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Microscopic Theory of Brownian Motion: The Multiple-Time-Scale Point of View+
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We present a microscopic derivation of a Fokker-Planck equation for the distribution func-
tion of a heavy Brownian particle in a dense fluid from the Liouville equation. The usual
perturbation theory suffers from the presence of secular terms familiar from non-linear
mechanics. We employ the "multiple time scale" technique developed by Frieman and Sandri
to eliminate the secular terms and render the expansions uniformly valid in time. The method
introduces explicit time variables to exploit the existence of a multiplicity of time scales in-
herent in the problem. Using this formalism we derive the Fokker-Planck equation for spa-
tially inhomogeneous Brownian motion.

I. INTRODUCTION

In the past several years there has been con-
siderable interest in the microscopic justification
of Brownian Motion theory. The central aim is to
derive from molecular considerations a transport
equation for the Brownian particle distribution
function 4(R, 0, f), From stochastic considera-
tions one expects the transport equation to be a
Fokker-Planck equation of the form:

= — (p/M) .v~eig v+ [lr~(M/p) v+I @

In dense fluid systems this problem is usually cast
in terms of describing the effect of bath particles
of mass m on the Brownian particle of mass M in
the limit where M))m.

The first rigorous analysis of this problem ap-
pears to be due to Lebowitz and Rubin. ' Beginning
with the Liouville equation for the distribution
function f of the entire system they arrive at Eq.
(1.1) by expanding dynamical properties of the
Brownian particle in the mass ratio y' =m/M.
Subsequently Lebowitz and Resibois, ' employing
projection-operator techniques developed by
Zwanzig, ' extended the analysis to include the ef-
fects of a (small) external, oscillating field acting
on the Brownian particle. Lebowitz and Resibois
also demonstrate the equivalence of their results
with earlier work by Resibois and Davis that em-
ployed the Prigogine- Resibois formalism. Finally
we mention a recent unpublished investigation by
Oppenheim and Mazur' that examines in somewhat
greater detail the justification for the limiting pro-
cedure required by the proj ection- operator technique.

The purpose of this article is to develop micro-
scopic Brownian motion theory by the multiple-
time-scale method. This method has its origin in
the field of nonlinear mechanics. ' The method has
been extensively employed, most notably by
Frieman' and Sandri, ' to obtain kinetic equations
for dilute gases and plasmas. Since several sum-
maries of the method are available in the litera-
ture, "a detailed exposition of the technique will
not be included here.

We mention in passing that Frieman' and later
Su' used the multiple-time-scale method to obtain
kinetic equations for reduced distribution functions

II. GENERAL FORMULATION

The Hamiltonian of our classical system con-
sisting of N bath particles and a Brownian particle
1S

H=H +H +U=H +H, (2. 1)

where Hp =P'/2Mis the kinetic energy of the
Brownian particle, H, is the Hamiltonian for the
isolated bath,

N

HO=K +Q y(& )
i=1 2m i &j ij

(2. 2)

and U is the potential energy of interaction be-
tween the Brownian particle and the bath particles,

in weakly interacting fluid systems. They obtain
a so-called Fokker-Planck equation for the one-
particle distribution function. This equation is
nonlinear and hence differs from Eq. (1.1). The
difference arises because in the weakly interacting
case the parameter of smallness is (mean potential
energy/kT) whileinthe heavy mass casetheparam-
eter of smallness is y' =m/M.

Our motivation for presenting this alternative
derivation of the transport equation for the Brown-
ian particle Eq. (1.1) is based on the conviction
that the multiple-time-scale method provides con-
siderable advantage in displaying the physics of
the relaxation process. The validity of the ex-
pansion procedures employed in Refs. 1 and 2
depends on the fact that the ratio of the average
thermal speed of the Brownian particle to a bath
particle is of order y. Hence it takes the Brown-
ian particle y-' times longer than a bath particle
to traverse a unit length. One may conclude that
the time scale on which the Brownian partict. e
distribution function varies is "slow" compared to
the time scale on which the bath distribution
function varies. The virtue of the multiple-time-
s cale method is that it focuses attention, at the
outset, on the existence of the different time scales
in the problem. Zwanzig has emphasized" that
the type of expansion procedures employed in
Refs. 1 and 2 can only be valid in the limit of
"slow" processes.
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(2. 3)
f =fo+rA+r'f~+

and 4 =4, +y+1+y'+2+ (2. $4)

We assume that the entire system is enclosed in
a volume V which is in thermal contact with the
surroundings at temperature T.

The distribution function for the entire system
f(t) =f (r+ p&; R, P; t) obeys the Liouville equa-
tion

Within the framework of the multiple-time- scale
method one asserts that the new time variables
f 7„] are related to the real time t by the simple
relation

(2. 15)

&f/&t = —i Lf(t),

where i L =iI
~

+iL',

(2. 4) The time derivative is also formally expanded in
powers of y,

and

N p.
zL =Bi

b
V —V u(l r. —Rl) ' Vr. r. i P.

'E Z 2

Z v y(&) vp
2~i 'i (2. 5)

(2. 6)iL'=(P/M) v- —v-U v-.
R R P

8 9 8
+y

0

+ ~ ~ ~

Note that at the outset explicit recognition is given
to the possibility that the system evolves on vari-
ous time scales.

Our next step is to substitute Eqs. (2. 13), (2. 14),
and (2. 16) into Eqs. (2. 4) and (2. 9). If one
equates the coefficients of successive powers of
r one obtains from Eq. (2. 4) the set of equations
(to order y ')

Note that Ly and Hy still contain coupling between
the fluid and the Brownian particles.

We now perform the change of variables P=y P
and transform iL' into

iL'=iyL'=y [(P/m) . v-- v-U v-]. (2. 7)

Our analysis will take place in terms of the vari-
able O' For ease of notation, however, we suppress
the caret.

The definition of the Brownian particle distri-
bution function is

~ o
i

(

+
[ =If, +L'f„

/' sf, af, sf
i + + =L~f +L'f, . (2. 19)

From Eq. (2. 9) for 4(t) one obtains the set (to
order y')

4(t)=4(R p;t)=ff (r, IT, B,, P;t)dr dp
9+

=0)
(2. 2o)

(2. 6)
N N .Integration of Eq. (2. 4) over r and p yields the

equation of motion for 4

9 70

/sy, sy, ) p
i

~

+ = —i —'
VR 4, +ig[f,], (2. 21)

P Vi = iy — Q e+iyg[f-],
9$ m

where the operator iZ is defined by

(2. 9) (&4, &4, &0, ) P
+ + = —x—' V~%) +'zR[f)] .

8 TO 871 8T2 m

(2. 22)

(2. 11)f(t) =f(ro, 'rl, ~ ~ ~, & ),
and 4'(t) = g(7', v, . . . , w ) .
We seek a series solutions of Eqs. (2. 4) and (2. 9)
of the form

(2. 12)

ig[A] =i J (VR U) ~ Vp A dr dp

We now begin the multiple-time-scale analysisby
replacing the single time variable of f (t) and 4(t)
by a set of time variables Tp T1 T2 ~ ~ ~ each of
which is treated as an independent variable. Thus

We must now solve the set of Eqs. (2. 17)—(2. 22)
subject to appropriate initial conditions. The
heart of the multiple-time-scale method is the
proviso that the increased flexibility which ac-
companies the extended definition of the functions
may be used to eliminate secular behavior when-
ever it occurs.

III. BOUNDARY CONDITIONS

The formulation of appropriate initial conditions
for the extended functions Eqs. (2. 13) and (2. 14)
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is an important part of the multiple-time-scale
method. In general the complete distribution
function fand the Brownian particle distribution
function % are related by

f(r, p, R, P; f) = l (r,p; t/R, P; f)e(Ã, P; f),

(3. 1)

This equation may be expressed as

fo("o '1 ""'

—iL~ TO
h e(T, . . . , T), (4. 3)

where h is the conditional distribution function of
finding the bath in the neighborhood of the phase
point (r &, p~} at time f given that the Brownian
particie is in the neighborhood of (R, P) at time t.
We assume that at t=0 h has its equilibrium value, fp-h 4'0(TI ~ ~, T ) =fp(T1, . ~ ~, T ). (4. 4)

where we have used Eq. (4.1) and the initial con-
dition Eq. (3.6). Since

&
commutes with h it

follows that eq

k(r, p; 0/R, P; 0) = Z ' exp( PH&) —=h, (3. 2)
b eq'

where Z = j exp( —PH&) dr dp (3. 3)

In terms of the extended functions the initial con-
dition is

We now turn to Eq. (2. 21). It is easy to show,
using Eq. (4. 3), that the term ig [f,] is zero. If
we now assume spatial uniformity, i.e., 4'(R, P; f)
—= 4'(P, f}, the entire right-hand side of Eq. (2. 21)
is zero. We integrate this expression with respect
to 7', and obtain

f(0, Tl. . . , T ) =lv 4(0, Tl, ~ ~ ~, T ). (3. 4)

It is possible to choose = —iT, &4,/ST„ (4. 6)

e(0, T, ... , T ) = ep(0, T, , . . . , T ),

and 4 (0, Tl, . .., T ) =0 n ~1,

from which it follows that

(3. 6)

where we have used the result Eq. (4. 1) that 4,
does not vary on the 7 p scale. In order to prevent
secular behavior we must set

=0.
(4. 6)

=h @(O, T, . . . , T )

=f(0, T, . .. , T) (3. 6)

It follows that 4p does not vary on the ~, time
scale and

4'0 ——4'0( T2. ~ ~ ..T' (4. 7)
and f (0, Tl, . . . , T ) = 0, n ~1. (3. 7)

The initial condition we have assumed, Eq. (3.2),
corresponds to assuming that at t = 0 the bath par-
ticles have established equilibrium with respect to
the potential U. The initial nonequilibrium dis-
tribution for the Brownian particle may be visu-
alized as having been established by an external
disturbance that was present for t(0, and is
abruptly removed at t =0.

With this formulation of the initial conditions we
are in a position to solve the set of Eqs. (2. 17)-
(2. 22).

Thus we see that the initial variation in Cp occurs
on the "slow" time scale v;. From Eqs. (4. 4) and
(4. 7) we find

fp=fp(T2, ~ ~ ~, T ). (4. 8)

Since +, (0, v» ~ .~, T„)= 0 an additional consequence
of Eq. (4. 6) is that +, =0, i. e. at all times cor-
rections to 4, will O(y2).

We may now integrate Eq. (2. 18) with respect to
T, using the result Eq. (4. 8). We find

IV. THE SPATIALLY UNIFORM CASE

»om Eq. (2. 20) it «Iiows that 4, maintains its
initial value on the 7p scale and hence

4'0 ——40(TI, . . . , T ). (4. 1}

From Eq. (2. 17) it follows that

-iI ~70
fp(v p, T, . . ., T ) =e fp(0, T1, ~ ~ ~, T„).

(4. 2)

—iL
= —if dse I.'h g (T . .. T ) (4 9)

0

where we have used the fact the, t f, (0, T, . .. ) 0
With the results ljl =0 and Eq (4 7) Eq (2 22)

may be integrated with respect to 7'p. We obtain,
after using the assumption of spatial uniformity,

i 0'2(TO, v 1, . .., T ) —i 4„(0,Tl, . .. , v )
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840 i 70 X
=- —f dxf dsz[e

Tp
0

—iI ~s
L'h ]

xy (v, .. . , r ), (4. 11)

(4. 10)
To prevent secular behavior we must have for
asymptotic times on the r, scale (T0-~):

, '=- f, dsvp &F(S)F)'i
~0 ~P mkT

+ Vp ~'k (T2, . . . , r ).
)

' 2' '''' n'

Equation (4. 14) is correct to order y'. It tells
us that the important variation of 4(t) first occurs
on the "slow" 7, scale. If we now contract our
description and return to the proper dimensional
variables we obtain for @(t) the kinetic Fokker-
Planck equation

where we have substituted Eq. (4. 9) for f,. The
integrand in Eq. (4. 11) depends only upon s; we
may perform the x integra, tion:

8+
=g v- [p+(M/p) v-] e(t)P P

V. THE SPATIALLY INHOMOGENEOUS CASE

(4. 16)

7'0 —i L~s'= —i J ds 1-—&[e L')v ]a7 Yp eq

xC(r, r). (4. 12)

Analysis of the case where spatial inhomogene-
ities exist closely parallels the calculation just
presented. The first significant difference occurs
when we consider Eq. (2. 21); Eqs. (4. 1) and (4. 3)
remain valid. One finds upon integrating Eq.
(2. 21) with respect to v'0

We may use the definitions of &and L' to write

7p

f ds(- is[ e
-i L~s

])

=v ~ f ds(F(s)F) ~ [(P/mar)+ v ]. (4. 13)
P 0

In Eq. (4. 13) we have defined the force on the
Brownian particle by

F = —VRU, and F(t) =exp(iL&t)F .

The angular bracket denotes an average over the
equilibrium distribution heq.

The autocorrelation function of F is computed
by determining the equations of motion of the bath
particles subject to the condition that the Brownian
particle remains fixed. It is reasonable to sup-
pose that this correlation function decays to zero
at some finite time on the vp scale, "i.e., its
decay is independent of y. Since Eq. (4. 12) is
only valid asymptotically on the &0 scale, on
taking the limit ~0 ~ one obtains

=exp[ —(P/m) ~ V rl]%0(O, T2, .. ., v )

and hence 4, =—0. In the case where spatial in-
homogeneities exist both 4'0 and f, vary on the r,
scale; on this time scale the Brownian particle
follows a straight line trajectory.

We now turn to Eq. (2. 18) and integrate with
respect to v;. After lengthy but straightforward
manipulation one finds

(5. 2)

—sL s
fl(r, T ..., T )=- f dse

eq

x [(P/m) p F~ V„F ]e (r, , v ) . (5. 3)

This result is now substituted into Eq. (2. 22)
and an integration with respect to Tp performed.
We obtain

i 4', (r0, v'„. .. )= ir0 -0 +—~ V 4
~

(5. I, )
P

To prevent secular behavior we must have

+(r v . T)

84 (p M
0=gVP- -- +—V~ ~+0(T2, .. . , rn),

p )

where we have defined the friction constant

(4. 14)

(5. 4)

i@2(T0, T1, ... , T )

70
= —ir0 ' ——f dxf ds v (F(s)F)

0 0 P
2 0

~ [ (p P/m) + v j e0(r, . . , r) . . ,

g = (p/3M) f dt (F(t) F), (4. 15)

and we have made use of the fact that the fluid is
isotropic. We also note that the asymptotic con-
dition [and the fact that 4', (0, v;, . .. , Tn) = 0] re-
quires us to set 4'2=—0 as ~0 . Part of the tran-
sient behavior of the Brownian particle distribu-
tion function is given by

An identical argument to that used in the previous
section leads to the asymptotic condition 42 =—0
and

&4'0 t P M0 =fv ~ +—Vy
BT. P r2
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x 40(T1, r2, . . . , ~ ), (5. 5)

where we have used the fact that the fluid is
isotropic.

We now contract the description taking into
account that 4, varies on both the 7, and 7., time
scales,

o +&2 o +0(&3)
Bt 9+ 9T2

(5. 6)

Our final equation becomes, when we return to
dimensional variables, exactly the Fokker-
Planck Eq. (1. 1)'.

.[p+m/Pvpje(f).

VI. CONCLUDING REMARKS

X'-0 t - )'t = 7. = constant. (6. 1)

We have presented a derivation, by the multiple-
time-scale method, of the Fokker-Planck equa-
tion for the Brownian particle distribution func-
tion. The method clearly reveals the importance
of the existence of widely separated time scales
in the problem. Our calculation has explicitly
been carried out to order y'. In the spatially
uniform case our result may be obtained by the
projection operator method' in conjunction with
the double limiting procedure'

The double limiting procedure implies the result
explicitly displayed by the multiple- time- scale
method, i. e. the important variation of 4 is on
the "slow" time scale &,. When the system is not
spatially uniform, we find that the important
variation of 4 occurs on the two "slow" time
scales ~, and 7, . When this case is considered
from the projection-operator point of view, the
limiting procedure of Eq. (6. 1) will not yield a
sensible result. The double limiting procedure
can only extract one slow time scale.

It should be emphasized, that the multiple-time-
scale method alleges that corrections to Eq. (5. 7)
will be of order y' for all times. There can be
no secular terms in the higher order corrections
because the method systematically removes this
type of behavior.

One of the most intriguing possibilities of the
multiple-time-scale method is that it suggests a
systematic procedure for obtaining corrections to
Eq. (5. 7). These "corrections" may be of two
types. First, we can inquire about the relaxation
from an initial condition that differs from the
simple one universally adopted and adopted here.
Secondly, we can examine the behavior of 4 to
orders higher than y'. This would involve an
analysis of the behavior of 4, on slower time
scales than v, and a determination of 43
etc. We are currently considering this ques-
tion "

The multiple-time-scale method has had con-
siderable success in problems dealing with the
kinetic theory of neutral gases and plasmas. In
our judgment the method offers attractive possi-
bilities for dealing with a variety of relaxation
problems in liquid systems.
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