
KI NEMATIC FACTORS AT ZERO MASSES

to the massless case; otherwise the longitudinal ampli-
tudes become in6nite as nz~ —+ 0, since the longitudinal
polarization vector e„&si(k)= (k,kelt/k)/nsv blows up in
this limit. This fact has led to the conclusion, that it is
absolutely necessary to impose gauge invariance when
dealing with zero mass. This is not so. We can see this
by looking at the unitary ma, trix, which connects the
helicity amplitudes for diferent Lorentz frames. This
matrix depends on the Wigner rotation for helicities
W&(A,k) =Z-'(Ak)a-'(Ak)Aa(k)R(k), where R(k) is
a rotation which takes the s axis into the unit vector
k/k and J3(k)= (k.o/ns)iis is a boost which takes the
vector (m,0,0,0) into k= (ke,ki,ks,ks). The Wigner ro-
tations W~(A, k) go to a finite diagonal matrix as us ~ 0,
even though the individual boosts B(k) and 8 '(Ak) go

to infmity. Consequently, the hclicify arnplifu«& «n
have finite values even though gauge invariance is no/ An-

posed. Our I Ii E&' stay the same, independent of
whether the longitudinal amplitudes vanish or not—as
long as they are 6nite. This follows since the components
of the crossing Inatrix which connect the transverse
s-channel amplitudes to the longitudinal t-channel
amplitudes vanish for @&~=0. Therefore, guage in-
variance is not responsible for the discontinuities of the
EP. We need gauge invariance for massless particles
only if we use the usual invariant-amplitude decornpo-
sition; the problem lies with the decomposition itself,
since it is not valid for the general case and it is not
suitable for describing massless vector particles except
for the special case when gauge invariance is assumed.
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We consider how nonlinear realisations of the chiral 8U(3)XSU(3) symmetry arise in certain limits of
models in which fields transform linearly under the group of transformations which leave the Lagrangian
(approximately) invariant. All possible cases of nonlinear realizations of the chiral SV(3) )&SU(3), wherein
at least the U(2) group generated by isospin and hypercharge is linearly represented, are considered. The
connection between the nonlinear realizations and the spontaneous breakdown of the symmetry is made
clear. Our results are clari6ed from a group-theoretic point of view, thereby establishing the connection
between our results and a more general consideration of Coleman et al. We discuss theoretical and experi-
mental implications of nonlinar realizations of the chiral SU(3)&SU(3), with reference to the fg meson.

I. INTRODUCTION

'N this paper we shall consider various nonlinear
~ . realizations' of the chiral SU(3)XSU(3) symmetry
in the context of a dynamical model. The problem of
realizing a symmetry group 6 in the representation
spaces of its subgroup has been discussed in generality
by Coleman, Wess, and Zumino'; the special cases of
realizing SU(2)XSU(2) Lor SU(3)XSU(3)j in the
representation spaces of its subgroup SU(2) Lor SU(3)j
have attracted special attention and have been discussed
by a number of authors. '

~ Present address: The Institute for Advanced Study, Prince-
ton, N. J.

f Supported in part by the U. S. Atomic Energy Commission
and the Alfred P. Sloan Foundation.' We shall use the term "nonlinear realizations" in the sense of
S. Weinberg, Phys. Rev. 166, 1568 (1968).

~ S. Coleman, J. Wess, and B. Zumino, this issue, Phys. Rev.
177, 2239 (1969); C. G. Callan, S. Coleman, J. Wess, and B.
Zumino, ibid. 177, 2247 (1969).' S. Weinberg, Phys. Rev. Letters 18, 50/ (196'I); J. Schwinger,
Phys. Letters 248, 473(196/); J. Wess and B.Zumino, Phys. Rev.
j.63, 1727 (1967); W. A. Bardeen and B. W. Lee, in ENcleur md
Particle Physics edited by B. Margolis and C. S. Lam (W. A.
Benjamin, Inc., New York, 1968), p. 273; L. S. Brown, Phys.
Rev. 163, 1802 (1967); P. Chang and F. Giirsey, ibid. 164, 1'I52
(1964); B. W. Lee and H. T. Nieh, ibid 166, 1507 (1968); J.. A.

Our aim in studying the nonlinear realizations of the
chiral SU(3)XSU(3) symmetry is to establish, in the
context of a dynamical model, how nonlinear realiza-
tions of the symmetry arise as a limit of a model in
which 6elds transform linearly under the group of trans-
formations which leave the Lagrangian (approximately)
invariant. To this end, we shall study a generalized ver-
sion of the SU(3)XSU(3) o model4' in which the full
symmetry ls broken 1n a way suggested by the val1dity
of the hypothesis of partially conserved axial-vector
currents (PCAC) and the Gell-Mann —Okubo mass for-
mula. It wiB suflice, in establishing the connection be-
tween linear and nonlinear models, to consider a system
consisting solely of scalar and pseudoscalar mesons. We
shaB show that a nonlinear model arises when the full
symmetry (neglecting the symmetry-breaking term) is

Cronin, ibid. 161, 1483 (1967);R. Arnowitt M. H. Friedman, and
P. Neth, Phys. Rev. Letters 19, 1085 (196 ).

4 The original a model was studied by J. Schwinger, Ann. Phys.
(N. Y.) 2, 407 (1958);J. C. Polkinghorne, Nuovo Cimento 8, 1"/9

(1958); 8, 781 (1958); M. Gell-Mann and M. Levy, ibid. 16, 705
(1960).

'The SU(3) o model was Grat studied by M. L6vy, Nuovo
Cimento 52, 23 (1967). See also S. Gasiorowicz and D. Gefkn,
Argonne Lecture Notes (unpublished); P. Mitter and S. Swank (to
be published); D. J. Majumdar (to be published}.
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spontaneously broken, ' and the SU(3) XSU(3) partners
of the Goldstone bosons acquire infinite mass. The
"would-be" Goldstone bosons acquire finite masses
only because of the intrinsic symmetry breaking. Thus
in an SU(3)XSU(3) o model as considered by Levy,
a nonlinear model which contains only an octet of
pseudoscalar mesons arises if the SU(3)XSU(3) sym-
metry is broken down spontaneously to the SU(3) and
in the limit in which the singlet pseudoscalar meson and
the nonet of scalar mesons acquire infinite masses. The
Goldstone bosons, then, undergo nonlinear transforma-
tions under the full group, and other fields may be made
to form the bases of nonlinear realizations of the group.
Thus the physical content of these models is precisely
that envisaged by Nambu and collaborators~ some time
ago in connection with the PCAC and the spontaneous
breakdown of the chiral symmetry.

In our study, we shall consider all possible cases of
the spontaneous breakdowns of the chiral SU(3)
XSU(3) symmetry, in which at least the U(2) sym-
metry spanned by the isospin and hypercharge genera-
tors is preserved.

To some extent, the intent of this paper is pedagogical
in that the nonlinear model of the chiral symmetry can
be studied per se, without recourse to linear models.
However, it may be that the nonlinear transformation
properties of pions, and possibly kaons and f(: mesons, in
nature, may be merely low-energy manifestations of
what is basically a linear realization of the chiral sym-
metry in the presence of a large symmetry breaking —be
it spontaneous or intrinsic. The main purpose of this
paper is to demonstrate that the second viewpoint is
a tenable one, and to suggest that at the level of phe-
nomenological description, the nonlinear model may be
regarded simply as a device to suppress any reference to
the degrees of freedom that are hard to excite at low
energies.

The plan of this paper is as follows. In Sec. II we dis-
cuss the usual SU(2) o model and its connection with
the nonlinear model of chiral symmetry. Nothing really
new is presented in this section, but it is believed that
our views and methods may best be illustrated in a
familiar context. In Sec. III, we extend the same con-
sideration to an SU(3) version of the o model. It is
shown here that various nonlinear realizations of the
SU(3) symmetry arise in the limit as the masses of
non-Goldstone bosons tend to infinity. This result is
further clarified from a group-theoretic point of view in
Sec. IV, thereby establishing the connection between our
result and the more general consideration of Coleman
et a/. ' In Sec. V we discuss theoretical and experimental
implications of nonlinear realizations of the chiral

For a survey of this subject, see T.W. B.Kibble, in Proceedings
of the International Conference oe Particles and Fields, Rochester,
1967 (John Wiley R Sons, Inc. , New York, 1967), p. 277.

7 Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (1962); Y.
Nambu and G. Jona-Lasinio, ibid. 122, 345 (1961); 124, 246
(1961); Y. Nambu and K. Shrauner ibid. 128, 862 {1962); Y.
Nambu and J. J. Sakurai, Phys. Rev. Letters 11, 42 (1963).

SU(3) XSU(3), with reference to the possible existence
(or absence) of the a meson.

The ensuing discussions in Secs. II and III are to be
understood in the context of a field theory in which one
retains only tree diagrams. '

II. NONLINEAR LIMIT OF THE
SU(2) IF MODEL

As a preliminary to the ensuing discussions, we shall
elaborate on the connection between the linear SU(2)
o. model of Schwinger' and of Gell-Mann and Levy3 and
the nonlinear model. ' This connection is in fact well

known, and forms the basis of %einberg's derivation of
the chiral-dynamics Lagrangian. It is believed, how-

ever, that the inclusion of this topic here will serve as an
illustration of our viewpoint adopted, and as the basis
of certain assertions made in the later discussions. For
the sake of lucidity, we shall ignore the coupling of
mesons to nucleons, since this is irrelevant to our
discussion.

The Lagrangian that we have in mind is

L= -'(t)o) '+-'(8~)' —-'tt, 2 (~'+ ee')

+-'X(a'+m')'+ f tt 'o (1)

whence f and tt are, respectively, the pion decay con-
stant and the pion mass. Save for the last term, the
Lagrangian is invariant under the chiral SU(2) XSU(2)
transformations, the fields

MNp=,'~2(trl+is m) p, M p= ,'v2'(ol -i~ m)—p (2)

transforming, respectively, as the (2,2) and (2,2) repre-
sentations of the of the chiral group. (Of course, these
two fields are unitarily equivalent. ) In terms of these
chiral fields M p and M'

p, the Lagrangian (1) may be
rewritten as

L= 2 Tr8„Mtt)I'M 'tto2 TrM—tM— +xi' Tr(M"M)'
+(1/'2v2) f tt ' Tr(M+Mt), (3)

where (M) p Mp and (Mt)——p=M p'
The Lagrangian (1) has a term linear in o, which

allows the transition o. —+ vacuum. By translating the o-

field by a constant c number, we define a new scalar
field s whose vacuum expectation value vanishes':

s= tr f„—
In terms of the s field, the Lagrangian may be written as

L= -,'(t)s)' —-', tt.'s'+-,'(t)~)' ——',tt. 'm'

Pfr P~ p 2 p 2

s(s'+ m') — (s'+ et') ', (5)
2f Sf '

' B.W. Lee and H. T. Nieh (Ref. 3); S. Coleman et at. (Ref. 2);
Y. Nambu, Phys. Letters 26B, 626 (1968); D. G. Boulware and
L. S. Brown, Phys. Rev. 112, 1628 (2968).

See, in particular, F. Giirsey, Nuovo Cimento 16, 705 (1960};
Ann. Phys. (N. Y.) 12, 92 (1961); M. Gell-Mann and M. Levy
(Ref. 4); S. Weinberg (Ref. 3); W. A. Bardeen and B. W. Lee
(Ref. 3).' The constant f is the pion decay constant. See, for example,
W. A. Bardeen and B.W. Lee (Ref. 3).
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FIG. 1. Feynman rules for Lagran-
gian (5). Dotted lines are 0 lines; un-
dotted ones are ~ lines. The greek
indices a, p, ~ ~, are isospin labels of
pions.
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2 —~s )f 2

ps ~s 3hf 2 1»=sL(~~)'+(~~)']+f-I '~,

(f 2 ~2)i/2
whereThe limit in which p,2~ while p,

' remains finite
is to be obtained and is equivalent to X —+ —~ and
its' ~ —oe in such a way that Iis' —Xf ' is positive and
finite. The equation of motion of the s field is

(10)

correspond to the p,2 —+~ limit of the amplitudes that
one constructs from the Lagrangian (5). The Feynman
rules for the Lagrangian (5) are summarized in Fig. 1.
As p,,—&~, we need only consider pion external lines;
the 0. lines appear only as internal lines. A consistent
perturbation procedure is obtained if one expands the
T matrix in powers of f ' and expands the o propagator
i(k' —ii,') ' in powers of k':

2 p 2 Pr Ijr
(r)2+@ 2)$— (3$2+%2) $($2+%2) (7)

2f- 2f-'

In the limit p,,2 ~ ~, the "kinetic energy" term 82s may
be neglected in Eq. (7) (see below). Thus, in this limit,
we have

The amplitudes that one computes from the nonlinear
Lagrangian

6

or
2f.'$ =f„(3$'+er—')+$($'+ er')

($+f.)[($+f.)'+ ir' —f.']= 0. (8)
/L ~ ~ ~

The solution o =$+f =0 of Eq. (8) corresponds to the
(negative) infinite pion mass Lsee Eq. (1)]and is physi-
cally unacceptable. The other solution,

0

when substituted in Eq. (1), leads to the standard form
of the nonlinear 0. model. %e recall that this is the
unique nonlinear Lagrangian, "which is at most quad-
ratic in the derivatives of pion fields and in which the
divergence of the axial-vector current transforms like
(2,2)+ (2,2) under the chiral algebra.

"The uniqueness of the SU(2) chiral-invariant I agrangian is
shown in L. S. Brown (Ref. 3); W. A. Bardeen and B.W. Lee (Ref.
3); S. Weinberg, Phys. Rev. 166, 1568 (I968),

LHere we see that we must assume that ~k'~&Cii. '. A
similar assumption is made in deriving Eq. (8).] It is
not very diS.cult to see that in any tree diagram' the
first term in Eq. (11) gives rise to a term in the T matrix
diverging as p, , but this divergent term is cancelled by
the similar, diverging contact term. The second term
gives rise to a finite term proportional to k . LSimilarly,
the Lagrangian (10) contains terms quadratic in deriva-
tives of field, and no higher. ]The rest of the terms on
the right-hand side of Eq. (11) do not contribute in the
limit ii,'-+~. We see also why the Lagrangian (10) is
not renormalizable (in the usual sense), while the
Lagrangian (5) is; the Lagrangian (10) corresponds to
the limit of (5) in which the o propagator is replaced
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with —s{p, '-+k'p '), and p,,' is let go to infinity, and
becomes in6nite; clearly loop diagrams involving 0- lines
do not converge in this limit.

As an illustration, we consider the ~x scattering:
s.(kt,n)+s.(ks,P) ~ s(ks,y)+s(k4, 5). The 0 pole terms
give

The mass of the scalar particle is given by ps' —3Xf ',
as before. The solution f =0 of Eq. (14) is to be re-
jected, since the transformation in Eq. (12) would no
longer be canonical. The other two solutions are physi-
cally equivalent, being

f-'= (~s'-u-')/&.

In the limit as ps', X -+ —~ and ps'/lt fixed, we obtain

fs =ps /~. (15)
+4)'

+ ' i+pel'rilllta'tiollsj
while the contact term gives

. r
(—s)~ b sb» +permutations ~.

f1f

The sum of these two terms is

P~ (4+~s) IJ~ P~ )—
8 s8~s i +s i — ~+permutations

fw fw f~
= (s/f-') L&-s&. (~ I -s)+—t'.,&s (& ~.')

+~-s~sv(N ~-')j
in the p,, ~oo limit and agrees with the T matrix ob-
tained from Eq. (10).

The nonlinear Lagrangian (10) may also be obtained
by the following device. We perform a nonlinear canon-
ical transformation on the fields M in Eq. (3). )We
eall a nonlinear transformation of fields x —+y= f(x)
canonical" if f(x) is formally expandable in powers of
x, with f(0)=0, f'(0)=df/dx~, =s——1, and the inverse
transformation exists. In the present context, the 6elds
x and y are understood to have zero vacuum expecta-
tion values. j We consider the canonical transformation
(~ ~) ~ Q,p) g~~~~ by

It is easy to see that for f &0 this transformation is
canonical in the sense described above. On substituting
Eq. (12) in Eq. (3) we obtain a new form of the Lagran-
gian in terms of Q and p:

I.= ', Tr(B„Mt)(8 M) -',p, ,'(f +@)'+'X(—f-+y)'
+ ',f.l .'(f.+4) T-r eos(y ~/f. ) (13).

In this form of the Lagrangian, the terms proportional
to p,o' and X are now functions only of fIb. The constant

f„ is determined from the condition that there be no
term linear in P in Eq. (13).This gives

~sf +lf s+f ~ s —0 (14)

"This definition is tacitly used in W. A. Sardeen and B. %'.
Lee (Ref. 3).

Since the mass of the scalar excitation goes to in6nity,
reference to the scalar field p may be dropped in Eqs.
(12) and (13).We thereby obtain

M=f '»-/KZ. (16)

IIL SU(3) e MODEL

We consider the SU(3) version of the 0 model first
studied by Levy. ' In this model, nonets of the scalar
and pseudoscalar particles are assigned to the (3,3)
+(3,3) representation of the chiral SU(3)XSU(3). It
is convenient to denote the meson 6elds by

M p
——(Z+sil) p—= (M) p,

which transform like (3,3), and

(18)

M~p=(Z —sil) s—= (Mt) p (18')

which transform like (3,3). In Eqs. (18) and (18'), Z
and II are the usual 3&3 Hermitian matrix representa-
tions of the scalar and pseudoscalar nonets. Let Q;,
s= 1, 2, . . ., 8, be the SU(3) charge operators and Q;s be
the corresponding axial charge operators. The chiral
SU(3)XSU(3) is formed by the operators 2Q;+=Q,

'~ Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

Equation (16) is equivalent to the one that follows from
Eq. (9):

M= L(f '—ss')'I'+ssc ~g/v2 (1/)

in that the Gelds ~ and p are related by a canonical
transformation. Note also that, in either case,

MMt=MtM= ,'f '. -

As shown elsewhere, ' ' all these equivalent forms of M
give rise to the same T matrix, when aH external lines
are put on the mass shell.

Note that if ps' and X were finite, then Eq. (14) would
be precisely the condition for the spontaneous break-
down of the chiral symmetry. '~ In this case, r can have
a nonvanishing vacuum expectation value even in the
absence of the symmetry-breaking term f p 'o of Eq.
(1). Equation (15) woukl imply p '=0 Lace Eq. {6)j,
and the pion would be the Goldstone boson of zero mass.
In our case, Eq. (15) is true only asymptotically as

p '-+ 0, so that pions can have a 6nite mass. Nonethe-
less, pions do behave much like Goldstone bosons in this
theory, as suggested erst by Nambu. ' "
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&Q&;s. The Gelds M and Mt transform under chiral
transformations as

[Q"M pj'=( s)—) .M'p

[Q, ,M p]=M, (-,')&)

[Q,+,M p]=M'„(-,')&)vp,

[Q;,M'pj= ( ',X)—';M-vp.

The Lagrangian that we wish to consider is'4

I.=-', Tr(8sM) (8+P)
—&ps[-', TOM t+ II(W&»,W&»,W«&)j

+TrA(M+Mt), (20)

where II is an arbitrary polynomial in .chiral SU(3)
XSU(3) invariants:

W"' =-', TrMMt, W&» de=tM+detMt,
W&4&=xi Tr(MM")'.

Without loss of generality, we may assume that H does
not contain a term linear in 8'('). Except for the last
term, the Lagrangian (20) is fully symmetric under the
chil'al SU(3) XSU(3). Tile Hei'lill'tlail Illatllx A cail
always be diagonaHzed. We assume that it is a linear
combination of ) 0 and X8. Again, by translating the Z
fields by a c-number matrix, we dehne new scalar 6elds
Z which have vanishing vacuum expectation values:

Z=Z —F, (Z)p ——F.
The c-number matrix F then must satisfy the condition

F+o&F'+PF TrF'+2yF ' detF = 2A/p ' (21b)

where &r= (8II/8W&")sr=»rt r, p= (8II/8W&p&»r-»rt-r,
and y=(8II/8W&»)»r srt r.

There are, in general, many solutions to Eq. (21b) for
given A. All the solutions, however, can be diagonalized
simultaneously with A: Since F is assumed to be Hermi-
tian, F may be diagonalized; Eq. (21b) then tells us
that A is diagonal in that representation.

As pps-+~ in Eq. (20), certain of the particles will

acquire infinite masses. In this limit Eq. (21b) reduces
to

F+o&FP+PF TrF'+2yF'detF=0. (-21c)

The trivial solution of Eq. (21c), F=O, corresponds to
aD 18 particles acquiring an in6nite mass and is of no
interest to us. In general, I' has the structure

The cases fr= fs are of special interest to us, since in
these cases a,f least isospin and hypercharge invariances
are maintained. If fi f——s f~——in the hmit pp'-+~, we

say that the SU(3) breaking is induced, since the SU(3)-
symmetry breaking is due entirely to the input term
TrA(M+Mt) in Eq. (20). Otherwise, the symmetry is
broken sPonfaupously [in this case, even in the absence
of the last term of Eq. (20), the symmetry is brokenj.

If Il is not equal to zero identically, it is possible to
write M in the form

M=F+Z+iII=e'~e's(F+X+iY)e &se'P (22)

where 5, I', X, and P are Hermitian 3&3 matrices, and
S and I' are traceless. If we choose 8, I', X, and F such
that

if f —fp=O, S,p=0 and X p&0,
if f fp/0—, S„p/0 and X„p=0,
if f +fp ——0 (&r/P), I'

p 0and —F—p/0,
if f +fp/0 (&r/P), P„pWO and F p=0,

TrP =0, Fir= Fss= Fss, (23b')

the transformation from Z and II to nonvanishing ele-
ments of S, I', X, and P is canonical, except for trivial
renormalization of 5 and I' that may be involved. The
proof of this statement and the explicit construction of
S, I', X, and I' in terms of Z and II are given in the Ap-
pendix. Since under parity conjugation F, M(x=0) -+
Mt(x= 0), it is clear that S and X are scalar and P and
I are pseudoscalar fields. .

When the expression (22) is substituted in Eq. (20),
the term proportional to po' becomes

I.'(X,F)= —pps[rs TrZZt
+II(TrZZt, detZ+detZ', Tr(ZZ')')], (24)

where Z=F+X+i F.
A remarkable fact about Eq. (24) is that it depends

only on X and F. Consequently the parhclss represented

by S &&md F would har&p sero mass but for fhp symmpfry-

breaking iNPut, i.p. , the last ferm of E&I. (ZO). Equations
(23) guarantee that there are no terms linear in X or F
iil Eq. (24). Prov1ded tllat

'4 Levy's Lagrangian t M. Levy (Ref. 5)]is a special case of Eq.
(20), in which H=nW&4&+PLW&'&g'+j W&». This choice has the
merit of being renormaHzable. The last term of Eq. (20) implies that
the intrinsic symmetry-breaking term transforms like (3.3)&s(3,3).
This is an assumption which we adopt for convenience. Insofar as
the nonlinear realizations of the SU(3) XSU{3) are concerned,
the precise nature of the intrinsic symmetry breaking is irrelevant.
Note, however, that the relations such as Eqs. (31') and (34b')
below depend on the particular representation to which the in-
trinsic symmetry-breaking term is assigned.

are positive definite (considered as real symmetric ma-
trices with indices i and J), the particles corresponding
to X and F will acquire positive infinite masses as
pp' ~po. (Whether the positive-def&niteness condition
is satis6ed depends on the form of II.")

Since, as po' —+~, the interactions among the Gelds

X and F alone become infinitely strong [wtule the inter-

"The simplest form of H, H=aW&4&+PPW&'&g'+vW&'&, does
not satisfy the positive-definiteness condition if f1=f2' fa for any
choice of 0,, p, and y. It does, however, if fI.——f2 ——fi for some
ran. ges of n, p, and y.
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ei PgiSPg —iSeiP (25)

and the term proportional to po' in the Lagrangian (20)
[or Eq. (24)j becomes a o number. The nonlinear
Lagrangian that one obtains in this manner is, irrespec
time of the form of H,

actions of the fields X and F with S and I', through
both the term -', Tr(8&M)(8„Mt) and the term TrA
)& (M+Mt), remain finite] and the masses of the fields
X and I" become infinite, these fields may be dropped
f lorn thc LaglRnglRn.

In this limit, the meson matrix M of Eq. (22) reduces
to

Goldstone, Salam, and %'einberg'7 and by Bludman and
Klein, "the Goldstone bosons manifest themselves with
those quantum numbers which correspond to the gen-
clRtoI's of thc origlllR1 gl.oup which RIc not contained ln
the conserved subgroup.

Of the 6ve cases considered above, cases (ii) and (v)
appear to be physically relevant. Since case (ii) has been
considered extensively elsewhere, "we shall discuss some
of the physical consequences of case (v). Case (ii) corre-
sponds to an induced breaking of the SU(3), while case
(v) corresponds to a spontaneous breaking.

In case (v), the matrix S and I' may be taken as"

I.= 2 Tr(8"M)(8„M)+TrA(M+Mt), (26)

with M given by Eq. (25). Note that the process of
letting @02-+~ (and thereby eliminating the fields X
and F) does not destroy the chiral symmetry of cur-
rents, since Eq. (20) is chiral-symmetric (but for the
last term) for all values of y, o'.

The number and nature of the boson excitations
present in the nonlinear Lagrangian depend on the ma-
trix F, according to the prescription (23). We shall
enumerate all possible cases with fi= f2

(i) fi= f2=0, fa/0; Scalar ~ and pseudoscalar E
mesons and pseudoscalar q meson are present. The sym-
metry of the system not broken spontaneously is the
direct product of the chiral SU(2)XSU(2) and the
hypercharge group U(1).This case is of little interest to
us because the pion, the hadron of the least mass, is
absent. In the remainder, we parametrize Ii as

f/0 (27)

(ii) w= 1:The octet of pseudoscalar mesons is pres-
ent. The symmetry is the usual SU(3). This is the case
considered by Cronin' and by Lee, ~e among others.

(iii) io=0: Pions, kaons, an isosinglet pseudoscalar
meson, and K mesons are present. The symmetry is the
direct product of the isospin SU(2) and two one-

parameter Abelian groups. [In this case, the SU(2)
U(1)8 U(1) is a subgroup of U(3) U(3)/ U(1) and

not of SU(3)3SU(3).g
(iv) w= —1:Pions, x mesons, and it mesons are pres-

ent. The symmetry is an unusual SU(3), spanned by
Qi Q2 Q~ Q4' Q~' Qe'. Q7' and Q8.

(v) wr/1, 0, —1: The octet of pseudoscalar meson
and the K mesons are present. The symmetry is that of
the isospin-hypercharge group U(2).

The number and nature of the boson excitations are
exactly those of the Goldstone bosons. As shown by

S=-
2f 2i-

Kt
'N —1

It
%2k (1+2w')"')

P=
2 2

Et
(I+2w')'t2 .

(28',

f-=f
fx= 2f(1+u') 7o= 2fxlf. 1—
f.=U(1 u), —

(31)

where f, fx, and f„are, respectively, the pion, kaon,
and K-meson decay constants. The mass spectrum is

' J. Goldstone, A. Salam, and S. steinberg, Phys. Rev. 127,
965 (1962).

'g S. Sludman and A. Klein, Phys. Rev. 131, 2363 (1963}.' For examplej J. A. Cronin (Ref. 3); B. W. Lee (Ref. 16}.
~0 In general, one can write 3f= UfFPS't U, vrhere U and S' are

unitary, unimodular, and canonically equivalent to e'~ and e'8.
A convenient form for 5" is

where the 6elds x, E, q, and K are properly normalized
in the sense that

', Tr(8„-M)(81'Mt) = ', (8„~)'-+', (8„g)'-
+(8„E')(8&I )+(8„d)(8&x)+ . (29)

The terms higher than quadratic in 6elds have been
omitted. To understand the physical meaning of the
parameters f and io, we compute the vector and axial-
vector currents V„and A„of this theory:

V„=—-', ~[a,8„Z)—', ~[11,8„11)
'~[I' 8 Zg+ ." (30)

A = —-'(Z 8 II}+-'{s.8 Z} —-'(F 8 II}+
Hence we see that

' B.W. Lee, Phys, Rev. Letters 20, 617 (1968);Phys. Rev. 170,
1359 (1968).

2,t
R' —1
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given by the term

/1 1+$
TrA(M+Nt) = const ——222+2 E&E

2f 1+w
1+2$w $—1

+ r/2+2 /it/1 +higher-order terms,
1+2w' w —1

where we have written

In summary, we note that, depending on the struc-
ture of the matrix Ii of Eq. (27), a certain subgroup of
U(3) X U(3) is linearly realized. Members of the multi-
plet which form a linear representation of the subgroup
will acquire infinite masses as we let p,o'~~, and the
remaining fields transform nonlinearly under U(3)
X U(3), as we shall see in Sec. IV. While the form of the
matrix M of Eq. (25) is deduced on the basis of a model
in which the breaking of the chiral SU(3) XSU(3) trans-
forms like a member of (3,3)+ (3,3), we infer from the
work of Coleman, Zumino, and Wess' that this form is
essentially unique.

IV. GROUP-THEORETICAL CONSIDERATIONSWe find that, by fitting the pion and kaon masses,

//r)' fee

/. // f.
The mass of the y and I~: mesons are predicted to be

1—2w 2w(1+w)
/ie = /ir + PK

I+2w2 1+2w'

j.
G($ r/

~ f) &i$ I/, ie J&ir /t.

&I= E r,Q;,
i~I,2,3,8

~J= Z ..Q;,
4,5,6,7

(34b)
where

(fJr/ x2 f./ .2)—

Equations (34) give, for fJr/f = 1.2 (1.3),

/2„=574 (578) MeV,
Ji„=1170 (1000) MeV.

The purpose of this section is to establish the claim
in Sec. III that the limit of the SU(3) 0 model given by

(33) Eq. (25) corresponds to the nonlinear realization of the
chiral SU(3)XSU(3) in the representation spaces of
its subgroup. ' We shall consider case (v) of Sec. III in
detail; for the other cases, essentially the same argu-
ments apply.

We begin by making some preliminary remarks. It is
(34a) possible to write an arbitrary element G((.r/; f) of the

group SU(3)XSU(3) as

We do not suggest taking the predictions (31) and
(34) seriously. The 2/-X mixing has not been taken into
account, nor the gauge-vector particles. When the
gauge-vector (and axial) particles are introduced in the
theory, there will be a mixing of the longitudinal com-
ponents of the vector (axial-vector) fields and the scalar
(pseudoscalar) fields. "The latter effect is expressed by
renormalizations of the m, E, and f~: fields:

(22) unrenorm= +e (22)renorm y

(fr)unrenorm=&r (fr)renormr

(/ir )unrenorm= &r (/ir )renorm r

The content of Eqs. (31) is summarized by a sum rule:

0"~ G0'~'=kg '(h, n; t)j p4',
where

g(k, ~ &) = exp(-'2 Z 4) ') exp(-'2 Z n;);)

(37)

( Jl=Zf-,Q
i=I

There exists an involutive automorphism p of SU(3)
XSU(3) which is essentially the parity operation":

I': Q,+~Q,—,
or

&: Q' Q' Q" —Q' (36)

The spinor f transforms like (3,0); that is, under the
operation (35), P transforms as

g 1/2f +Z I/2f —Z 1/2f

and Eq. (34b) is modified to read

(31') 1,2,3,8 i=416,6,7

Xexp(-', 2 p f',X;). (3g)
2f g 1/2 ~ 2f g —1/2+p 2f g 1/2 —(34br)—

Equations (31') and (34b') have been previously derived
by Glashow and Weinberg"; they also discuss their
various physical consequences.

"See, for example, the discussion in B.W. Lee and H. T. Nieh
(Ref. 3).

~~ S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968).We wish to thank S. Weinberg for illuminating discussions
on this work.

Under the parity operation, f transforms into pn, and
consequently, under the action of Eq. (35), lfri trans
forms as

I:C '(4n l)3'//4~ —' (39)
"The importance of the involutive automorphism (while in-

essential) in this context is emphasized by L. Biedenharn, in
Proceedings of the Fifth Coral Gables Conference on Symmetry
Principles at High Energy, edited by A. Perlmutter, C. A. Hurst,
and B. Kursunoglu (W. A. Benja~II, Inc., New York, 1968).
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Then, according to Eq. (35), it is possible to write

is Jeip AG{]1/. f) —Sip rs is'J'Bi//'a — (4I)

where f, 8', and p'depend, in general, on sand p as well

ss on $, r/, and f'. If we substitute for the generators in
Kq. (41) the matrices in the (3,0) representation, we

obtain

or

8-isg iPg(] ~. t) Sip ~ r/28 iB'8 iP'—- (42)

The transformation law for the tensor 3f 'p is therefore
given by

Er'(&,~; f-)j"M".h(~, ~; t-)j B. (40)

Now let 8; (e=4, 5, 6, and '/) and P; (i= 1, 2, . 8) be
the 6elds corresponding to the rc mesons and octet
pseudoscalar mesons. Let

8

)1;S;, P = ', Q -)1(P'.
i~4, 5 s6 s7

then P transforms under the action of G(&,t/; i) of Zq.
{35)as"

GyaG-1 p&
is'-8 iP'-g-. l(~ . f)sipeisjayy
i@—r/S j~ a yb

where use is made of Eq. (42). It shows that, since the
matrix 8 '&"/' is reducible (block-diagonal in the iso-
spin-hypercharge representation)„each isospin-hyper-
charge multiplet of Q transforms irreducibly.

In general, we may assign to any 6eld x of isospin T
and hypercharge F the nonlinear transformation law

GgG
—'= e—'&"x (49)

where t is the representation of I;, i= 0, I, 2, 3 (I,=Q,),
in the space of isospin T and hypercharge I". For the
construction of the nonlinear Lagrangian which is
invariant under the nonlinear transformations of
Eqs. (46) and (49), we refer the reader to the extant
literature. "

g 1(g ~
~ g)eiPSiS SiP'Sis'g—ir'r/

&~,2,3,0=&S,e,3,8
(42')

V. CONCLUDING REMARKS

In the (0,3) representation, Eq. (4i) takes the form

8 iSS+iPg(P
—

r/
~ f )—Sif r/SS iB'8+/P'— (43)

Thus, if we identify (Mt) 8=M '8 with

~t—p
—ski SP~s8~—iI' (25')

and assign the nonlinear transformation properties to
g a,nd I', given by

GSG-'= S',
GI 6-~=I',

then we have

GMt(S,I )G 1=Mt(S',I")-
=g '(& ~ i.)Mt(»)-g. (&~ t) (46)

as required by Eq. (40). Hence, defined as nonlinear

functions of S and I', according to Eqs. (25) and (25'),
M and. Mt transform like (3,3) representations of the

chiral SU(3)XSU(3) once the nonlinear transformation

laws, Eq. (45), are assigned to S and E. Thus the first

term of the nonlinear Lagrangian (26) is invariant under

the SU(3)XSU(3) transformations.
If we now define a new fiel P as a canonical trans-

form of f by
{47)(& iSe iP) a Pa——

—1(( . f)8 /Pe is 8 i P—'eis'8 —i—5' r /& — (43')

If we let I' be any matrix that commutes with z,

PF~eij=0, t'=0, I, 2, 3

then it follows from Kqs. (42) and (43') that

-'(& ~ f)L '"-"& -'" '5g-(& ~-t)
—8 iP'eis'Pg iB'8 —iP':: (44)—

It is worthwhile to discuss which one of the possibili-
ties (i)-(v), if any, discussed in Sec. III is realized in, or
is the best approximation to, nature. On the ground that
f/r& f we have identified cases (ii) and (v) to be of
physical relevance.

It is well to review, erst, why the nonlinear realiza-
tion of the chiral SU(2) XSU(2) symmetry in terms of
the pion 6elds has gained the respectability that it en-
joys today. No doubt the success of current algebra is
responsible for this: Most results of current algebra are
readily understood as theorems on soft-pion emissions
based on the approximate dynamical symmetry, " the
symmetry operations acting nonlinearly on the 6elds.
However, this is not the only way in which to under-
stand. the chiral symmetry of low-energy pion processes.
As we have shown in Sec. II, it may be that the chiral
symmetry acts linearly on fields (such as pions and o),
but, because of the large o mass, the lax of nature looks
as if pions transform nonlinearly under chiral SU(2)
tr ansf ormatlons.

Now let us turn to SU(3)XSU(3). Here again the
nonlinear realization of this symmetry may be of a
fundamental nature, or it may not. The advantage of
exploring the nonlinear model is that, even when the
nonlinear transformation law is merely a low-energy
manifestation of a fundamentally algebraic symmetry, "

"%'e leave it as an exercise for the reader to shower that Eq.
(48) dennes a representation of the group, i.e., if

G'@G' '=«p( —s4".~/2)@
and G"=O'G, then G"PG" 1=exp(—Sg" s/2) exp( sg' g/2)i/. -"S.Vfeinberg (Ref. j.i); C. G. Callan et al. (Ref. 2); W. A.
Bardeen (unpublished).

'6e use the terms "dynamical symmetry" and "algebraic
symmetry" in the sense used by $. Weinberg, Phys. Rev. 177
(1968).
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it makes no reference to the degrees of freedom which
are hard to excite at low energies and describes the in-
teractions among low-lying excitations in terms of low-

energy phenomenological parameters {such as masses,

f»& fx& and f&:)
In case (ii), since the "unrenormalized" frc and f

are identical, the observed difference of fx and f must
be attributed to the renormalization CBccts as discussed
at the end of Sec. III. This may be duc to the presence
of gauge bosons (which are not completely degenerate)
or other SU(3)-breaking interactions. In case {v), the
inequality of fir and f is due, at least partly, to the
spontaneous breakdown of SU(3). This case calls for
the existence of the ~ mesons, whose existence is at pres-
ent not clear. It is of some interest to note that, accord-
ing to the work of Glashow and Weinberg, " (a) the
6rst and second sum rules of Weinberg applied to
strangeness-changing currents, {b) saturation of these
sum rules by single-particle states, and (c) the observed
mass ratio of E~ and EA demand the existence of the
» mesons (i e., f„/ 0).In the work of Lee on Eip decays, "
on the other hand, case (ii) was assumed, and the ob-
served difference of fx and f was attributed to wave-

function renormalization CGects. In this case, the second
silm rule of Wcinberg is not satis6ed.

The existence of the a meson of the type needed in
case (v) is an experimental question and cannot be de-

cided on the basis of a theoretical speculation. As long
as fir/ f is close to unity, the &: mass could be relatively
large, and case (v) may prove to be a convenient way to
incorporate the SU(3)-symmetry-breaking effect on fx
and f, as far as lo.w-energy meson phenomena are
conccl'ncd.

APPENDIX: NONLINEAR CANONICAL
TRANSFORMATIONS OF EQ. (22)

It ls not, dificult to sec that, &1th 5, E', X, and F
satisfying Eqs. (23), Eq. (22) defines a unique mapping
of 5, P, X, and V into Z and II. Ke shall consider here
the inverse problem, that of expressing nonvanishing'

elements of 5, E,' X, and F in terms of elements of Z
and II.

It is convenient to write Eq. (22) with a dummy pa-
rameter a'.

P/a+2+i II=e'~e's(P/n+X+i F)e 's-e'r,

S=n Q o;~S&,
&

P=oi Q n&'Pg,

and try to satisfy Eqs. (23) and (A1) in each order of n.
To order. n, we obtain just the identity. Equating the
coefficlen:t of Q 111 Eq. (Ai)& we obtalll

&=Xo+iLS&P'j,
II= Fo+ (PO,F},

whclc vM have lnvokcd HcrGlltlclty of Z II 5 P X
and F to identify the Hermitian and anti-Hermitian
parts of Eq. (A1). Equation (A2) can be solved by
setting:

(a) if f fp~—0,
(X.). =0, (S.)..=L'/(f. -f,)i{~).„

if f« fp=o, -
(Xo)-p=(&).p (So)-p=o'

(b) if f +fp/0 (a/P),
(Fo).p=0 (I'o)-p=(f-+fp) '(II)-p,

if f,+fp= 0 (o'&P)

(Fo)-p=(11)-p, (&o)-p=0 (A3)

(c) We want P to be traceless. Therefore we set

In general, terms of n" (NW 1, 0) are —given by

X„+ittS,Fj=f,
(A4)F.+i(&-~}=g.

where f„and g„are nonlinear functions of Si, P&„Xq,
and Fp, with h= 0, 1, ~ ~ ~ .n —1.Thus Eq. (A4) may be
solved for S„,P, X„,and F uniquely, just as Eq. (A2)
was solved for 50, Eo, Xo, and Fo, with the conditions
of Kqs. (23) applied to them. In this way, we can solve
Eq. (22) for S, P, X, and F in terms of Z and II, and the
preceding argument shows that this transformation is
canonical, since to erst order in Z and II the nonvanish-
ing elements of S, P, X, and F are given by Eq. (A3).


