF'(p) 'yp+y—gr'(p') '. (5)

Our task in this section is to see whether Eqs. (4) and
(5), which we have formally derived from the field
equations, actually hold in perturbation theory.

To this end, let us rederive Eq. (5) in perturbation
theory. It is convenient to write

(a)

rp'=&0V 0+A.'

ro=~,+AP,

Sp'(p) '=p —mp —Z(p),

(6)
+I+p"p

where the vertex corrections A„' and A.' and the proper
self-energy part Z(P) are calculated using (P—mp) ' as
the free propagator. (Use of the bare mass mo ——m —bm

in the free propagator automatically includes the mass-
renormalization counter terms. ) In terms of h„o, ho,
and Z, Eq. (5) becomes

(P—P')"~0'(P,P') =2m&'(P P') —~(p)Vp —70~(p') (7)

In order to derive Eq. (7), let us divide the diagrams
contributing to A„P(P,P') into two types: (a) diagrams
in which the axial-vector vertex y„y5 is attached to the
fermion line beginning with external four-momentum
p' and ending with external four-momentum p; (b)
diagrams in which the axial-vector vertex y„y5 is
attached to an internal closed loop LSee Figs. 1(a) and
1(b), respectively). A typical contribution of type (a)
has the form

2n-1 k—1

err ""
0-& i &p+-p; —mo p+pp —mp p'+p„—mp

2n —1

x II &&"& &&-&("), (g)
i 0+1 p +p —mp

where we have focused our attention on the line to which
the yp5 vertex is attached and have denoted the
remainder of the diagram by ( ~ ).Multiplying Eq. (8)
by (p —p')& and making use of the identity

(P-P')v. ,
= (2 .v )

p+pp mo p +pp mo p+pp mo

r+P y-y r+Pk+ P -P
k p, S

gives, after a little algebraic rearrangement,

2n—1 k—1

2mpyp
&-& i-& p+p; mp p+—pp —mp

2n—1

X II . ~ " ( ~ ~ )
p'+pp —mp i-0+& p'+p, mp—

—( ")II v"'
1 p+p —mp

1
-vpII v"' v""'(" ) (1o)

p'+p, —mo-

2n—1

The first, second, and third terms in Eq. (10) are,
respectively, the type-(a) piece of h.p, and the pieces
of —p (p)yp and —yg (p') corresponding to the type-(a)
piece of A„P in Eq. (8). Summing over all type-(a)
contributions to h.„', we get

(P P') "Ap"'(P P')—
=2m'"'(p, P') —&(P)v —7 &(P') (11)

P P

(b)

FIG. 1. Diagrams contributing to the axial-vector vertex.
(a) The axial-vector vertex is attached to the fermion line begin-
ning with external four-momentum p' and ending vrith external
four-momentum p. (b) The axial-vector vertex is attached to an
internal closed loop.

X + y 0+y0 (9)
p'+pp —mo p+pp —mo p'+pp —mo We turn next to contributions to h.„p of type (b). A
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typical term is appears to be quadratically divergent. Actually, since

9n k—1
d4r Tr

7+P rr)—e
~(le)

T+Ps—
TÃP

Qn k-1
d'r Tr

3'-l 7+P 2)sp—
2mp+5

7+Ps 2)3P—

1 1
)( p p(t)

7+ps+p p 27)p —i=2+—3 7+p +p' p —2)sp—

2n

2e . . 1
X g y(

7+P,+P'—P—2N»'-3+3 7+P;+P'-P 2)3—,
&&( ). (»)

Multiplying by (p —p') p and using Eq. (9) gives

tr(~37(l)7&(2) 7) —() (15)

—Mp d4r
R.,„=2 —(—1)tr ( ice—y.)

(22r)' (22r) 4 7+Pl—2)33

the integral in the m=1 case is superlicially i&cearly
divergent. Since it is well known that translation of a
Iinearly divergent integral is not necessarily a valid
operation, ' we must check carefully to see whether
Eq. (14) holds for the triangle graph.

To do this we make use of an explicit expression for
the triangle graph calculated by Rosenberg. ' The sum
of the diagram illustrated in Fig. 2 and the correspond-
ing diagram with the two photons interchanged is

x( ")+ d' t v II v"'
7' 1 7+P—2)3p

7(i)

i (-7+P;+P' P 2)sp——(" ) (13)

X (-ie,~,) ~„~, . (16)
7 tÃp 7 A2

flap

Evaluation of Eq. (16)by the usual regulator techniques
leads to the following expression for R,» LA; denotes
A;(kl, ks) 7:

Yp. X5

P P

P'=-(k(+ kz~

FIG. 2. The axial-vector triangle graph. There is a second
diagram, with the photon four-momenta and polarization indices
interchanged, which makes a contribution equal to that of the
diagram pictured.

The first term in Eq. (13) is the type-(b) contribution
to As corresponding to Eq. (12), while making the
change of variable r~ r+p —p in the integration in
the second term causes the second and third terms to
cancel. This gives, when we sum over all type-(b)
contributions,

(P—P')"~.'"'(P P') =2 &""(p,P') (14)

The Ward identity of Eq. (I) is finally obtained by
adding Eqs. (11) and (14).

Clearly, the only step of the above derivation which
is not simply an algebraic rearrangement is the charge
of i33tegratio(3 variable in the second term of Eq. (13).
This will be a valid operation provided that the integral
is at worst superficially logarithmically divergent, a
condition that is satisfied by loops with four or more
photons, that is, loops with e&2. However, when the
loop is a triangle graph with only two photons emerging
(See Fig. 2) we have 23= 1, and the integral in Eq. (13)

Rppp (k l~lk2) A lkl sr r+ppA sks er ppp

+Asklpkl k2 etrpp+A4k2pkl k2 etrpp

+Alki, kl k2'esrp„+Asks. kl ks'esrpp,
17

Al kl'k2A3+k2 A4)

Al=kl'As+kl ksAs,

A 3(klpk2) A 6(ks)kl) 162r Ill(kl)k2) y

A 4(klyk2) A 3(k2)kl) = 16)r [I20(k leaks)
—I10(klp2) j p

where

1 1—x

I,p(kl, ks) = dx dy x'y'Ly(1 —y)kts
0 0

+x(1—x)k22+2xykl ks—233psj '. (18)

' J. M. Jauch and F. Rohrlich, The Theory of Photons end
Electrons (Addison-Wesley Publishing Co., Inc., Cambridge,
Mass. , 1955), pp. 458-461.

~ L. Rosenberg, Phys. Rev. 129, 2786 (1963). In Eq. (16) and
Fig. 2, we have labeled the legs of the triangle in accordance with
Rosenberg's notation, which diBers from the labeling convention
used in Eqs. (12) and (13). Because the integral dining the
triangle graph is linearly divergent, the value of the triangle
graph is ambiguous and depends on the labeling convention and
the method of evaluation of the integral. For example, if Eq. (16)
is evaluated by symmetric integration about the origin in r space,
the value of R,» so obtained satisGes the usual axial-vector Ward
identity (but is not gauge-invariant with respect to the vector
indices}. If, on the other hand, Eq. (16) is evaluated by symmetric
integration around some other point in r space, say r=kl Lor,
alternatively, if we integrate symmetrically around r =0 but label
the triangle using the convention of Eqs. (12) and (13)g, then the
result has an anomalous axial-vector Ward identity. The value in
Eq. (17) which we have assigned to R» is the unique value which
is gauge-invariant with respect to the vector indices. Further
discussion of the ambiguity in the de6nition of Eq. (16), and a
justification of the specific choice in Eq. (17), are given in the
Appendix.
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We will also need an expression for the triangle graph
with y„y~ replaced by 2m' 5. Dining

eo
2mpR, o

=—2
(2or)'

d4r

(—1)tr
(2or)'

(—zeoy )
r+kg —mp

X (—ieg, ) 2moy p, (19)
$50 7 k2 880

Subgraph 0

Q (()"--(2n-{)
Subgraph 2

Q(2) =- (Zn+&)+4

we 6nd that
Fxo. 4. Subgraphs (doubled lines) which determine the

asymptotic behavior of Fig. 3.
R.p ——kg~k2'~g, .pBg)

Bg ——gx'moloo(kg, kp) . (20)

P(in&)', (24)
(21)—(kg+k p) &R,o„2mpR——„,

where P is undetermined by Weinberg's analysis and
where n is the maximum of the super6cial divergences'
n(g) of the subgraphs' g linking the 2e photon lines
(i.e., linking the momenta which are becoming infinite).
For the diagram of Fig. 3 there are two such subgraphs,
illustrated in Fig. 4, with superficial divergences n(1)
= —2e+1 and a(2) = —2n+3. Thus, the asymptotic
coefficient n is n(2)= —2n+3, and comes from the
subgraph in which all propagators in the loop are
involved. Now Weinberg's theorem always tells us
what the maximal asymptotic power of a graph is, but
it does not guarantee that the coegcient of the maximal
term is nonvanishing. In fact, in the case of the axial-
vector loop diagram we will show that the coefBcient
of the &'"+'(in&)e term does vanish, so that the leading
asymptotic behavior is $ '"+'(ln/)e', one power lower

than is predicted by naive power counting. I.et us denote

by 1,(p p', mp , p&,
— , pp~'&) the graph illustrated

in Fig. 3,

I
P +P-

Yp, )g

P P

j j
~=X kg=EX q~, j&2n-)g-).
Inn= & P

FIG. 3. Diagram for calculation of the asymptotic behavior
of the general axial-vector loop.

while the momentum p —p' carried by the axial-vector

We are now ready to calculate the divergence of the current is held 6xed. According to Weinberg's theorem, '
axial-vector triangle diagram. If the Ward identity the asy ptotlc behavior of the loop graph in this

holds, we should 6nd

but from Eqs. (16)—(20) we find, instead,

—(kg+k p) "R,o„=2moR, o+87t'k~ k p'op„o. (22)

k;=$q;, j=1, , 2s—1;
g; fixed, $-+ oo,

(23)

We see that the axial oector Ward iderttity -fails ie the

case of the triangle graph. The failure is a result of the
fact that the integration variable in a linearly divergent
Feynman integral cannot be freely translated.

The breakdown of the axial-vector Ward identity
which we have just found is related to another anom-
alous property of the triangle graph. To see this, let
us consider the behavior of the general axial-vector
loop diagram with 2N photon vertices (See Fig. 3),
as the 2e—1 independent photon momenta ki, ~

k2 ~ approach in6nity simultaneously in the manner

1(p P', mo'P~ ".—
, P" ~)

. 2n Ic—1
d4r Tr

i & 7'+pq—mo

x~(')
r+po —mo

"
r+po+p' p—m. —

x II
~-o+~ r+p;+p' p m, ——(25)

4 S. Weinberg, Phys. Rev. 118, 838 (1960). For a simplified
exposition of Weinberg's results, see J. D. Sjorken and S. D.
Drell, Ref. 1, pp. 317—330 and pp. 364-368. Weinberg's theorem
applies for arbitrary spacelike four-vectors q;. There can also be
powers of lnlng, lnlnlng, etc., in Eq. (24), which we do not
indicate explicitly.

~The superficial divergence of the subgraph is obtained, as
usual, by adding —1 for each internal fermion line, —.2 for each
internal boson line, and +4 for each internal integration. For the
precise definition of subgraph in the general case, see Ref. 4.
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Clearly wc can write

L(p —p', mp, pi, ,pp.„ i)

(A) =L(p—p', mp, pi, ~ ~,pp„ i)
—L(0,mp,' Pi, ~ .,Pp„,) (26)

(&) +L(o inp' pi pp.-i)—L(0 0' pi, ",pi.-i)
(C) +I.(0,0;p„",p,).
Because differencing the loop graph with respect to
either the axial-vector current four-momentum p —p' or
the fermion mass mo decreases the degree of divergence

by one, terms (A) and. (8) on the right-hand side of
Eq. (26) have n(2)= 2n—+2, and therefore behave
asymptotically as P'"+'(in&)s'. Term (C) on the
right-hand side of Eq. (26) can be rewritten as

~ 0 ~

FIG. 5. Contribution of the triangle diagram to the general
axial-vector vertex. %e have not drawn the second diagram
which the photon lines emerging from the triangle are crossed.

L{0,0; Pi, , Pie-i)

Qn k-1
d+ Tr y(" y'"- y vs

p i « i r+p& 7+pal

x rr&
r+py i i+1 r+p«

2th

+(~')

Br« i i-r+p«
Integrating by pR1'ts with' r'cspcct to f glvcs

L(0 0' pi ~ ~ ~ pp i) =0

Rnd thc RnolTlalous RsyInptotlc behRvlol of thc trlRQglc
graph are basically the same phenomenon.

It is clear that the breakdown of the Ward identity
for the basic triangle graph will also cause failure of the
Ward identity for any graph of the type illustrated in
Flg. 5 1Q which thc two photon llncs coITling out, of thc
triangle graph join onto a "blob" from which 2f
fermion and b boson lines emerge. From Eq. (22) for

(2g) the divergence of the basic triangle graph, it is possible
to show that the breakdown of the axial-vector Ward
identity in the general case is simply described by
replacing Eq. (4) for the axial-vector-current divergence
(which we have shown to be incorrect) by

proving that the asymptotic behavior of the loop graph
ls ODc power' bcttcx' thRD glvcD by Keinberg s theorcln.

The only nonalgebraic step in this proof is the
integration by parts with respect to r, an operation
which ls valid pl'ovldcd that thc 1DtcglatloD variable ln

r
2n

d'r Tr yp P r+p«

cao. bc freely translated. This is the same condition as
we found above for vahdity of the axial-vector Ward
1dcntlty. Thus Rgaln our pl'oof ls vRlld for I%2 but
we expect possible trouble in the case of the triangle
graph (I=1). From the explicit expression for the
triangle graph in Eqs. (1"/) and (18), we see that if we
write ki= $q, kp= —$q+ p' —p, then as $~ ~ we find

E„„(k,,k,) « 8s'$q'e„««+0—(ln)) . (29)

In other words, the asymptotic power is n= 1= —2N+3,
as given by Weinberg's rules, rather than one power
lower, as is the case for the loop graphs with n&2.
It is easy to check that when Eq. (29) is multiplied by—(ki+kp)", tile terin with the axioiiislolis asymptotic
behavior agrees, for large $, with the term in Eq. (22)
which violates the Ward identity. Thus, the breakdown
of the axial-vector Ward identity in the triangle graph

&o
j„'(x)= 2nnpj'(x)+ —:F&'(g)F«(g): «.„(30).8' 4x

)Equation (30) is easily veriied by using the Feynman
rules for the vertices of j„',j', and (op/4s):pt p««: «„,
wh~~h are give»n Fig. 6.g For example, if we define
~(p,p') by

~~'(p)~(p, p')~~'(p') = ~'*d'y e'"—'e

&&P(~(*):Ft (0)F"(0):., „f(y))}., {31)

tlieii the axial-vertex ~ard identity of Fq, (3)
modl6cd to r'cad

(p —p')"I'.'(p p')=2 I"'(p p') —( o/4 )~(p,p')
+~.'(p)-~.+~ ~. (p)-. (32)

-

k&,cr '
kg, pF~g

47K 4OVp w'

vertices appearing In Eq, go).
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Equation (30), which is the principal result of this
section, states the surprising fact that the unul-Mcfor-
current divergence, as calculated in perturbation theory,

contains a well defin-ed extra term which is not obtained

when the uxial vecto-r divergence is calculated by formal
use of the equations of motion. '

II. CONSEQUENCES OF THE EXTRA TERM

In this section we investigate the consequences of
the extra term which we have found in the axial-vector-
current divergence [Eq. (30)) and in the axial-vector-
current Ward identity [Eq. (32)). We consider, in

particular, the questions of (A) renormalization of the
axial-vector vertex, (8) radiative corrections to vil

scattering, and (C) the connection between yo invar-
1Rnce and R conserved axial-vector cul'lent ln massless
quantum electrodynamics.

A. Renormalization of the Axial-Vector Vertex

Recently, Preparata and %eisberger~ have proved
the following theorem: If a local current, constructed
as a bilinear product of fermion 6elds, is conserved apart
from Inass terms, then the vertex parts of both the
current and its divergence are made 6nite by multi-
pllcatlon by the wRve-function 1enormallzatlon con-
stants of the 6elds from which the current is constructed.
If Eq. (4) correctly described the divergence of the
axial-vector current in spinor electrodynamics, then the
theorem of Preparata and Weisberger would apply in
this case. However, we have seen that the divergence
is actually given by Eq. (30), and involves an additional
term which is Not a mass term. The effect of this extra
term, we shall see, is to cause the Preparata-Weisberger
argument to break down.

First let us review how the Preparata-Keisberger
result could be derived if Eq. (4), and the corresponding
Ward identify of Eq. (5), were true. Since both j„o and
j' are local bilinear products of fermion 6eMs, the vertex
parts P„' and I"are multi pHcatively renormalizabte Thus.
we can write

r„(p,p') =Z.—&.'(p p'),
&'(p,p') =Zo 'P'(p p')

S,'(p) =Z8, '(p),
(33)

(p p') "P'(p,p') = (2m—&~/Zn)I'(p, p')

+(Z./Z )[~.'(p)-'y+~ ~.'(p')-'), (34)

6 We show in the Appendix that this extra term cannot be
eliminated by redelning the triangle graph.

~ G. Preparata and W. I. Weisberger, Phys. Rev. 115, j.965
(1968), Appendix C.

where the tilde quantities are finite (cutoff-independent)
and where Z~, Z~, and Z2 are cuto6-dependent re-
normalization constants. Substituting Eq. (32) into
Eq. (5) we get

FIG. 7. Diagram giving the lowest-order contribution of the
extra term in Eq. (32). The heavy dot denotes the vertex of
(eo/4'): I& Il "&:e(„p.

and varying the cutoG gives

0= b(2moZ~/Zn)ro(P, P')+5(Zg/Zo)
X [~r'(p) 'vo+vo~r'(p') ') (35)

Putting p, p', or both on mass shell then implies that

b (2moZg/Zii) = b(Zg/Zo) =0, (36)

which means that both 2moZg/Zi) and Zg/Zo are
cutoff-independent, and hence finite. Thus, if Eqs. (4)
and (5) were correct, multiplication by the wave-
function renormalization constant Z2 would make I'„'
and F' 6inte.

Let us now consider the actual situation, in which
the divergence of the axial-vector current is given by
Eq. (30) and the axial-vector Ward identity by Eq. (32).
The extra term in Eq. (32) first appears in order no' of
perturbation theory. [See Fig. 7.) This lowest-order
contribution is already j.ogarithmically divergent;
introducing a cutoff by replacing the photon propagator
1/(q'+zo) with [1/(q'+io))[ A'/( —A+q—'+io)) we
6nd that;

—i (no/4n )7(p,p') = ,'(oto/—n)—'ln(A. '/m') (p —p) &

Xy,go+no'X finite+0(no') . (37)

We will also need part of the expression for Po(P,P') to
order o;0&

P'(pp') =go[1+0(no))+ (uo/2m)mo

XI(P P') (P—P')"y go+0(n ')
(38)

I(p,p') = dx dy[x(1—x)p'+y(1 —y)p"

2xyp p' (x+y—)mo') '. —

2moI'(p, p') —i(no/4ir)It"(p, p'),
is not multiplicatively renormalizable.

{39)

Comparing Eqs. (37) and {38),we see thatitisimPoss
Qle to cancel away the divergence in Eq (37) by adding .to
it a constant multiple of Eq. (3$): A constant counter
term of order ~0' multiplying the leading y5 term in
Eq. (38) cannot cancel the divergence in Eq. (37),
because the latter is propo~t~onal to (p—p)"y&vo,
while a constant counter term of order 0.0 multiplying
the (p —p')I'ypo term in Eq. (38) cannot cancel the
divergence in Eq. (37) because of the nontrivial func-
tional dependence of I(p,p') on p and p'. In other
words, the axial-vector divergence with the extra term
included,
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Fxo. 8.Lowest-order contribution of the triangle diagram to the
axial-vector vertex. We have not drawn the diagram in which the
photon hnes are crossed.

Since multiplicative renormalizability of the diver-
gence was essential to the Preparata-Weisberger argu-
ment outhned above, thcs Rr~mzent no longer Rpphes.
%e expect, then, that even after multiplication by Z2,
there will still be logarithmically divergent terms in the
axial-vector vertex. Such terms 6rst appear in order no'

of perturbation theory as R x'esult of the diagram show'Q

in Fig. 8; the divergence of Fig. 8 is just a consequence
of the anomalous asymptotic behavior of the triangle
graph pointed out in Sec. I. Introducing a cutoff in
the photon propagator as above, we 6nd that

~.1. (P,P') =v.v.t:1—:(-./-) l (A/ )j
+&IpX finite+np')&6nite+0(app) . (40)

Fquation (40) shows exphcitiy that tlIC axial-vccto1'
vertex, while still multiplicatively renormalizable, is not
simply made 6nite by multiplication by the wave-
fullctloII rcnor1Ilahzatlon coils'tR11t Zp. R'Rtllcr, wc }lave
Lsee Eq. (33)1

~~=~pL1+-'(~p/~)'»(A'/~')+o(~p') j (41)

3. Radiative Corrections to vga Scattering

As an application of Eq. (40), let us consider the
radiative corrections to v~l scattering, where l is a p or
an e. According to the usual local current-current theory,
the leptonic weak interactions are described by the
eGective Lagrangian

Z, II——(G/V2)j Itj", (42)

where G=10 '/3f„.t.,' is the Fermi constant and
where'

j"=4v" (1—vp)I+s.v"{1—vs)e (43)

is the leptonic current. In addition to the usual terms
describing muon decay, Eq. (42) contains the terms

(G/~)ErvI(1 vp) "s.v"(1—vp)I—
+evI{1 vp)v, I',v—(1 vp)ej, —(44)

which describe elastic neutrino-lepton scattering. In
order to study radiative corrections to the basic v~l

scattering process, it is convenient to use a Fierz trans-
formation to rewrite Eq. (44) in the form (the so-called

Lt
s We omit the normal ordering signs.

"charge retention ordering")

(G/WL.-v.(1-v.)"-.v"(1-v ) .
+ev (1—v) .v"(1—v )"3 (4S)

The radiative corrections to Eq. (45) may then be
obtained simply by calculating the radiative correc-
tions to the charged lepton currents pVI(1 —Vp)II and
8vq(1 —vp)e, without any reference to the neutrino
currents.

Now, application of standard electrodynamic pertur-
bation theory shows that the eGect of the radiative
corrections to the charged lepton currents is to replace
the matrix elements pVI(1 —Vp)p, , @VI(1—Vp) s (we use
II, e to denote spinors here) by

p~p&"'O'I&"' —1""& Ij&, e~, & IP', & I—r, & Ije. (46)

» Eq. (46), &&&""Iand FI'&" ' denote the proper vector
and axial-vector vertices, whde the wave-functj. on
renormalization factors Z2(&"& come from self-energy
insertions on the external lepton lines which run into
and out of the proper vertices. From the usual electro-
dynamic %Yard identity for the vector part, we know
that Z2&»I'q&» and Z~&'&I'q&'& are Gnite. On the other
hand, Eq. (40) tells us that

Zp &&'IF),'&»' =VI VpL1 —-', (np/~)' in(A'/m') g
+np)&finite+nppXfinite+0(np'), (47)

which means that, on account of the presence of axial-
vector triangle diagrams, /he radiative corrections fo p,e
lsd vga sccfksfpÃg dpvefge pfI eke fONffk Ofdef Of pefflfkc
tioe theory. This result contrasts sharply with the fact
that the radiative corrections to muon decay or to the
scattering reaction I„+a~I,+pc are finite to all
orders in perturbation theory' The crucial difference
between the two cases, of course, is that because of
separate muon and electron-number conservation, the
current pvq(1 —vp)e cannot couple into closed electron
or muon loops, and thus the troublesome triangle
diagram is not present.

Two points of view can be taken towards the diver-
gent radiative corrections in v~l scattering. One view-
point is that we know, in any case, that the local
current-current theory of leptonic weak interactions
cannot be correct, since this theory leads at high energies
to nonunitary matrix elements, and since it gives
divergent results for higher-order weak-interaction
effects. Thus, it is entirely possible that the modi6ca-
tions in Eq. (44) necessary to give a satisfactory weak-
interaction theory will also cure the disease of in6nite
radiative corrections in v~l scattering. The other view-
point is that we should try to make the radiative
corrections to v~l scattering 6nite, within the framework
of a local weak-interaction theory. It turns out that this

9 For recent discussions of the sicknesses of the local current-
current theory and their possible remedies, see N. Christ, Phys.
Rev. 176, 2086 (1968); and M. Gell-Mann, M. L. Goldberger,
N. M. Kroll, and F. E. I ow, Phys. Rev. (to be published).



is possible, if we introduce v,p and v„e scattering terms
into the effective Lagrangian, so that Eq. (44) is
replaced by

(G/~)Lt v~(1—vs)t —cv~(1—vs)ej
XC"v"(1—vs)"—v v"(1—vs) "j (48)

This works because the troublesome extra term in
Eq. (30) is independent of the bare mass ivse, so that it
cancels between the muon and electron terms in Eq.
(48) giving

8
Lpp g"r ste —e+ & use) = 2$rilst" lppsJle 2srss t l 8"tse .(49)

8$)t,

Application of the Preparata-Weisberger argument to
Eq. (49) then shows that the radiative corrections to
Eq. (48) are finite in all orders of perturbation theory.
Experimentally, it will be possible to distinguish
between Eq. (48) and Eq. (44) by looking for elastic
scattering of muon neutrinos from electrons.

In particular, if the gauge transformation of Eq. (51),
with coestuet gauge function A., leaves the Lagrangian
invariant, then bZ/bA=O and the current J is con-
served. Thus, to any continuous invariance trans-
formation of the Lagrangian there is associated a
conserved current. It is also easily veri6ed that the
charge Q(t)= fdsx Js(x,t) associated with the current
J has the properties

dQ(t)/dt =0,

LQ,C;(x)]=iG;(x) .

Equation (54b) states that Q is the generator of the
gauge transformation in Eq. (51), for constant A.

Let us now specialize to the case of massless electro-
dynamics, with Eq. (51) the gauge transformation

lt (x) ~ L1+i~,A(x) jib (x).

When A, is a constant and mo=o, this transformation
leaves the Lagrangian of Eq. (1) invariant, so that
according to Eq. (53), the associated current J should
be conserved. But calculating J, we 6nd

C. Connection Between y5 Invariance and a
Conserved Axial-Vector Current in

Massless Electrodynamics

J' = —bZ/b(a A)=y~ ~ P,

which according to Eq. (30) has the divergence

(56)

Finally, let us discuss the CGects of the axial-vector
tI'langlc dlRglRIQ ln thc CRsc of Inasslcss splnol clcctlo-
dynamics LEq. (1) with rtvs

——0). We will find that the
triangle diagram leads to a breakdown of the usual
connection between symmetries of the Lagrangian and
conserved currents. As in our previous discussions, we
begin by describing the standard theory, which holds
in the absence of singular phenomena. ' Let {C(x)}
=(Ct(x), Cs(x), } and (Bi,C} be a set of canonical
6clds Rnd thcll space-time derivatives, and lct us
consider the 6eld theory described by the Lagrangian
density

&(x)—=~L(C'} (~~C'}j. (5o)

To establish the connection between invariance proper-
ties of 2 and conserved currents, we make the in6nites-
imal, local gauge transformation on the 6elds,

C't(x) ~C't(x)+A(x)G'L(C'(x)} j
and define the associated current J by

S-=—bZ/b(a. A).

8 J~= (ne/47r)F& (x)F'r(x) st„,.

Thus, Eq. (53), which was obtained by formal calcula-
tion using the equations of motion, breaks down in this
case. We see that because of the presence of the a~ial-
vector triangle diagram, even though the Iagraugicers (aud
all orders of perturbation theory) of ereussless electro-
dynamics are ys ievariaet, the ari cl-vector clrrerIt
associated with the Ys trulsformation is rMt conserved

However, it is amusing that even though there is no
conserved current connected with the ys transformation,
there is still a generator Qs with the properties of Eq.
(54). To see this, let us consider the quantity js defined
by

as BA'(x)
i'(x) =J'( )-x-~'( )x

m' 8$p

referring to Eq. (3O), we see that

i'(x) =o
8$lt,

Then, by using the Eu er-Lagrange equations of motion
of the 6elds, we easily 6nd" that the divergence of the
current is given by the associated charge

(53)

What is happening here is that the muon triangle diagram
and the electron triangle diagram contribute with opposite sign,
and so regularize each other."For details, see S.L. Adler and R. F. Dashen, Cgrrelt Atgebrus
(W. .A. .Benjamin, Inc., New York, 1968), pp. 15-,j.s.

Qs= d'x j,s(x)

v+A 60
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is gauge-invariant and therefore observaMC. According
to Kq. (59),Q' is time-independent, and its commutator
with f(x) (calculated formally by use of the canonical
commutation relations) is

Comparison wltll Eq. (59) tllell sllows 'tllat Q 1s tIM

conserved generator of the y5 transformations. "
After this manuscript was completed„me learned that

Bell and Jackiw" had independently studied the
anomalous properties of the axial-vector triangle graph,
in the context of the cr model. In the Appendix we
discuss certain questions raised both by the paper of
Bell RIld JRcklw slid 111 coIlvclsRtlolls with Pl'ofcssor
S. Coleman.

Note added se proof. (1) Ail field quantities appearing
in the paper denote unreeot'muH2'ed 6elds, with the one
exception that in Eqs. (A29), (A30), and (A34), p, o

and P„denote, respectively, the renormalizcd pion and

g 6elds.
(2) It 1s oul clR1111 thRt Eq. (30) 1s RI1 8$Qct I'eslllt,

vahd to all orders in electromagnetism, and similarly
that the 0-model analog, Kq. (A22), is exact to all orders
in both the electromagnetic and strong couplings. These
conclusions follow in our diagrammatic analysis from
the fact that electromagnetic or strong radiative correc-
tions to the basic triangle always involve axial-vector
loops with more than three vertices, which satisfy the
normal axial-vector Ward identities. A more detailed
discussion of this question will be. given by the author
and W. A. Bardeen (to be published).

(3) Field-theoretic derivations of Eq. (30) have been
given by C. R. Hagen {tobe published), R. Jackiw and
K. Johnson (to be published), B. Zumino (to be
pubhshed), and R. A. Brandt (to be published). Jackiw
and Johnson point out that the essential features of
the 6eld-theoretic derivation, in the case of external
electromagnetic fields, are contained in J. Schwinger,
Phys. Rev. 82, 664 (1951).

(4) In Kq. (A1) we state that the general form of the
triangle diagram is R», Rosenberg's gauge-invariant
expression, plus an arbitrary multiple of e,.»(k1—ks) ';
wc infer this form for thc extra term by studying how
thc tr1Rnglc grRph 18 changed by shifts 1Q thc lntcgrRtloQ
variable. It is easy to see that this is the Owly a/loured'

fornt, for the ambiguity, by noting that the extra term
must satisfy the following conditions. (i) The extra
term must have the dimensions of a mass; (ii) the extra
term must be a three-index (0pp) Lorentz pseudotensor;
(hi) the extra term must be symmetric under inter-
change of the photon variables (k1,0) and (k&,p);
(iv) the extra term must have e0 sieglluritks in any
of the variables k~~, k2', k~ k2 and mo, since the dis-

ccausc of an implicit photon 6cld dcpcndcncc of Jo Ix)
implied by Eq. (30},Q' does commute with all the photon 6c1d
variables. The details of showing this are complicated, and will
be given elsewhere.

n J.S. Bell snd R. Jsckiw (unpublished).

continuities of the triangle diagram across its singulari-
ties involve no linear divergences and hence are un-
ambiguously contained in Rosenberg's expression R,„.

(5) The statement in Ref. 20, that the simultaneous
presence of isoscalar and isovector vector mesons
RGects thc x' ~ 2p prcd1ctlon, ls not correct. Thcrc
will, of course, be an extra term of the form

&81 (I= 1)/Bx,88'(I=0)/Bx, e(.„,
in the PCAC equation. However, the matrix element
of this term relevant to the x' —+ 2y low-energy theorem,
when expressed in terms of Fourier transforms of the
vector-meson 6elds, is proportional to

&& (k1+ks) 'k'es, „,.
Because of photon gauge invariance, the matrix element

is proportional to kjk2, and so the tmo-vector meson
term is of order k1ks(k&+k, ). Since the low-energy
theorem involves only terms of order kgk2, the tmo-
vector meson contribution. is of higher order and does
NOI, RRect our result. This also means that the extra
terms in the PCAC equation proposed recently by
R. Arnowitt, M. H. Friedman, and P. Nath, Phys.
Letters 27$, 657 (1968), do not in fact lead to a non-
null PCAC prediction for x' —+ 2y.
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We discuss here the following questions raised both
by the recent paper of Bell and Jackiw and in conversa-
tions with Professor S. Coleman: (1) Is the expression
R,» Lsee Eq. {17)jwhich we have used for the triangle
graph unique, or is it possible to redeine E» by a sub-
tx'Rct10Q 1Q such R way Rs to ellmlnatc thc Rnomal1cs
discussed in the textP (2) What is the connection
between oux' results and the 0-model discussion of Bell
and Jackiw, and between our results and the physical
~'-+ 2y and q —+ 2y decays'

A. Uniqueness of the Triangle Graph

The expression for R,» in Eq. (17) is obtained from
Eq. (16) by the regulator technique of subtracting from
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Eq. (16) a loop with m0 replaced by M, performing the
r integration, and then letting M —+ ~. Clearly, any
mass in-dependent terms in Eq. (16) will be lost in this
process. That a mass-independent term is present can
be seen from the fact that when we make the change of
integration variable r ~r+ak +1bk& in Eq. (16), the
result is not left invariant, but rather is changed by
multiples of e„»k&' and ~ p„k2 . If we are careful to
preserve syrrunetry with respect to the photon variables,
the change will be proportional to e„»(k1—kq)'. The
noninvariance of the triangle graph under changes
of integration variable is of course just a result of the
linear divergence in Eq. (16), and means that in a
nonregulator calculation the results obtained for the
triangle graph will depend on how the external momenta
k~ and k2 are taken to run through the internal lines.
We may express this ambiguity formally by writing
that the general expression for the triangle graph is

ppp[t'3= ppp+f' pppp( 1 2)'i ( )

with R,» the regulator value in Eq. (17).
We easily find the following properties of R,»[f']:
(i) vector index divergence:

k 1'Rpp p[f$= —fk 1'k 2' e,.pp,

k2 Rppp[f'] l'k2 k1 egppp I

(ii) axial-vector index divergence:

(A2)

—(k 1+k~)"R.p p[f3
2moRpp+ (gal' 2f)k] k2 ctgpp j (A3)

(iii) asymptotic behavior: Writing k1——gq, k2 ———fq
+p' —p, as ]~ po

R".LL7~ k'(g~' —2f')q'—"". (A4)

(iv) axial-vector meson to two-photon matrix ele-
ment: If l (k1+kp) = e1 k1 ——e2 k2 ——k1' ——k2'= 0, then'

t"e1 P2 Rppp[l j=pl" e1 e2 (k1 k2) f pppp ) (A5)

(v) large mo behavior:

llm R,pp[fj= l e„(k1p—pk2) '. (A6)

Referring first to Eqs. (A2)-(A4), we see that when
t'= 0, which is the case discussed in the text, the triangle
graph is gauge-invariant with respect to the photon
indices but has an anomalous axial-vector Ward identity
and anomalous asymptotic behavior. By contrast, when

f=4v' there is no longer gauge invariance with respect
to the photon indices, but the axial-vector Ward
identity and the asymptotic behavior as ]—p ~ are
normal. Since the formal proof of gauge invariance for
the triangle graph suffers from the same difficulties as
does the formal proof of the axial-vector Ward identity,
there is no a priori reason to demand gauge invariance
with respect to the photon indices as opposed to a normal
axial-vector Ward identity, or, for that matter, to

which according to Eq. (A6) again requires f=0. Thus,
there are strong physical restrictions which uniquely
select the regulator value for the triangle graph; in partic-
ular, it is not permissible to make the choice f=47r'
which eliminates the anomalies discussed in the text.

B. Connection with Bell and Jackiw and with
m' —+ 2y and g —+ 2y Decay

In a recent paper, Bell and Jackiw discuss v'-+ 2y in
the 0 model; they find and attempt to resolve a paradox
arising from the presence of triangle diagrams. We briefly
suxnmarize their work, and then discuss our own inter-
pretation of the paradox, which differs from -theirs. "
Bell and Jackiw use a truncated version of the o. model,
in which the charged pion and the neutron fields are
omitted. Letting 1P, P, and o be, respectively, the fields
of the proton, the neutral pion, and the scalar meson,
the Lagrangian density is'

~=e[v o- +go(.+~)3+![(&~)'+(&.)'j
't W '(uo'+2—&ol-fo')o'—-&o[(4'+o')'—

—2fo 'o(4'+o')3 —~F 8"" «fvA " ( )—

with the coupling constant fo given by

fo——go/(2mo) . (A9)

"C. N. Yang, Phys. Rev. 77, 242 (1950).
» Our results do not contradict those of Bell and Jackiw, but

rather complement them. The main point of Bell and Jackiw is
that the o. model interpreted in the conventional way, does not
satisfy the requirements of PCAC. Sell and Jackiw modify the
cr model in such a way as to restore PCAC. We, on the other hand,
stay within the conventional o model, and try to systematize and
exploit the PCAC breakdown.

demand either. In other words, as long as we consider
only the divergence properties of R,»[if, there is no
requirement fixing f'.

There are, however, two additional restrictions on
R,» which force us to choose t' =0. First of all, we recall"
that two real photons can never be in a state with total
angular momentum 1, which means that the matrix
element for an axial-vector meson to decay into two
photons must vanish. In order for our triangle graph
to satisfy this requirement, we must have lP e1'e2PR,»[f']
=0 when l is an axial-vector meson polarization vector
satisfying t (k1+k&)=0 and when the photon variables
satisfy e& k&= e2 k2= k&'= k2'=0. Referring to Eq.
(A5), we see that this requirement forces us to choose
/=0. [To check that, even with the constraints on
l E etc., the expression lpE] e2p(k1 kg) —e pp is in general
nonvanishing, choose k1——(—1, 1, 0, 0), e1——(0,0,1,0),
kg=( —2, 0, 2, 0), eg=(0, 1,0,0), k1+k2=(—3, 1, 2, 0),
l= (0,0,0,1), k1—kp ——(1, 1, —2, 0).$ Secondly, it is
physically unreasonable that a loop diagram such as
our triangle graph should infiuence low energy ph-enom

emu in the limit as the mass of the loop fermion becomes
infinite. In other words, we expect

lim R„„[f]=0, k1, kn fixed
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The axial-vector current is Qnd, comparing with Eqs. (19) and (20), that

—iep'
OR(sr ~ 2'r)lowest order= lg051 52 Esp

(22r)'

8

8gl" BX"

and the divergence of. the axial-vector current, as
calculated by formal Nse of the eq24ations of motion, is

so that

kisk2 51 52P55 p(2)25/sr)go mleoo(kl, k2) ) (A15)

2cxp

Flowest order= gomoIoo(kl)k2) [ kts ks) 0 ~ (A16)

8 Pp
Jp (*)= 4'(*)

Bzp fp
(A11)

Setting (kl+k2)'=0 then gives

O'p gp
+lowest order~ (kl+ks)s 5=

8' mp
(A17)

This is, of course, the usual operator PCAC equation.
The paradox noted by Bell and. Jackiw is obtained by

applying Eq. (A11) to the calculation of )ro —s 2y decay.
Let us concentrate erst on the left-hand side of Eq.
(A11). The matrix element OR„of the axial-vector
current between the vacuum and a state with two
photons has the following general structure, imposed by
the requirements of Lorentz invariance, gauge in-
variance, and Bose statistics Lcf. Eq. (17)j:

Thus, if we write the matrix element for 7r —+ 2y in

the form

(A14)OR()r'-+ 2y) = &kk l' 2552P55rsg')

then Eqs. (A11) and (A13) tell us that in the o model

(or any other PCAC model), F vanishes when the pion
mass (kl+k2)' is extrapolated to zero. This statement,
of course, must hold in each order of perturbation
theory. So let us check by calculating OR(m'-+ 2')
directly in the o. model in lowest-order perturbation
theory, where the only diagram which contributes is the
pseudoscalar coupling triangle diagram (i.e., Fig. 2 with

ypy5 replaced by the pion-nucleon coupling igoys). We

ORp el 52 ~app(kl)k2) )

~spp(kl)k2) =Clkl srspp+Cgkg erspp+Csklpkl k2 55rsp

+C4k2pkl k2 55rsp+Csklskl k2 egrpp

+Cekgskl k2 etrpp )

Cl ——kl k2C2+k22C4,

Cs=k12C5+kl k2C5,

Cs(kl, kg) = —Cs(kg, kl),
C4 (k 1)k 2) — C5 (k 2 )k 1)

As in Eq. (17), kl and kg denote the photon four-
momenta. The matrix element of the divergence of the
axial-vector current is proportional to (kl+k2)POR„,
and a straightforward algebraic rearrangement' using

Eq. (A12) shows that

(kl+k2)P51 52 Sspp(kl)ks) ikts~ss —5

=-', (C,—C,)(kl+k2)'kl&ksrel'52P55rsp. (A13)

g»2n de Tr
1 -2"

SS»

g»
2$

~ m14 —,(A21)
SS»

and thus, on account of Eq. (A19), becomes inlnite as
m» —+ ~. This means that the regulator procedure of
Bell and Jackiw introduces unrenorlna)lizable infinities
into the strong interactions in the o- model, and therefore
is not satisfactory,

which does rot vanish, contradicting the conclusion
obtained indirectly from PCAC. The nonzero value of
Eq. (A17) is the paradox of Bell and Jackiw.

Bell and Jackiw attempt to circumvent this contradic-
tion by introducing a regulator nucleon field )Irk which is
quantized with commutators rather than anticom-
mutators. The coupling of the regulator field to the
mesons is described by the interaction Lagrangian
density

(A18)

to maintain the PCAC equation the regulator coupling
and mass must satisfy the relation

gl/mt =go/m p.

Thus, as the regulator mass approaches inanity, the
regulator coupling to the Inesons becomes inanite as
well. As a consequence, even in the limit of infinite
regulator mass the regulator Geld triangle diagram
makes a contribution to the amplitude for z' —+2y
decayq

+P gl +P gP.
+regniator triangle diagram

'-— . (A20)
x' tn» x mp

The total amplitude is the sum of Eqs. (A16) and (A20),
and does vanish at (kl+k2)'=0, in accord with the
PCAC prediction.

Unfortunately, however, the regulator procedure of
Bell and Jackiw leads to grave difhculties when we
turn to purely strong)interaction phenomena. Let us,
in particular, consider. the regulator loop contribution
to the scattering of 2e o particles. In the limit of large
regulator mass, this loop is proportional to
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We now suggest a di6'erent resolution of the paradox,
utilizing the ideas developed in the text."As we saw,
when triangle graphs alc present wc cannot naively usc
the equations of motion to calculate the divergence of
the axial-vector current. Rather, we must infer the
correct divergence equation from perturbation theory,
which tells us that the extra term of Eq. (30) is present.
In the fT model, thc cGect of this extra term is to replace
Kq. (A11) by

8 po Go

i'(*)=~(*)+ F'—F"et-'
Bx„ fe 4rr

(A22)

In other words, the FCAC cysation must bc mod@cd
in the presence of electromagnetic interactions As. a
result, the argument leading to the conclusion that F
vanishes at (kr+ks)s=0 must be modi6ed. As before,
we conclude that the matrix element of the left-hand
side of Eq. (A22) between vacuum and two photons
vanishes at {kr+ks) =0. But instead of nIlplylng that
OR(v' ~ 2y) vanishes, this now tells us that

OR(s'-+ 2y) =Z 'i'Xmatrix element of (p'P)

= —n'(fe/yes) Zs 'I')& matrix element

of P(~o/4')Ft F'I'et, n7

n ( o'go
Z &sI ——k,&k;e,.e, e, „(A23)

pe k s'me

ln other words'

tr go)F
I (4+&s)'-e= Zs

I
~

@os w me~

)In Kqs. (A23) and (A24), Zs is the we wave-function
renormalization constant. 7 To lowest order in perturba-
tion theory, Kq. (A24) agrees with Eq. (A17), so our
modihed PCAC equation leads to no paradox. In
addition, Eq. (A22) yields a bonus: From the derivation
of Kq. (A24) it is clear that Eq. (A24) is not just a
lowest-order perturbation theory result, but in fact is an
exact statement in the 0. model. We can reexpress
Eq. (A24) in terms of physical quantities using the
equation'6

g.(0) 1
g —1/2

8$O po fÃ~ gg

u g, (0)
F

I (4+&s) '-s
Ã mug

(A26)

'6 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 'MS (1960).

where m&, g„(0), g~ are, respectively, the renormalized
nucleon mass, the renormalized pion-nucleon coupling
constant (evaluated at pion mass zero), and the nucleon
axial-vector coupling constant in the 0 model. Thus
Eq. (A24) becomes

l,et us now make the standard PCAC assumption that
F is slowly varying as the Pion mass (kr+ks)s is varied
from ps to 0, so that we can use Kq. {A26) for the
physical 7t'-decay matrix element. We also replace
g„(0) by the on-shell coupling constant g„. Using the
physical values for p, ,m~, g„, g~, '" we And for the pion
lifetime

r '= {I-as/64s-)F'= 9.7 eV, (A27)

in good agreement with the experimental value"

rexpt '——(1.12~0.22))&10"sec
= (7.3/+1.5) eV. (A28)

Fs'"——C p,'P o, C„=mNgg/g, (0), (A29)
Bx"

"We take g, =13.4, go~1.18. If we used go=1.24, then we
would get r '=8.9 eV. We can also evaluate Eq. (A26) by using
the relation g, (0)/(mggg) =Np+'/f, with f the charged-pion
decay amplitude and p+ the charged-pion mass. (See S. L. Adler
and R. F. Dashen, Ref. 11, pp. 41-&3.) This gives F( ~s,yacc'-o
=—(e/m)42II+~/f . Using the experimental value f =0.96 @+3,
we 6nd from Eq. (A27) that z '= 7.4 eV.

» A. H. Rosenfeld et a/. , Rev. Mod. Phys. 40, /'l (1968).
'~ Comparing Eqs. (A26) and (A17), we see that apart from a

factor of gg ~, our PCAC expression for the x0 lifetime is the same
as the expression obtained from the pseudoscalar coupling triangle
graph if one uses the physical nucleon mass and pion-nucleon
coupling rather than the bare mass and coupling appearing in
Eq. (A17). That the triangle graph, evaluated using physical
quantities, gives a good value for 2f -+ 2y decay has been noted by
J. Steinberger, Phys. Rev. 76, 1180 (1949); and J. Steinberger
(private communication).

"This assumption is not strictly necessary for the calculation
of the m -+ 2y rate. If there is also a single elementary neutral
vector-meson Geld 8", then there will be an additional term in
Eq. (A30) proportional to F&'BB"/Sx, et„,.However, because the
gauge-invariant coupling of a massive vector boson to a physical
photon vanishes $G. T. Feldman and P. T. Matthews, Phys. Rev.
132, 823 (1963}g,this term makes no contribution to the physical
Q -+ 2p decay. In general, there will be no change in the-m ~ 2p
prediction if only isoscalar vector mesons or onLy isovector vector
mesons are present. If both isoscalar and isovector vector meson,
are resent, there will be additional terms like BB&(1=1)/gus
gj3' I=0)/gg, e~„„which do a6'ect the 21

—+ 27 prediction.

So we see that the 0 model, as interpreted with Kq.
(A22), gives a reasonable account of e'-+ 2y decay. "
This also makes it clear that the use of regulators to
cancel away the triangle graph contribution to Ii up to
terms of order p,'/mg will tend to give much too small
a value for the m' —+ 27 matrix element.

The above ideas are readily extended to other 6eld
theoretical models, and hopefully, to the physical
axial-vector current as well. I.et F3'~ be the third
component of the axial-vector octet. (It corresponds
to sr j'" in the model discussed above. ) Let us suppose
that the world is really described by a 6eld theory, and
that there are only spin-0 or spin-~ elementary Gelds."
We then make the following two assumptions:

(i) The usual PCAC equation,
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should, on account of triangle graphs, be replaced by The two-photon decay q —+ 2p can be treated in a
similar manner. The analog of Eq. (A30) for Ps'" is

8 0!p
P sx C fesy s+S FprFrPet

g&X
(A30) 8 1 O.p

Fs'"=C,p 'p + S —F&~—F'&et„„(A34)
f)x" v3 4m.

with S a constant. "
(ii) If Ps'" is expressed in terms of the elementary

fields by

Pss" =Pg,Q,p "q 'lk,+meson terms, (A31)

then S is given by

(A32)

where the charge of the jth fermion is Q;es. Equation
(A32) means that we count only triangle graphs of the
elementary fermions, but do not include triangles
involving nonelementary bound states. It may be
possible to decide in model calculations whether this
rule, which we conjecture, is really correct.

Using Eq. (A30) to calculate the n'~2y matrix
element then gives

F= —(ct/n) 2S(g,/newer&) . (A33)

"In Eq. (A30), @,0 does not necessarily mean a canonical pion
field, but only a suitable interpolating field for the pion. For
example, in the quark model, p 0 would be proportional to p&5TglP.
The separation of 8&FP" into two terms in Eq. (A30) is made
unique by the requirement that p o and the photon field be
dynamically independent, in the sense that Lp,p,A g] = L@ p,A yj = 0
at equal times.

~~If we use instead of Eq. (A33) the formula F=—(n/m. )(2S)
X (~2p+'/f ), as in Ref. 17, then the experimentally measured ~'
lifetime gives ~S

~

=0.50.
~ N. Cabibbo, L. Maiani, and G. Preparata, Phys. Letters 25B,

132 (1967); K. Johnson, F. Low, and H. Suura, Phys. Rev.
Letters 18, 224 (1967).

~ This result was noted previously, in the context of the vector
dominance model, by N. Cabibbo, L. Maiani, and G. Preparata,
Phys. Letters 25B, 31 (1967).

The experimentally measured wP lifetime corresponds"
to ~S) =0.44; for comparison, S in the a model is
ts1'—tsOs=~» while S in the quark model is -,'(-,')'
—st (—s)'= s. More generally, in any triplet model in
which the electromagnetic current is a U-spin singlet,
the triplet charges will be (Q,Q,Qq) = (Q, Q—1, Q

—1)
and we have S=-,'Q' ——,'(Q —1)'=Q——,'. That is, in
triplet models we have S=(Q), , where (Q), is the
average charge of the triplet particles taking part in
both the LLS=O weak V—A current and the

~
AS~ =1

weak V—A current. This means that the condition

(Q), =—st, necessary" for the radiative corrections to
the AS=0 and )hS) =1 weak currents to be finite,
also predicts a m'-+ 2y rate in good accord with
experiment. '4

where S is the same constant as in Eq. (A30) and where
the factor 3—'" appears because the electromagnetic
current is a U-spin singlet. " If there were no g —X'
mixing, then p„would be the g field; in the presence of
mixing, p„would be a mixture of the g and X' fields.
In the SUB limit, one has, of course, C„=C . To get a
prediction for the ti —+2& rate from Eq. (A34), we
sandwich Eq. (A34) between the tl state and a two-
photon state and make the following three approxima-
tions: (i) We neglect tl —X mixing; (ii) we take C„=C;
(iii) we ngelect the left-hand side of Eq. (A34), which
makes a contribution of order p„s Lequtvalently, we
assume that the exact prediction F„(p„'=0)=—(ct/n)
X (2S/V3)(1/C„) can be smoothly extrapolated from

y, ,'=0 to the physical tf mass]. These approximations
give the standard SU3 prediction"

I'(tf ~ 2y) = -, (fc„/fe)'I'(m' ~ 2y) = (165&34) eV, (A35)

about a factor of 8 smaller than the experimental
value of

I'(tf -+ 2y) = (1210+260) eV. (A36)

In view of the approximations made, the discrepancy is
not too disturbing; in particular, the terms of order p„'
are by no means negligible, and could easily make a
contribution to the g —+ 2y matrix element as important
as the S/A term which we have retained. "

'~ The correctness of the factor 1/v3 is easily verified in the
triplet model.

'6 The factor (p,„/p)' comes from phase space."We discuss briefly two other electromagnetic decays to which
current algebra methods have been applied: co —+ 7f y and g -+ 3m.
In the case of ~ —+ ~'p it has been argued by D. G. Sutherland

E

Nucl. Phys. B2, 433 (1967)g that the usual PCAC equation
Eq. (A11)j implies vanishing of the decay amplitude at zero ~

four-momentum. This conclusion, however, is erroneous, and
results from the use by Sutherland of an insufficiently general form
for the axial-vector-current —vector-meson —photon vertex. The
most general such vertex is given by Eq. (A12); an examination of
the reasoning leading to Eq. (A13) shows that Eq. (A13) is valid
only when kP =kP =0. When one of the vectors is massive, as in
the case of cy decay, we find instead that

(ki+ke)" ei'em'S, p„(k&,ks)
~ (s,+se)' e,'-o

=(C4+Ce—e(Ca+C6))km'ki&ke el e2 et pWOq

contradicting Sutherland's conclusion. This equation also means
that our modified PCAC prediction for ~'-+ 2y will be altered
when one of the photons is virtual, as is the case in the Primakoft'
eRect.

In the decay q ~ 3~, the only point which we wish to make is
that the triangle graphs which we have considered (involving
either photons or strongly interacting vector mesons) cannot alter
the usual PCAC predictions. The reason is the presence in all
matrix elements coming from our extra term of the factor kI&k2'
X~&'~p'e~, ~, which vanishes at zero four-momentum for the
axial-vector vertex. (In the ~' —+ 2y case we were always talking
about the matrix element left after removal of this factor. )


