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Low-Energy Theorem from Pair Suppression and some Applications*
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Assuming separate conservation of quark and antiquark number in the static limit, a general theorem
on the low-energy limit of scattering amplitudes of hadron processes is derived. Numerous applications of this
theorem are made. A slight modilcation of the procedure leads also to predictions on pion-pion scattering
lengths,

I. GENERAL THEOREM

'N this paper we derive a general theorem on the
~ ~ static limit of scattering amplitudes, starting from
a simple and physically plausible assumption. Applica-
tion of this theorem reproduces (except for the relations
concerning the absolute magnitudes) the well-known
sum rules" on scattering lengths, which were pre-
viously obtained from current algebra and partially
conserved axial-vector current (PCAC) Wh. en com-
bined with SU(3) and SU(6) symmetry, our theorem
also leads to new sum rules. A slight modification of the
procedure permits the derivation of pion-pion scatter-
ing length sum rules.

We start with the following postulate:
Postulate. In the static limit, where the momenta of

all participating particles are set zero, the quark number
X and the antiquark number N are separately con-
served. In those channels of a vertex where this con-
dition is not met, the amplitude vanishes in the static
limit.

We may motivate this postulate as follows: The
origin of SU(6) symmetry is best visualized in the
framework of the nonrelativistic quark model, ' and
in this model it is natural and plausible to adopt4 our
postulate. The fact that one can get many successful
predictions from the realistic quark model, where all
hadrons are supposed to be composite systems with
defirzite rzgrrzbers of quarks and antiquarks, seems to
lend support to our postulate. However, in this paper
we do not resort to the model, ' except that we assume
that baryons have definite quark and definite antiquark
numbers t'for example, but not necessarily (Ã,N)
= (3,0)j and that mesons have definite non'zero quark
and antiquark numbers Dor example, but not neces-
sarily (E,'J7z) = (1,1)$. Finally, we note that our above
postulate also played an important role in a recent work

~ Research supported by the U. S. Air Force under Grant No.
AF-AFOSR-385-67.

t On leave of absence from Nihon University, Tokyo, Japan.
~ Y. Tomozawa, Nuovo Cimento 46, 707 (1966}.
~ S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
~ For a recent review, see, for example, R. H. Dalitz, in Pro-

ceedings of the Thirteenth International Conference on High-Energy
Physics (University of California Press, Berkeley, 1967},p. 125.

4 K. Kikkawa LPhys. Rev. 1753 (1968)j used the same postu1ate
in a diGerent context.

~ Our central theorem can be also obtained in a model where the
meson is a composite system of a baryon and an antibaryon and
where separate baryon and antibaryon number conservation is
assumed in the static limit.

M(ps', Ps') =C+D Ps +D'Ps', (4)

Fio. 1. Momentum assignment.

' S. Ishida and P. Roman, Phys. Rev. 172, 1684 (1968).' We indicate only the momenta because other variables (spin,
etc.) are irrelevant.
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of ours' where a prescription was given for avoiding
the defects of the usual static SU(6) theory.

From our postulate we now derive the following
theorem:

Theorem. Let A, 8, u, b denote some particles and
u, b the antiparticles of u, b, with cV, , s&0 and/or¹,s/0. Consider the two channels A+a ~~B+b and
A+ b ~~B+o, which are both supposed to be such that
the quark number and the antiquark number are
separately conserved. Then, in the static limit (when
the momenta of all participating particles are set zero),
the amplitude M satisfies the relation

M(Aye ~~Byb) = M(A—+b ~~B+a), (1)

provided the masses p and p' are sufficiently small.
Proof. The general form of the S matrix correspond-.

ing to the vertex is given by7

zb(p a+.p s+p +p s)~p sppp p s~

XM(P "P s P ' P ') (bta+ ho"+bo+btot)BtA (2)

where a (a ), etc. is the annihilation (creation) operator
for the particle u with momentum P . The momentum
assignments are shown in Fig. 1. In Kq. (2), the sub-
stitution law for the particles a and b is explicitly
represented, and the amplitude M describes all processes
corresponding to the channels C1 through C4 shown in
Fig. 2. We now assume that in the vicinity of the region
P„=P„~=O, the amplitude M can be well approxi-
mated by a first-order expansion in terms of the four-
momenta P„and P„~; i.e., we set

M (P",P~,P',P', )= oM+ zM. 'P.'+ tM.sp, ', (3)

where OM, &M„, and &M„~ depend only on P" and P .
In the static limit, Eq. (3) becomes
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FIG. 2. Possible channels for
the vertex (2).

7 A b A

M (Po', Pob) =D'Ib Dbpb in C1-,

cV(Po~ Pbb) = —(D~y' Dbpb) in C2—.
(6a)

This proves our theorem.
Even though our theorem can be valid for only

suKciently small values of p and p~, we shall now apply
it for physical scattering amplitudes at threshold, hoping
that these quantities vary only slightly with the masses.
Clearly, the most appropriate problem to consider is

Tmr. E I. Scattering lengths for pseudoscalar
meson-nucleon reactions.
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where C, D, and D~ are constants. In the channels C3
and C4, the quark and antiquark number are not
separately conserved so that, because of our postulate,
the corresponding amplitudes must vanish in the static
limit. Since in these channels, (Pb', Pbb) equals (p,',pb)
and (—p~, —pb), respectively, Eq. (4) leads to

C+ (Daps+Dbpb) 0 C (Depa+Dbpb) 0

Thus
C=0.

Since in the channels C1 and C2 (where separate quark
and antiquark number conservation holds by assump-
tion) we have the respective values (p', —bib) and

(—p, ', pb) for (Pp,Pbb), Eqs. (5) and (4) give

ar ——abLT(T+1) —T,(T,+1)—27, (9)

where ao is a constant depending on the target particle
and Ti is the isospin of the target. ' Formula (9) is
identical with Weinberg's result' which he obtained from
current algebra and PCAC, except that our ao is an
undetermined constant. The comparison of (9) with
experiments has been already discussed by Tomozawa. '
We only call attention to the remarkably well-satisfied'
sum rule

2ab(2 +giP =0,

which follows from (9) when specializing to pion-nucleon
scattering. It is indeed this particular case when our
approximation can be expected to be most adequate.

Application of the same technique to kaon scatter-
ing on an arbitrary target leads to the formulas

ar» n+PLT(T+1) —T——g(Ti+1) bb7, (11a)—
ar»= —n+PLT(T+1) —T,(T,+1)—f7, (11b)

8 Equation (9) is not applicable for pion-pion scattering because
it does not satisfy the requirement of Bose statistics. However,
by a simple modification we can derive a corresponding formula
for the m-m scattering length. It does not agree with Weinberg's
well-known result of Ref. 2. We shall discuss this problem
in Sec. QI of this paper.

9 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963) quote the values aegmw@ = —0.088+0.004 and aig~w~
=0.171~0.005, in units of p

meson-baryon scattering, especially pion-baryon scat-
tering.

II. BASIC APPLICATIONS

We first discuss the scattering of a pion on an arbi-
trary target. We denote the scattering length by
a(i,A; j,B), where i, j and A, B refer to the isospin
indices of the initial (final) pion and of the target
(residual) particle, respectively. Because of charge
independence, the general expression is

a(i,A;j,B)=nb@hgs+-P(T );g(Tg)gs.

Here (T,b);;=—ieb;; and 1', are the isospin matrices
for the pion and the target particle. Our theorem (1)
requires

a(i,A; i,B)= —a( Ab; i,B)

so that we get the restriction n=0. Thus, the scattering
length az for a state with isospin T is given by
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where ar~ (ar ) is the scattering length of kaon
(antikaon) for the state with isospin 2' and n and P
are constants depending on the target. Specialization
of Eq. (11) to kaon-nucleon scattering gives the sum
rules

2g KN o R'N+g JrN

2' RN g—KK+ii KN

(12a)

(12b)

This is a less restrictive result than the one which has
been derived by Tomozawa' from current algebra and
generalized PCAC, and our result is satis6. ed by his
formula. Unfortunately, (12a), and (12b) are incon-
sistent with experiments. " However, as has been
pointed out, ' the discrepancy may be ascribed to the
circumstance that for the KlV system, the mh. and mZ

channels are open below threshold and that the exis-
tence of the F'0*(1405) and Fi~(1388) resonances make
our approximation unreliable.

In the following we consider the general problem of
the 0 meson octet and —,'+ baryon octet scattering. As
is well known, the SU(3) invariant amplitude has eight
independent terms. Application of our theorem reduces
this number to four, and the amplitude at threshold is
given by

M=g B:B'LP-'(f)P '() P'(f)P--'() j
+ B "B.[P-'(f)P '()—P '(f)P-'()3
+am&~ B~'LP-'(f)Pv'(&) Pv'(f)P—-'(&)j

+g B B 'LP-'(f)P. '(~) P'(f)P—-'(~)3 (13)

Here Ps (i) (Ps (f)) represents the initial (final)
meson octet and Bs (Bp ) represents the initial
(final) baryon octet. In column (A) of Table I we
tabulated the contributions to the terms with the coefKi.-
cients g~ through g4 for various processes with incident
charged kaons or pions, which are not related by charge
independence. We then obtain ten new sum rules which
are independent of (10) and (12). However, there is
only one relation which is not related to EÃ states
and which can be presently compared with experiment,
viz. )

u(E+p +E+p)+a(7i p~—m p) = a(ir+-p-+ Z+E+) . (14)

There is some ambiguity if one wishes to compare sym-
metry-consideration predictions with experimental data
in case of a broken symmetry. In the present problem,
it appears plausible to assume that our theoretical
predictions refer to the generalized scattering length
which coincides with the standard scattering length for
elastic processes and which is related in the general case
to the total cross sections 0. near threshold by the

(15)

' S. Goldhaber et al. , Phys. Rev. Letters 9, 135 (1962) and V. J.
Stenger et al. , Phys. Rev. 134, 81111 (1964) give the values aPN
=—0.205~0.005 and ao&~=0.03~0.03 (in units of p, j). The
KÃ scattering lengths are complex, and J. K. Kim, Phys. Rev.
Letters 14, 29 (1965), obtained the values ReaP~= —0.002
~0.041 and Reao~~= -1.172+0.027 (same units).

a@~=0, (0.03&0.03)p (18b)

The experimental values, " which are given in paren-
theses, show good agreement. In addition, we find
for the generalized scattering length of the process
m. +p —+E'+A the result

a(n.+p +E'A) = (/-$)aa/g' ———0.108p —' (19)

From experiment" we know only the cross section near
threshold, from which we estimate the absolute magni-
tude of the generalized scattering length as

~
a( +p ~ E'A)

~

= (0.048~0.007)&.-i.

It appears that our theorem is reasonably favored by
experiments, even though the analysis was based only
on a simple approximation. Thus we feel that our basic
postulate may give an important clue for a future

"For E+p and m+p, we used the data of Refs. 9 and 10. For
w+p ~Z+E+, we quoted the absolute value given by F. Grard
and G. A. Smith, Phys. Rev. 127, 607 (1962), and we assumed
that there is no change in sign from somewhat higher-energy data,
of F. S. Crawford et al. , Phys, Rev. Letters 3, 394 (1959).

~ Using the more recent total cross-section data at a somewhat
higher energy LN. L. Carayannopoulos et al. , Phys. Rev. 1381,
433 (1965)g and assuming that the sign of the amplitude is the
same as found at higher energies by F. S. Crawford et al. , Phys.
Rev. Letters 3, 394 (1959), the right-hand side of Eq. (16) be-
comes (—0.044&0.003)p

» V. Barger and M. Rubin, Phys. Rev. Letters 14, 713 (1965).
~4 L. Bertanza et al. , Phys. Rev. Letters 8, 332 (1962) report

o =0.056+0.015 mb at a lab-system pion kinetic energy 775 MeV
(which corresponds to P;=525 MeV/c and Pf =50 MeV/c).

Here P; (Pq) is the c.m. system momentum in the
initial (final) state. Using this definition, the experi-
mental data" when substituted into both sides of (14)
give

(—0.13&0.015)y = (—0.031 o.04+'~)p '. (16)

Thus, qualitative agreement is obtained. "
Finally, we combine our theorem with SU(6) sym-

metry. The general SU(6)-invariant amplitude for the
35-tuplet meson and 56-tuplet baryon scattering has
four independent terms. "If we apply our theorem (1),
this number is reduced to 1, and the amplitude at
threshold is given by

M =gB"~cBgiinPI c~(f)Mgn(i)
M~D(j)M—o~(i)j. (17)

Here Ms" (i) (Mii" (f)) and B~iic (8" ) represent
the initial (final) 35-tuplet and 56-tuplet, respectively.
In column (3) of Table I, we tabulated the contribu-
tions for the same processes as above. We see that the
present SU(6) predictions were obtained from the
corresponding SU(3) results by setting gi ———gu=g
and g3=g4=0. From Table I, we can get several pre-
dictions which are independent of our previous results
(10), (12), and (14) and which can be confronted with
experiment. First of all, we And

g,~~= 2go,.N 0.176p-
(—0.205&0.005)p ', (18a)
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FIG. 3.Four-pion vertex.

dynamical theory. Further detailed experimental tests
of the predictions given in Table I appear desirable.

CI
~2

C3

Flo. 4. Possible channels of the four-pion vertex.

(3,4I&l 1,2)=- ~(P,'+P, +P,'+P, )
X ~Po'Po'Po'Po'~-'"m(1 2 3 4). (20)

Here P„denotes the four-momentum of the eth pion,
and the signs are chosen, as indicated in Fig. 3.

A crucial point in the subsequent analysis is that,
because of the substitution law (crossing), the amplitude
M describes not only the pion-pion scattering process,
Ci of Fig. 4, but also the other two" processes, C2
and C3.

Ke now assume that, near the static point I';"=0
(x= 1, 2, 3, 4 and i= 1, 2, 3), the amplitude M can be
weQ approximated by a second-order expansion" in
terms of the four-momenta I'„",which reads as follows:

~(1,2,3,4)

=(~(1)~(2))(~(3)~(4))&~+8I (P'P')+(P P')j
+CDP'P')+(P'P')+{P'P')+(P'P')»

+( (1) (3))( (2) (4)){~+8L(P'P')+(P'P')j
+CD P'P')+ (P'P')+ (P'P )+ (P'P )])

+(v (1)~(4))(v (2)~(3))(~+83(P'P')+(P'P') j
+CL{P'P')+(P'P')+(P'P')+(P'P')3& (21)

Here v (&) is the isospin wave function of the ~th pion,
{y(m)y(m)) and (P"P ) stand for the inner products of
p(n), p(m) and of P„,P. , respectively, and A, 8, C
are constants. In deriving (21), we assumed the sub-
stitution law, isospin conservation, and Bose statistics.

According to our postulate, in the static limit of the
channels C2 and C3 the amplitude 3II must vanish. In
channel C2, we have in the static limit {P'P")= —p,' for
I/3 and (P"P")=y,

' for n, mW3 Thus, Eq.. (2) and
our postulate give the condition

A =0. (22a)

In channel C3, we have in the static limit (P"P~)=p'

"We indicate only one of a pair of channels which arise from
each other by time reversal.

~6 In order to apply our Postulate, we consider all momenta P"
to be independent variables, in contrast to the usual procedure,
All pions are always on the mass shell, (I'")'=IJ,'. Concerning the
adequacy of the expansion (21), we refer to a discussion by Wein-
berg (Ref. 17) which essentially applies also to the present case.

III. PION-PION SCATTERING

We de6ne the invariant pion-pion scattering ampli-
tude M from the 5-matrix relation

for Rll s 5$. Hence we are led to the RddltlonRl con-
~ ~

A+ (28+4C)p'= 0. (22b)

Because of these conditions $(22a) and (22b)], the
amplitude 3f can be represented in terms of a single
parameter 8 and is given explicitly by

~(1,2,3,4) =8((~(1)~(2))(v (3)~(4)) (s—2f—2N)

+(~(1)~(3))(s (2)~(4))(~—kN —2~)

+(v (1)v (4))(v (2) v (3))(N—2~—s&) & (23)

Here, we introduced in place of (P"P") the usual
Mandelstam variables

g= (Pl+P2)2 (P3+P4)2

(—(Pl+ Pa) 2—(P2+P4) 9

u—= (P'+P4)'= (P'+P')'
(24)

Next we de6ne the scattering amplitude u~p with speci6c
orbital momentum / and isospin 7 by setting, as usual,

u(1,2,3,4) =P (2l+ 1)P.(1,2,3,4)«rPi(cose), (»)

where I p denotes the set of isospin pro3ection matrices.
We then easily obtain from Eq. (23) the relations

coo——28 (4p'+6k')

cog = —8(4p'+6k'),

egg
——28k',

(26a)

(26b)

(26c)

where k'=4'(s —4p'). The remaining amplitudes ao~,

ajo, and @~2 are zero, as required by statistics. It is
remarkable that the three nonvanishing amplitudes are
represented in terms of one parameter. In particular,
we get from {26) the 5-wave amplitude relation

ooo/+m= —2.

Our results are diferent from those which were
obtained by Weinberg" with the use of current algebra
and PCAC."The accuracy of presently available ex-

perimental data does not permit a decisive comparison
of the two sets of results. In any case, detailed experi-
mental tests of our predictions (26) are most desirable.

7 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
We And this discrepancy interesting, because in Sec. II of

this work we obtained from our postulate similar results for the
simpler problem of meson-baryon scattering to those obtained
from current algebra.


