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Current Algebra, Glashow's Model of CP Nonconservation,
and K ~ 3 sr
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The Glashow model, which violates CI' invariance by inserting two phase factors between the vector and
axial-vector currents in the usual weak Hamiltonian, is applied to the decays X-+ 32', using standard tech-
niques of current algebra and partially conserved axial-vector current. Experiments on X—+ 2x can de-
termine one combination, S, of these phase factors, while possible CI' violation in E~ 3m. can determine
the other combination, D. As a result of calculated enhancement factors, it is shown that present experi-
mental (~10%or more) crude limits on CP violation in Z -+ js already limit D to less than 0.01, and that
in possible future experiments on E -+ 32t- one can hope to see a positive CE-violating effect if the Glashow
model is a correct description of CI' violation.

I. INTRODUCTION

~

~

~ ~

INCR the experimental discovery of EJ.'-+2vr, '
indicating the breakdown of CI' invariance, various

theories have been advanced in order to account for this
process. ' One of the simplest and most interesting is
that of Glashow, ' who retains the standard current-
current form of the weak Hamiltonian

X„(x)= (Gvj2%2){g(x),y.(x)}
and merely inserts arbitrary phases on the axial-vector
currents of the Cabibbo model'

g(x) =Ncoso[V -"(x)+A -"(x)e'&g

+K isn/eV rc( )x+2« "(x)e'&j+-j"t„a, „(x).

This is the most general way to add phases, since the
over-all phase, as well as the relative phase between
AS=0 and AS/0 parts, is unobservable.

In a recent paper, ' hereafter referred to as A, this
Glashow model was applied to the decay E~ 2x, using
the techniques of current algebra and partially con-
served axial-vector current (PCAC), and it was found
to be consistent with present experimenta results. In
Sec. II wc review these endings from the point of view
of a "natural" phase convention associated with the

~ NSF Predoctoral Fellow.
~ C. R. Christenson et a/. , Phys. Rev. Letters 13, 138 (1964).
~ W. Alles, Phys. Letters 15, 348 (1965);R.J.Oakes, Phys. Rev.

Letters 20, 1539 (1968};L. Wolfenstein, ibg. 13 562 (1964); F.
Zachariasen and G. Zweig, /5/d 14, '/94 (196.5; ¹ Cabibbo,
Phys. Letters 12, 13/ (1964);L. Wolfenstein, sMd. 15, 196 (1965).

~ S. Glashow, Phys. Rev. Letters 14, 35 (1964).
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¹ Cabibbo, Phys. Rev. Letters 10, 531 (1963).
~ B.R. Holstein, Phys. Rev. 171, 1668 (1968).We note here that

there are differences in phase convention and normalization be-
tween A and the present paper. In particular, in the present paper
our octet states are identical with the states )IIqF) in deSwart's
phase convention (i.e., Condon-Shortley for I spin and V spin}
except for an extra minus sign associated with E' (i.e., ~E')
= —(sx, —()). In A, they are the same as JIIsF)) except for extra
minus signs associated with m.+, E+, E,E .

Also, in the present paper, we are using properly normalized
spherical tensor operators; e.g., in the quark model

-+V"( )=x+F (*)v'sk(»+/»)7V (*)
whereas in A, those current densities associated with the weak
Hamiltonian are larger by a factor K.

freedom to combine with the CP operation a strange-
ness gauge transformation. ' If we define 5—= rs(p+f)
and D= ', (p f)—, t—hen—in this "natural" phase conven-
tion the parity-violating (conserving) part of the
strangeness-changing weak Hamiltonian depends only
upon S(D). We show that 5 may be determined directly
from the value of the %u-Tang parameter ~',' but that
in order to determine the value of D, we must search for a
manifestation of CI' violation in a parity-conserving
process such as E~ 3m.

In Sec. III, wc discuss the CJ'-conserving decay
K—+ 3x, employing the sof t-pion techniques developed
originally by Nambu and Hara~ and recently extended
to include hI= +2 contributions by Bouchiat and Meyer. '
In Sec. IV we use these techniques to t~eat the CI'-
nonconserving part of the decay E—+3m in Glashow's
model.

Finally, Sec. V presents a discussion of possible ex-
perimental checks for CI' violation and uses present
results to give an upper limit on the phase angle P—P.

II. «NATURAL» PHASE CONVENTION
OF GLASHOVPS MODEX

In A, the Glashow Hamiltonian was discussed from
the point of view of the "standard" phase convention.
DC6ning'

srM, —={A,+",A lc-"}+{V„+",Vz-"},
'L —={2 +" 2&-"}—{V-+~V&-"}

—,'M.=—{A +",Vrr-"}+{V +",Aa-"},
'l. —={A +" Vrr }—{V +'-Aa-"}

where M„„(I.„„)are even (odd) under interchange
of V and A q wc found ln A thc lcsult that the AS= —j.
part of the Hamiltonian is of the form

'T. T. Wu and C. N. Yang, Phys. Rev. Letters D, 380 (1964).
See also T. D. Lee and C. S. Wu, Ann. Rev. Nuc. Sci. 16, 471
(1966).

7 Y. Nambu and Y. Hara, Phys. Rev. Letters 16, 875 (1966).
8 C. Bouchiat and Ph. Meyer, Phys. Letters 25B, 282 (19@').
' In the following, the subscript c refers to a parity-conserving,

e to a parity-violating quantity.
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K +(AS= —1)= —(Gv/2@2) cos8 sin8

X [(cosScosD M, —sinS sinD I.„)
+ (cos'D M,—sin'D L,)],

X (hS= —1)=+i(Gv/2v2) cos8 sin8
(2)

X [(cosS sinD M„+cosD sinS L„)
+cosD sinD(M, +L,)],

where D= s(q P) —and S=sx(p+—f), and we have
separated X into CP-conserving and CP-violating
parts:

K„=BC„++K,„, with CPA„+(CP) '= aK +.

It has been noted that because of the conservation of
strangeness by the strong and electromagnetic inter-
actions, we are free to associate with the CP operation
an arbitrary strangeness gauge transformation. This
freedom has been used by Wu and Yang' to set

(2a", I=01~
I
&')=«ai,

where (2~; I= I'l represents a two-pion standing wave
state of total isospin I'.

A "natural" phase convention for the Glashow model
may be defined by applying the gauge transformation
3C'= e ' Xe+' to the original Hamiltonian ' where S
is the strangeness. If we divide the resultant Hamil-
tonian into CP even and odd parts, we find

X„+(hS=—1)= —(Gv/2%2) cos8 sin8

X[cosSM„+cosD M,],
K (AS= —1)=+s(Gv/2v2) cos8 sin8

(3)

X [sinS L„+sinD L,].
Thus, in this "natural" phase convention the parity-
conserving (-violating) portion of the weak Hamiltonian
is dependent only upon the phase angle D(S), and the
CP-conserving and CP-violating parts are dynamically
dissimilar in that the CP-conserving (-violating) part of
the weak Hamiltonian is symmetric (antisymmetric)
under interchange of V and A.

With this in mind we now consider the results of A.
There we defined

(2tr; I=0 lX,„~ le+)=A„
(2tr, I= 2l aC„+

l It+) =PA s,
(2x; I=olac„-lx )=i~A„
(2tr, I=2l;ic

l
K )=iQxAs,

where As, P, n, X are real by CPT and IC~ are linear
combinations of E' and K' such that

CPlz, )=~le,).
In Table I are listed the soft-pion values for these
parameters obtained by application of the methods of A
to both the "standard" and "natural" phase conven-
tions. We note that A s, P, n, X are not physical observa-

TA&LE I. A comparison of the parameters Ao, p, a, z evaluated
by soft-pion techniques in both the "natural" and "standard"
phase conventions.

"Natural" phase conv.

Gv (/6)I'+
Ao +—cos8 sin8

2A 4p &

p 0
—(19/3)t tanS

"Standard" phase conv. ~

Gv (Q6) r
cosS ~+—cos8 sin82' 4F,'

~0
—tanD —(j.9/3)& tanS

442 t tanS

3 tanD+ (19/3) t tanS
X —(V's) g/&9

a In the "standard"-phase-convention results, we have neglected certain
small terms of order tanS tano.

bles (i.e., not directly measurable); their values may
therefore depend on the particular phase convention
being employed, as is clear from Table I. On the other
hand, physical observables such as

or the Ku-Yang parameters e,e' are directly measurable
and must have the same form in all phase conventions.
Thus, for example, since in the "natural" phase con-
vention

l
e'

l

= (gxs)rrX (Ref. 10) depends only on S, this
must be true also in the "standard" phase convention.
This feature is evident from Table I, where in both cases
we find"

III. I"~3~: CP-CONSERVING CONTRIBUTION

Since our procedures are basically the same, it is
useful to recapitulate the work of Bouchiat and Meyer'

in the case of the CP-conserving weak Hamiltonian. We
begin by making a complete isospin analysis of the
E—+ 3m amplitude in the linear approximation, meaning

"See Appendix I of A.
"Similar independence of convention is found for e, but the

discussion is more involved, as it must include the mixing param-
eter ra'=s(IC ~M ~E+), M being the conventional mass matrix.

where we have defined

r,=(o
l M„l zo),

r =(olL„leo), i=r /r, .
For the remainder of this text, we shall employ the
"natural" phase convention because of the simplicity
afforded by its elegant form.

Equation (5) indicates that S may be determined
directly from the experimental value of le'l. Present
experimental results indicate on this basis that S is less
than 10 3 and may possibly equal zero. In any case, this
gives us no direct method to evaluate D, although a
nonzero value of D sects the decay E—+ 2x via virtual
transitions that contribute to the mass matrix.
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we retain terms only of zeroth and first order in the
energy. "
Amp &+&(E+-+sr+irons)

= —b&[(~i—(V'-')~s)+(pi —(V's)ps)&+3
—(s V's)Vs(&+—W x),

Amp&+&(E+ ~x+sr+x )
= -',v2[(2~i —V2~s)+ (Pi—(V's)Ps)(~z —&-)j

+(sV's)Vs(&- —siM x) (6)
Amp&+&(E —+ ver sro)

',~~[(~i+~&~s)+(Pi+~&Ps)Foj,
Amp~+'(E+-+x+ir —xo) = (Qss)vs(F.=F+),
Amp&+~(E -+ iroiroxo)

is@2
—[(-3ni+3v2ns)+ (Pi+v2Ps)Mx],

where n;, p;, v, are arbitrary real constants, and i= 1
(3) refers to the AI=-s' (—', ) part of X +."By means of
current algebra and PCAC, we may go to the unphysical
hmit in which one pion has vanishing four-momentum.
In contrast to the case of E—+2m discussed in A, we
may still retain over-all energy-momentum conservation
with the remaining particles each on their mass shells.
In this way, we are able to relate an unphysical E—+ 3m

amplitude to a physical E—+ 2x matrix element, which
we may obtain from experiment.

By means of the usual methods and the dehnition
g.(x) = (I/iF.m, s) 8&A „(x),'4 we find

(x sr 'x, 'IX„+(0)IEs &

j.:—(-.'-. ILF.'(o),x. (0)lIE,.&, (n
p

F,'(t) = d'x A, '(x, t) .

cannot change the value of the rank. Therefore, the
bI = -,'(-,') contribution to the E~3m amplitude is related
only to the EI= ', (-,') -part of the E+2' —n. matrix
element. We can parametrize the E—+2m amplitude
as follows:

Amp(E+ +sr+—pro) = (g—,', )fs,
Amp(E+ ~ sr+ad-) = (gs) fi+ V'(2/I3) fs,
AmP(E+ -+ sroxo) = —(gs) fi+ 2g(2/Is) fs,

where the f; are contributions of the AI= si part of
K„~ to this matrix element. "

Now in evaluating a matrix element such as

(~„s . I[I.,X.(0)]IE..&

it is useful, instead of carrying out the commutation, to
let I operate, respectively, to the left and right:

(x„., I [I.,x.(0)jlE,-&

= ((ir„sx,'II.)X (0) IEs")
—(x, 'sr, 'IX (0)(I.IEs"&).

In this way, we find (where X„' represents the EI= si
part of X„)

(x,+x„-~,o
I
x„'(0)IE„o)

cosD
L( ' -lx-'(0) IE'&+( ' 'lx-'(o) IE'&3

&"O F, cos5

cosa
(x+sr IX '(0) IE')

2' cos5

cosa
[(sr+ad-IX 'IEo&+(srosrolX 'IE')

F cosS —(v'l)( + 'Ix-'(0) IE+&j (9)

In our isospin expansion, the unphysical limit is reached
Now, as discussed in Appendix I, because oi the sym-

f ~ + d h
. h' f V d & by merely replacing each energy by its value in this

may replace F.'joj by
limit, taking account of energy-momentum conservation
in X—+ 2x.'~ Thus we 6nd

F,(0)= d'x V,'(x,0),

which by the conserved vector current (CVC) hy-
pothesis is just the isotopic spin operator I„ if we
simultaneously replace {Ai,~sj+{Vi,Vs) by {Vi,&s)
+{Hi,Vs) and vice versa. "Now the commutation of
an isospin operator with an isotensor operator of rank I

"We have no I=0 contribution, as such a state would have to
be completely antisymmetric in space and is thus outside the
linear approximation. We have no I=3 contribution since
Glashow's Hamiltonian has no AI = —,

' or b,I= ~v part."In general we should allow these parameters to be complex in
order to be consistent with the phases demanded by unitarity.
However, we shall perform the current algebraic manipulations
assuming them to be real and patch on the strong-interaction
phase shifts when they are needed at a later stage.

'4 In the quark model we use A;t'(x) =P(x)~&X;yt'y'P(x) so that
our Goldberger-Treiman relation is Ii = —jMgg/g .

~5Note that such a replacement does not alter the isospin
properties.

(ir,+sr,—sr, o
I
X (0) I Eso)

; s[(~i+~&~s)+ s(pi+~~ps)~x3+ s(V' i'o)Vs~x—
; s[(~i+~~s)+ s(pi+~&ps)IrIxl s(V i'o)vs~z—

Equating these two expressions, we find for the AI=-',
contribution

cosD
-'. ( +lp~ )=o, -'. =- (v'-'. )f (»)

2P cosS
'~ We again delete the strong-interaction phase shifts demanded

by unitarity.
'7 We use the kaon rest frame and, for the purpose of this

extrapolation, assume that all pions of equal mass so that when
the four-momentum of one pion vanishes, the other two pions
share the kaon energy equally, each taking away energy &Mz.
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which yields the result

V3fr cosD Aft cosD
rrr ~%pl

2P cos5 cosS

This time, however, BC„ is antisymmetric under the
interchange V~A, so that replacement of F,'(0) by
F,(0) is not permissible. For this case, then, we must
actually carry out the commutation, yielding some new
current-current structure which is, in general, rot the
same as K (P-violating, AS= —1). Thus we are
unable to relate the unphysical E~ 3m amplitude to
the experimental CE-violating E~ 2x amplitudes.
Instead, we evaluate these E—+ 2+ structures by means
of the current algebraic techniques developed in A:

For the AI= ~3 contribution, we need all three results:

cosD fs
(v's)—=k~(~s+kps~~)+k(v' —'o)vs~~

cosS P
cosD fs

(4-:) =V~( +!pw )-!(v'—:.b ~,
cosS 2P

cosD fs
Q

cosS 6F

( „,I
p'. (0),x„-(o)]I@,-)

(01 {P',s(0),LF.s(0),ly.s(0),X;]]]
2F '

+LF '(o) LFs'(0), LF.'(0) gf'=(0)]]])l&s") (14)
which yields

fs cosD
0,'3 =

cosS

Since there are Gve parameters to be determined, we

must take 6ve diferent zero-momentum limits. This is
done in Appendix II and it is shown that:

fs cosD
~~ps= s(V'r'o)—

cosS

3 (+6)fs cosD
&XVS=-

2 F cosS
where

Gp 3
cos8 sin8

2@2 SF ' sino,
Bouchiat and Meyer compare these values with experi-
ment and 6nd generally good agreement, assuming that
(cosD/cosS)~1.

(12) rrl 7l I', Mrrpr'= —(10/3)t I',
&,'=@pl.l, M p,'= —(2242/3)l I',

Mrrys' (-,'v 10)i r——, (15)

IV. X~3~—CP-VIOLATING CONTRIBUTION

Things are not quite as simple in the case of the CI'-
violating Hamiltonian. We can make an isotopic-spin
analysis as before:

Amp t &(X+~ rr+rrorro)

Y&iE(~r—' (v'k)~s')—+(pr' (v'k) ps')—F+]
—i(v'k) svs'(~+ —k~g)

Ampt &(X+-+or+s+rr )
swig(2rrr' -burrs')+ —(P r(v'k)Ps')(Mrr E)]-

+'(&-:)-:»(~ -!~~), (»)
Amp' '(E'+~rr+w rr')

=-:~'L( '+~2")+(P '+&2P ')a],
Amp' '(E--+ rr+s s') = i(Q-,')ys'(F-=E+),
Ampt '(E~-+rrorros')

= —k42iL(3or'+3%2us')+ (Pr'+V2Ps')Mx],

where n, p, p are again arbitrary real constants and
the subscript i denotes that they are produced by the
dI= ~~i part of X . We may also, as before, take the
zero-momentum limit for one of the 6nal-state pions:

(~.. .s~, )Se;(0)(Z.-)

- —(rr 's '~PF '(0) X -(0)]~EP)
e~o P

It is of interest to compare the relative magnitudes
of corresponding CP-conserving and CP-violating
quantities. We And

16 1

VS r

Pr' 10

Pr 3v3
(16)

88& ~,' 8i-8
I&/3 r ys 9v3 r

ps'

ps

where 8= (1 I'M„/fr) cosS/cosD and r= (v —,') fs/fr is a
measure of the violation of the DI=-', rule in J ~2m
decay. If we treat the CE'-conserving E—&3m decay in
the same way as the CE-violating, using the soft-pion
results of Table I, we must have r=0. Instead, however,
we employ th.e experimental E—+2m results, which
yield"

1/40& r & 1/30.

We note that, because of the smallness of r, the ratio of
CP-violating to CP-conserving parameters is at least
an order of magnitude greater for the hI= ~3 quantities
compared to those with AI= ~~.

"We note that r = a&/ar in the notation of Ref. 8. These authors
suggest that the diiference between Rer and ~r

~
gives a measure

of uncertainty in the theoretical predictions, since it is connected
with the unitarity phases previously neglected. They give Rer, p
=0.025+0.01 and ~r ~, v=0.031+0.001. The values given in the
text are just the mean values cited above.
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In order to evaluate these quantities numerically, we
need to know the value of B. If we make the approxi-
mation that tt is replaced by its soft-pion value"

I'+ Gp
tt ——(V'-,')As ——+sr%3 COSH Sine COSS

Z.s 2v2

where co is the I=0 m-m scatteringlength. In accordance
with their-approach, then, we propose to append. the
phase factor exp(ih) to the symmetric I= 1 part of the
decay amplitude, but leave the remainder unchanged.

We define (in agreement with the notation of Barrett
and Truong)

then
8= —~V3t tanD.

&e'""=s~((nt.—(V's)ns.)+s&~(pt.—(V's) ps.)j
If w'e wish to go still further, we may employ the

SU(3) sum rules's and the convergent intermediate
vector-boson model of Glashow, Schnitzer, and
Weinberg" for t, which yields

t= —2.0. (ifb)

These numerical results will be of interest in Sec. V. ~e'r~= K&E(nt, +42ns, )+sMrr(pt, +V2ps.)),

V. EXPERIMENTAL CHECKS OF CP
NON CONSERVATION

We now consider various experimental checks of
possible CP noninvariance in E-+3m- decay in order to
decide which of these have the best chance of 6nding an
effect and to set an upper limit on the phase angle D
from present experimental results. In order to do so,
however, since several of these tests involve interference,
we need now to patch onto our framework the strong-
interaction phase shifts demanded by unitarity. "We
follow the procedure of Barrett and Truong. "These
authors separate the E—+3m amplitude in the linear
approximation into three portions —an I= 1 component
completely symmetric under permutation of the space-
isospin indices of the pions, an I= i component of mixed
symmetry under interchange, and an I= 2 component
of mixed symmetry under interchange. '4 Assuming the
dominant eGect in the final-state interaction to be m-x

s-wave scattering in the I=0 state, they argue that only
the average strong-interaction phase shift b associated
with the completely symmetric I= i state should be
appreciable. Using the Khuri-Treiman equations, they
estimate

tanb~sinb~aom„,

' As mentioned before, this approximation is apparently in-
consistent with a nonzero value for r. However, any numerical
inaccuracy which arises at this point is probably small compared
to, and may be absorbed into, the uncertainty involved in the
subsequent calculation of t, which is done in the soft-kaon limit."S.L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967)."S.L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev
Letters 19, 205 (1967)."Y.Ueda and S. Okubo, Phys. Rev. 139, B1591 (1965).

~ B.Barrett and T. Truong, Phys. Rev. Letters 17, 880 (1966).
We emphasize that we are using the procedure of Barrett and
Truong purely for illustrative purposes. It appears to us that even
if I=0 s-wave scattering does dominate, the phase shift b~ could
be of the same order of magnitude as b, )See, for .example,
B. Ya'Zeldovich, Soviet J. Nucl. Phys. 6, 611 (1968}j.Thus, in
our theoretical expressions involving 5 (Eqs. 20,25) the 8's are not
necessarily the same, but should be of the same order of magnitude.

'4 Barrett and Truongalsoincluded a completelysymmetric I=3
state, which we neglect since the Glashow model contains only
DI= ~~ and rU = —,

' components.

542

"=—-'(v'l
K

where nt, =nt+iat'—, etc.
One test for possible CI' nonconservation is to look

for a difference in the rates of Z+-+rr+tr+tr (r+) and
K+-+sW rr (r'+) decay. CI'T invariance demands

(apart from small electromagnetic eifects) that"

r(.+)+r( '+)=r( -)+r( '-).

However, CI'T is not sufficient to ensure the equalities

r(.+)= r(r-), r(r'+) = r(r'-),

unless the v-+ and r'+ states are not connected to each
other via the strong interaction S matrix;" these
equalities follow from CP invariance, and thus provide
a possible test. We de6ne the CE-violating quantities

In Glashow's model these must vanish, even though CI'
is violated, since a nonzero value requires interference
between the symmetric part and mixed symmetry part
of the decay amplitude. "But these terms vanish in the
linear approximation when integrated over the entire
Dalitz plot."Within the linear approximation, nonzero
hr(r) or d r(r') are produced by a model of CP viola-
tion which includes a AI=-, or ~~ portion leading to an

"T.D. Lee and C. S. Wu, Ann. Rev. Nuc. Sci. 16, 471 (1966).
"Or between the mixed-symmetry components. But this term

is small and also vanishes when integrated over the Dalitz plot.
'~ This is not quite true for AF(r ) in certain parametrizations.

We are using the SU(2) limit in the amplitude (not in the phase
space, however) so that (So—S3)~(E3——',M~). which vanishes
when integrated over the Dalitz plot. If one breaks this symmetry
by giving the pions their physical masses, then in v' decay an
integral of So—Sg over the Dalitz plot is nonzero, as discussed by
T. Devlin, Phys. Rev. Letters 20, 683 (1968l.
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I=3 6nal state. " Recent experiments have indeed ment" factors are the reason why a 10% experiment in
shown AI"(r) to be zero to within 1 part in 1000. They the slope can limit tanb tanD to the 1% level. Such
glVC factors result from the relatively large values of if', gs, P,

61'(r) = —0.0002+0.061, Ford a1 aL (Ref. 28)

AF(r) =—0.0025+0.005, Fletcher et al. (Ref. 29).

A practical test for charged E decays in our model is
a comparison of slopes. " %C may define the CI'-
violating quantities

a(r+) a(r )— —

a(r) =
a(r')+~(r )

4 j.
tang p= —8

v3' 1—(5/4)r
(24)

fi sin(ps —9iy)+c sin(ip —9ig)= tan5
5 cos(9is—yg)+c cos((p, —py)

b sin(9 s—9 g) —c sin(ta. —9 ),)= tan8
b cos(9 s—9),)—c cos(q .—jg)

which in turn are due to the sizable coefficients (e.g.,
7, 22v2/3) appearing in the expressions for the CI'
violating parameters of Eq. (13).

For the neutral X mesons, XI. and E8, additional
types of tests for CP nonlnvarlRncc become RvRllRblc.

One possibility is R charge-asymmetry experiment,
vrherein on,e compares the number of events in the left-
and right-hand sides of the Dalitz plot. ~~ Barrett and
Truong de6ned

E~—EI, 8 c sing,
AX(ICz) = =—F sln5 9

Jtr z+Es. 3s. X cosgg
(25)

13
S(r) = —2(g-,')8 — tan8,

1—Sr 1+x

5 I3
A(r') =2(g's)8 + tanb.

1+xsxr 1+r
8 m, ' 8

AJV(Ez) =+—FX12 sinb.
3~ M~' 1—2rff we use the value for 8 given in Eq. (17) and the

experimental result r = 1/30, we have

where I' is the same as defined above and Ãg (iVz)
(21) denotes the total number of events in the right- (left-)

hand side of the Dalitz plot. In terms of our parameters,
me find

A(r) =+22.5 tanb tanD,

h(r') = —33.6 tanb tanD.

Using 'the value for I3 given by Eq. (17) and t'= 1/30
(22) yields

2 $(EJ.)= 2.1 sinb tanD. (27)
Experimentally the situation has been summarized by
Bell and Steinberger, vrho give"

Experimentally, the situation was recently summarized

by Rubbia and Okun33 vrho report

2Fa(r )=0.23&0.04, 2Fa(r+) =0.22&0.03,
Xg/IVY, —1= (0&5) && 10-', Nefkens si al. (Ref. 34)

where F= 2MxQ/3m '. From this we find

h(r)„s———0.02&0.11. (23)

Comparing this %'ith thc thcoI'ctlcal cxplcsslon %'c scc
that

tanb tana= 0.001+0.005.

Err/Er, —1= (—4&1.5)&(10 ', Hopkins' al (Ref. 35). .

Because of the experimental uncertainty mentioned in
Rei. 35, ere use Nefkens's result, @&hereby

sinb tanD= 0.00+0.01,
Of interest are the factors —22.4, 33.6 multiplying I'or the neutral X complex, one might also contem-

plate interference experiments, employing either the

"W. T. Ford a1 aL, Phys. Rev. Letters 18, 1214 (196').
"C.R. Fletcher et a/ , Phys. Rev. Le.tters 19, 98 (1967).
'0 To be de6nite, we de6ne our slopes by

(m~ ~1—a(2/m. )(S,—S,}+O((S,—S,)'),
where 88 ——(k —q8)' and 50= ~g(S&+Sg+S3)-"J.S. Bell and J. Steinberger, Proceedings of the Oxford Imter-
matiomal Conference oN Elemewtery I'ark'elms, lP65 (Rutherford
High-Energy Laboratory) Chlltony Berkshire~ Englands 1966)s

p. j.95,

"Our Dalitz plot is oriented so that on the right-hand side
T + &T —,while on the left-hand side T -&T +.

"C. Rubbia and L. Okun, I'roceed&sgs of the Ireidelberg Con
ferewce orI Elementary I'oracles, 1967, edited by H. Filthuth
(Interscience Publishers, Inc. , New York, 1968).p. 301."B.M. K. Nefkens et al. , Phys. Rev. 157, j.233 (1961').

3~ H. %. K. Hopkins et a/. , Phys. Rev. Letters 19, 185 (I967).
Although there seems to be a positive effect here, the authors do
not propose to see any CI' violation and seem to believe rather
that there exists some experimental bias.
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We have"

x+m m' or the 3x' mode. It has been shown by Sehgal where Tisthemixingparameterinour phaseconvention
and Wolfenstein" that observation of such an inter- such that
ference effect between Kr, and Ks decay is clear evidence

I Kr)= I
K )+T I K+),

for CI' violation. These authors show that if one starts
with the coherent mixture of EI, and Eg

X(IK,&+ZIKs&),

then the partial decay rate into a set a of 6nal states
is given by

I (t) =p'2)yr„e»'+ ps,e»'
I
g

I

2

y2(y y )ii2 Re(gy e ~5mt)e $(YL+—vs)t]

r, +zm, —=—(v'2)e*" +f I

nmhy+i 2hm

28m~
with Ss= tan-'I — I=4~—(30)

a~)
where 2m= mq —ml, is the mass difference, yl, and yq
are the widths of El. and Eg, and

~.=E I&AMITIE &I', v -=Z l&~ITIK &I',

V.=& &AMITIE, )*&~I T'IKs&/h, a

where
I n) denotes a final state, completely specified by,

say, all polarizations and momenta, while the sum is
over all states in the set a.

V defines the possible interference eGect in that if

I V,
I

= 1, as in the decay K~ 2n, complete interference
is possible and can be obtained at t= 0 by using a beam
with I&I'=pr. /ps Now I&. l'«1 may be produced
regeneratively, while

I XI &1 can be obtained near the
source of a pure E' or K' beam. Thus, in order to pro-
duce a sizable interference effect, we demand that

rsa/7La) 1 ~

where 3f,F are the usual Hermitian matrices describing
the E', K' system, Am= m& —mL, is the mass di6erence,
~p= ys —yl, is the diGerence in widths, o, is the param-
eter deaned in Eq, 4. and m'=i&K IMIK+)=illa' +
Values for o, and m' were deduced from the published
results for EI.—+2m and are listed in Table I of A.3' We
see that, using these values ITI 10 '.

On the other hand, we find

54 8
tan P),=——

VS 1—2r
(31)

We see once more a sizable enhancement factor 57.5,
and it is this which enables us to place a fairly strong
limit on tanD. We have

Using the value of 8 from Eq. (17) and r= 1/30, we find

tang), =—58 tanD.

Now intuitively we suspect that ys/yi, «1 for the
E~3~ decay mode, so that a sizable interference would . i i, t t d to tan.- which
not be seen. The e~pe~~~~~t has actually been done, ' ' '

th t ' ' t ' 'tyields, using the quoted experimental results,
and on the basis of less than a hundred events, a
Carnegie-Tech —Brookhaven collaboration" indeed sees tanD= 0.006—0.009+ ' '

~

no evidence for interference, but their rather large
statistical limits actually are quite restrictive as to the We have discussed measurement of possible &~
allowed value for D. They dehne violation employing the r+,7'+ modes alone and the

(33)

and 6nd

A(Ks~ir+ir ~') iR sin~+TK cospq

A(Kr, —+n.+n. ir') K costi,+i' sinpq ' This is derived in the E,K representation by T. D. Lee
and C. S. Wu, Ann. Rev. Nuc. Sci, , 16, 471 (1966}.

'9 Table I in A was derived for the case &=P in the "standard"
phase convention, in which case, with respect to parity violating
decays, the two conventions are identical.

40 N. Cabibbo, in Symmetries in Elementary Particle Physics,
edited by A. Zichichi (Academic Press Inc. , New York, 1965).

4' M. Gaillard, Nuovo Cimento 35, 1225 (1965).
4' S. Barshay and T. Devlin, Phys. Rev. Letters 19, 881 (1967).
' M. Gaillard, Nuovo Cimento 52, A359 (1968).

~ tanPi+T
)

1+iT tangy
(29)

"L.M. Sehgal and L. Wolfenstein, Phys. Rev. 162, 1362 (1967}.
'7 D. G. Hill et al. , in Thirteenth International Conference on IJigh

Energy Physics, 1966 (University of California Press, Berkeley,
1967), paper 4a.12, p. 63.

neutral decay modes alone. We may also gain such
~(K ~~'~ ~')/~«~~~'~ ~')=~+ y information by combining both sets of data. In this

approach one makes an isospin analysis and compares
predicted total decay rates with experiment. This

x= 0.14+0.32 =0.33 +0»
y —0.33-0.6v method was erst employed by Cabibbo" and Gaillard, »'

n our notation, approximating the amplitudes by their who, however, assumed the hI= ~ rule. T"-rs .".m been

value at the center of the Dalitz, p]ot we have recently extended by Barshay and Devlin" and
Gaillard4' to include bI)-', . One cue compare 7 rates
with v' rates or El.—+x+x m' with EJ.—+~'m'x'. From
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TABLE II. A summary of CP-violating predictions and results.

CP-violating quantity

~()
s(&')
sx(xL,)
tang),
0.856(2r oo/r, )—1
Phase angle in e P decay

Theoretical expression

+22.5 tanb tanD
—33.6 tanb tanD

2.1 sinb tanD
—58.0 tanD
640 tan'D

D+S

Experimental limit

—0.02+0.11

0.00+0.025
0 33-0 6V+0.56

&0.09
&0.03

Limit on tanD

—(0.001+0.005) cots
~ ~ ~

(0.00 +0.01) cscb
-0 006-p.ops+ ' 's

&0.012
~&0.03

Eq. (6) and Eq. (13), we see that4'

s ryy-/Flop= 1, s Fy-o/rope= 1,

A somewhat larger value may be tolerated because of
the uncertainty in r mentioned in Ref. 18.With r = 1/40
we have

(39)

if there is no contribution from an I=3 6nal state. II'ut
(K

the absence of such effects has already been indicated by
cosPy =0.856

measurement of r+,r decay rates (unless the 6nal state 1+690 tansD
'

interactions are very weak). And indeed experimentally
the agreement is quite good4'. This case is still consistent with no CP violation, but

now
—,'r, /r„, =1.00+0.03, —;r,/r„, =0.97+0.10.

[ tanD [ &0.012. (40)

In terms of our parameters, we have

(K cospp~)' (1—2r)'
36

(1+r)'+P(26/VS) B)s

Using the numerical value for 8 in Eq. (17) and
r = 1/30 yields

()I. cosopg) 1
=0.815

1+630 tan'D
(37)

When, however, we compare charged and neutral E
decays, we find4'

(X cos~)' F,+F„o 1 F
(35)

F++ +F+pp 2 F~pp

These ratios would be unity in the absence of CP
violation and if the hI= —,'rule were valid. Instead,
experimentally, Barshay and Devlin give"

s F+-o/F+oo =0 816+0 034 ~

(F+ p+ Fppp)/(Fy+ +Fypp) =0.825&0.031 ~

We again note the large enhancement factors (630
and 640) which enable us to restrict D to the 1%' level
or less.

In Table II we have summarized the CP-violating
quantities and the limits present experiments have
placed on D. We see that all upper limits are at about
the level of one part in a hundred. 4' An interesting
feature is the large enhancement factors present which
enables the rather statistically crude ( 10%) experi-
ments discussed above to place the same upper limit
on D as done by the elegant nuclear P-decay experi-
mentsss which have given an upper limit of

~ P ~
&0.03.

And, from another point of view, these large factors
give hope that if and when the E—+ 3m experiments are
improved either CP violation will be found or a rather
strong limit on D at around the 0.001 level will be given.
In fact, there exist theoretical reasons, based on rough
calculations of the mixing parameter ns', to suggest that
tanD may be not greater than several parts in a thou-
sand, "a small value to be sure, but, with the enhance-
ment factors given, possibly large enough for future
generation experiments to reveal,

ACKNOWLEDGMENTSIf, referring to the experimental results, we demand that
this quantity be &0.785, then we 6nd

~

tanD
)
&O.OO8.

It is a pleasure to acknowledge many very helpful

(38) discussions, especially with respect to the "naturaV'
phase convention, with Professor L. Wolfenstein.

4' These predictions are of course with the standard phase-space
corrections already made. In the following we estimate the rate by
taking the absolute square of the symmetric I=1 part only, which
is correct up to possible quadratic terms.

4' We use the values given in Ref. 42 and standard phase space
factors. With corrected phase space factors given by T. Devlin,
Phys. Rev. Letters 20, 683 (1968) the neutral E decay result
becomes ~~(F+ 0/I'ppp)=0. 91~0.10, which is still in agreement
with the no b,I&$ rule."The first of these quantities is actually a corrected value given
bp T. Devlin, Phys. Rev. Letters 20, 683 (1968).

4'Actually A(r) and AN(Zz) yield limits on tanb tanD and
sinb tanD. If, however, we use the result of Barrett and Truong
that tanb sinb~apm», then it is probable that ap lies somewhere
between 0.2/m which is Weinberg's value and 0.5/m, which was
assumed by Barrett and Truong. In either case the upper limit
for tanD is still at the 1% level."M. Surgy et a/. , Phys. Rev. Letters 1, 324 (1958);F. Calaprice
et al. , ibQ'. 18, 918 {1967).

4'L. Wolfenstein, Proceedings of the Erice Summer School,
1968 (to be published).
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We have

APPENDIX A.

LF ' ({A4As}+{V~ Vs}))
= ({[F,',A g])A s}+{Ag,[F,',A s]})

~({[F' V~] Vs}+{V~ [F ' Vs]})
= ({[F.,Vg],A s}a{Vg, [F.,A s]})

&({[F„Ag],Vs}&{Ay,[F,Vs]}), (41)

where we have used the result that"

[F,', V~]= [F„A;] and [F.',A,]=[F.,V;].
If we choose the plus sign in the above, we have

[Fe ({A1yA2}+{VlyV2})] [Fey({VlyA2}+{Alp V2})]~

we have the result
Gv I'

Amp& &(K'-+ s+s~-~ s,'):—i cos8 sin8 sinD
2v2 P 3

= ss[(ng'+&2ns')+-,'(Pi'+~2Ps')Mx]

+xi(v ro)vs M&

Qy I'
cosg sine — slnD

2v2 2P '

=ss[(ai'+~2as')+ s(px'+~2ps')Mx]

ss(+i())ys™gz
Gv 15 I'

coso sine— sin D
e-o 202 8 P'

We note that the two operators in parentheses have the
same symmetry under the interchange V+-+A. Con-
tinuing this operation, we find

(m s. 's.,'IM(0) IKs")

1

; —„,&oI {[Fs(0)LF.(o) LF.(0) M'(0)]]]

=13 atq na

From this we find
Gv 45 r

eq'+VZos'= — cos8 sin8— sinD,2' 8 F'
Gv I'

cos8 sin8(ass) sinD,
2%2 F.'

(45)

+[F.(0),[Fs(0),[F.(0),M'(0)]]7}IE."), (42)

where

Gv 1 r
Amp&-&(K+ —+s,+s „'s,o):i cos8 sin8 sinD

s-o 242 4v2 F.'(vr, 's„'n-, 'IM(0) IEP)

Gv 27 I'
Mz(P&'+V2P's') =+ cos8 sin8—— sinD. (46)

2&2 4 P.e

To proceed further, we must extract information about
Now allowing the P's to operate to the left and right the charged kaon decays. Considering X+—+x+x'x' we

respectively, as done in Sec. II, yields have

(r r'r'+r r'r')„„(OIM'(0)
I
Es™)

q~0 16P 3

1
["8s]„.(0IM'(0)

I
Z,-).

SP 3

= —as~(~~' —(V's)~s')+s(s V'shs'M~

Gv 3 F
cos0 sln8 s»D

& 0 242 2%2 P,~

= —-'ssV2[(ug' —(g-', )ns')+-,'(pi' —(Qs)ps')Mx]

—s(V's)ns'Mx (4'I)

Gv 9 I'
cos8 sin8 — sinD,

2v2 8 F.'APPENDIX B.
(48)

Suppose we define Gv 3 I'
cos8 sino — sinD.

2v2 2 P„'
Mx(P, '—g-', P,') =—

(0I{A + V }~{V AK }IK) ~

Thus, for 3f, the isotopic spin structure of the E—+3m

decay amplitude is clearly seen to consist only of I= 1.
It is also seen that one cannot carry through this From this we find
argument for =I{ &A, A}—s{Vx, Vs}.

Then by using the result

(s,'s „'s,'I X -(0) IEs")

,(oI [Fs'(0) LF.'(o) LF.'(0) 3'- (0)]]7

+[F".(0) [Fs'(0) [F.'(0) & (0)]]]IE") (44)

5 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

where
Mays'= (-',+10){1',

, Gv 3 slnD
cos8 sin8-

2v2 8 F'

Combining the two sets of results, we find

~,'=7{.r, MxP, '= —(10/3)t.r,
n '=442/I', MxP '= —(22V2/3){'1"

(49)


