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We devise an algebra of currents and their erst time derivatives designed to damp at high momentum the
asymptotic behavior of lepton-pair scattering amplitudes from hadrons consequent from the local current
algebra of Gell-Mann. Given certain criteria, the algebra we 6nd is unique, and the commutators are ex-
pressed linearly in terms of the currents themselves. The Jacobi identity, however, is formally violated for
this algebra; we argue that this does not invalidate it. A possible realization of this "minimal" algebra is
found in terms of the formal limit of a massive Yang-Mills theory as gfi, mo-+ 0; go/m0' —+ const&0. With
this algebra, all electromagnetic masses of hadrons are 6nite. Experimental consequences, the strongest of
which occurs in inelastic lepton-hadron scattering, are outlined.

I. INTRODUCTION
'ANY of the predictions of local current algebra, '

- ~ notably the sum rules derived by Adler, '
~ ~

Fubini, ' Dashen and Gell-Mann, ' and similar asymp-
totic sum rules valid at high g', ' ' imply that very far
off the mass-shell, current-hadron scattering matrix
elements are at least as singular as those of free particles.
Th1s 1csult 1f vcx'16cd experimentally woUld glvc onc
great conidence in the general validity of the locality
assumptions on the weak currents which underlie the
supposed pointlike nature of these amplitudes. On the
other hand, the converse is not true. Were all the sum
rules to fail experimentally, local current algebra would
not necessarily fail. There are many loopholes. One
posslb111ty ls thRt thc cqUal-tlIQc comIllutators RI'c

ambiguous. 'o Another is that, although the commutators
are taken to exist, technical assumptions (interchange of
limits in the I' ~~ method, or absence of subtractions
in dispersion relations for certain amplitudes) needed
in the derivations of the sum rules IQay be incorrect.
Also, alterations of the highly model-dependent space-
space commutators and/or of the usually assumed
high-q' behavior of amplitudes can invalidate many
existing sum rules. It is this latter loophole which is
explored in this paper.

We formulate criteria designed to minimize the experi-
mental consequences of the local algebra. They are to be
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applied in the limit of large g' (where g is a momentum
carried in by a current). Given these criteria, it follows
that many of the existing sum rules should be damped at
high g' by at least an extra power of g', and that all
electromagnetic self-energies converge. It also turns out
that these criteria uniquely determine the commutation
relations not only of the currents with each other, but
also with their time derivatives. These commutators
turn out to be linear in the currents and derivatives
thereof. We call this algebra the nw'nimul algebra. In
Sec. II we describe in detail the "unobservability
criteria" which are supposed to minimize the observable
CGects of the local algebra of currents. In Sec. III it is
shown how these criteria are sufhcient to lead to a
unique sct of coIQIQUtRtoI's of currents with the11 tlIQc
derivatives. In Sec. IV the minimal algebra is shown to
result from a limit of a massive Yang-Mills theory as
trte-+ 0 and ge/trte'-+ constant. In Sec. V, we discuss
the experimental implications of the minimal algebra.

II. CRITERIA FOR THE MINIMAL
ALGEBRA

According to the Gell-Mann11 philosophy of current
algebra, matrix elements of time-ordered products of
two currents (p~ T*(J„(x)J,'(0))

~
p')=M„.os are con-

sidered as observables, because they can in principle be
related to 5-matrix elements for scattering of lepton
pairs or photons from hadrons1':

Sr' "4~.~"(p' rl' pa)
with

io= Not+g)rett(k) or I'yo(1 Vs)tt

the lepton current. In order that 3f„,itself be observ-
able, it is necessary that the factors l„are allowed to
be reIQoved; i.e., that all four components are inde-

II M. Gell-Mann, Phys. Rev. 125, 1062 (1962}; Physics 1, 63
(1964)."Our metric is (1, —1, —1, —1);p, p, ) =0, 1, 2, 3; k, l = 1, 2, 3;
a, 0, c refer to internal indices; for example, a=1—16 for SU(3)
QxSU(3). For typographical convenience, we neglect to raise and
lower indices when invoking the summation convention.
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and M is assumed to satisfy the divergence conditions

FIG. i. Scattering of a current
from a hadron.

g.~. (g g',P)=if "{Pl~'lP')

g'ltI. (g,g', P)=if "(PI ~: I
P').

The leptonic currents satisfy

g.4 (g)=o

(5)

(6)

HI. MINIMAL ALGEBRA

Ke consider the process shown in Fig. i to lowest
order in the weak and electromagnetic interaction. The
corresponding 5-matrix element is proportional to

4 (g)t"(g')~. (g,g' P), (1)

where l and 1' are lowest-order matrix elements of
leptonic weak or electromagnetic currents and M is the
covariant hRdronic current correlation function. %'e

RSSuIQc that
ab —2 ah+a ab

fan@ PP

where T ls thc coQncctcd tlIQc-ordclcd ploduct

Rnd g ls a polynomlRl ln g. Thc hadlonlc currents alc
assumed to be conserved, "

B„J„a(x)=0, (4)

"To the extent that the divergences of nonconserved currents
are operators @&hose matrix elements are damped at large q~

(generaHzed PCAC hypothesis), our results can be extended to
include. nonconserved currents.

pendent. This is true provided the lepton mass is trot

neglected; other%'ise

g„1„=0

RQd Mpp ls ambiguous up to terms proportional to g~ ox'

g„'. On the other hand, sum rules which test the local
algebra, such as Adler's neutrino sum rules, ' involve
high-energy leptons where the neglect of lepton mass
would appear to be justi6able.

As go-+ao, i1 fixed, M„, can be expected (but not
proven) to be at least as singular as go

' with the coeffi-

cients controlled by equal-time commutators. ' This
asymptotic behavior is characteristic of point particles.
If no such behavior is manifested experimentally, it may
mean the commutation relations are ambiguous. " It
may also mean that the leading asymptotic behavior of

M„, is contained. in pieces proportional to g„or q„',
with the result that observable consequences in the 8
matrix are limited to terms of the order lepton mass.

%C shall adopt this behavior for M„„and assuxne that
through order go ', 3f„„contains only pieces proportional
Q g~ Of gp. In this way~ cxpcrlIDcIltal conscqueQces of
the local current algebra would be expected to be mini-

mized. This possibility will bc explored in a quantitative

array in Sec. III.

neglecting the leptonic masses.
I et us 6rst assume that 8=0 and that the T product

» Eq. (3) is well defined and has an expansion in in-
vex'se powcI's of go—=e up to order e 3. Then this expan-
sion is given by'

j.
2 ""{g,g', P) =(p I

d'« "*-I~. (0-,x),~.'(0)1

+—LJ. (0 ) J'(0)j IP')+oI —
I P)

N2

We now ask if the commutators in Eq. P) can be chosen
so that (1) is 0(1/i0') (in the limit go, go' -+~ with q, il',
and 6—=g—g' fixed) for all leptonic currents and had-
ronic scattering states. Then all observable effects of
the theory will be O(1/aP) (neglecting leptonic masses)
and the theory mill be as smooth as possible in thc above
framework. %C shall therefore refer to the xesulting
current algebra as the min, Anal one.

The problem can be most succinctly expressed in terms
of the operators T„„'(g,g') and J„a(6) defined by

(PI 2'""(g,g')
l
p') =~(p+g p' g') 2'""—(g,g—' p) (8)

J„'(5)= d'x e'~ *J„'(x).

Thus wc want to find the commutators in Eq. (7)
such that

4 (g)t"(g') &. (g,g') =O(1/~'),

g T ab(g g~) —ifabcy a{g)

g'2 ""(g,g') =if"~:(~) (».)
We me» by Eqs (10)-(12) that the identities are
valid when the equations are sandwiched between
Rl'bltx'Rly hRdx'onlc sccN8ftsg states.

In view of Eq. (6'), the conditions (10) require that
T has the forID

g. (g,g') =g,F."(g,g')+g, '~."'(g,g')+O( —
) {13)

for some operators F and F . The divergence conditjons
(11) and (12) impose the further restrictions

~ (&)=g'I' (g,g')+g'g. &"'(g,g')+O{ —
) (14)

J."(~)=g.g' P"(g g')+g"~,"'(g,g')+O(~-'), (15)

where rve have defined
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Jo= Ao+Ao',

0= Bo—q. A'+Bo' —AoAo',

Ja= Aa,

0=BJ+gg'Ap'.

Similarly, Eqs. (16), (1/), and (15) give

Jo——Ao+Ao',

0= Bo—q' A+Bo' AoAo —2hoAo-',
Jk Ak

0= Bk'+qkA o 2/koA k'. —

(18a)

(18b)

(18c)

(18d)

(19a)

(19b)

(19c)

(19d)

Let us exhibit the independent information in (18) and
(19).Equations (18a) and (19a) are the same equation:

Jo=Ao+Ao', (20)

and (18c) and (19c) give

~a= AI =
A
I'. (21)

The difference of (18b) and (19b), using (20) and (21),
simply gives current conservation

0= —(q' —q) J—&oJo, (22)

whereas the sum gives

0= 28o+28o —(q +q) J—Ao(Ao+3Ao') .

Finally, the difference of (18d) and (19d) gives

(23)

Finally, the behavior (7) requires that F and F' have
the forms

P ab ~—kA ab+~ oB—ab+O(~ o —
e)

— (16)

P "'=co-'A "b+a)—'8 "'+O(ko-' —') . (17)

We shall now show that (13)—(17) uniquely deter-
mine the minimal algebra occurring in (7). Substituting
(16) and (17) in (14) and equating coefIicients of coo

and &o
' gives the relations (suppressing the internal

indices)

Thus, as claimed, the conditions (10)—(12) uniquely
determine the minimal algebra (to within c numbers).
Comparison with (7) gives it to be (xo= yo)

I:Jo (x),J.'(y) j =if'"J.'(x)&(x-y),

LJk (x),Jb'(y)hr=0,
8

Lj a(x) J b(y)] —ig fabcjc( y,) g(x y)
~&i

LJk~(x),Job(y)fr=if 'Jk'(x)5(x —y),

(27a)

(27b)

(27c)

(27d)

8 8 )[jk'(x), J&b(y)jp if"——Jk'(x) —J&'(y) Ih(x —y) .
ax, ayk&

(27e)

Here the subscript "T" refers to "truncated" com-
mutators

I A,8jr=—LA,B]—(OI A,B]I0).

Strictly speaking, we have not yet established the
existence of the minimal algebra but have only shown
that, if it does exist, then it is given by (27). Thus we
must show that the commutators (27) constitute (part
of) a consistent algebra and that there exists a solution
to Eqs. (20)—(25) such that the resulting T,„given by
(13) is an acceptable amplitude.

Ke first show that the latter requirement is satisfied.
We shall exhibit a T„„consistent with (10)—(12) and
with the usual conditions —particularly Lorentz co-
variance. To this end, we let F„,be an arbitrary accept-
able amplitude Lsatisfying (11) and (12)j and consider"

T"(q,q') —=T"(q,q') —(a..—q,q-/q')

(g„p—q„'q p'/q") T p(q, q') . (28)

This amplitude is Lorentz-covariant, satisfies (11) and
and (12), and, in view of (6'), also satisfies (10).Thus a
consistent solution of (20)—(25) is guaranteed to exist.
To see what this solution is, we use the divergence
conditions (11) and (12) to write (28) as

0= 8k'+qkAo 2/koAk', —

and the sum gives

(24) T"(q q') = (q./q') J.(~)+(q'/q") J.(~)
—q.q '/q'q"(lq+q'). J(~) (29)

0= Bk+qk'A o. (25)

Equations (20)—(25) are the consequences of (14)—(17).
Note that they do not uniquely determine the sixteen
quantities A„, A„', 8„,8„'.

If we now substitute (16) and (1'/) into (13) and use

(20)-(25), we find

Too=os Jo+oo kq' J+O(co b),

Tok= oo Jk+O(oo ) ~ (26b)

Tko=ko 'Jk+ko-'~oJk+O(~-'), (26c)

Tkl=~ '(qkJl+ql'Jk)+O(~ ') (26d)
'4 To the order cu ' of interest, the q' denominators in (28) can

be replaced by q' —m'+is. The +i~ should, in any case, be present
in order to maintain the causal structure of T.

A~=A. '=J.,
&~= —~g~'Jp,

Bk'= —
oqk Jo+ 2~oJk,

Ap=Ap =-,Jp,
8o=-', (q+q') J—-'hoJo, (30)
Bo'= k(q+q') J+5/4hoJo.

This solution, of course, satisfies (20)—(25).
Next we consider the minimal algebra (27) itself.

Equation (27a) holds in all of the usual models. Equa-
tion (27b) holds in models, such as the a model" and
the algebra of fields, ' in which the currents are con-

"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960}.
6T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters

18, 1029 (1967).

Comparison with (13), (16), and (17) now gives, for
example,
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structed from Bose operators. Equations (27c) and (27d)
follow from (27a) and (27b) together with current can-
servation (4). Equation (27b) implies that (27e) must be
symmetric under (k ~ I, a+-& b, x~y), as it is. Finally,
all of the Jacobi identities are formally satisled except
the one involving Jk, J~, and Jo, which cannot be satis-
Qed unless the currents vanish. The fact that this
double commutator does not formally satisfy the Jacobi
identity is not necessarily an inconsistency. Our deri-
vation only implies and requires that (27) is valid when
sandwiched between physical scattering states Ip),
whereas the formulation of the Jacobi identity would

require them to be valid between, say, the physical
state

I
p') and the state J(xo,z) I p). Thus no difficulties

can arise if we only use the relations (27) between
scattering states. Put diQerently, held theoretic equal-
time commutators must be defined as equal-time limits"
and the Jacobi identity will not hold when certain of
these limits can not be interchanged. We shall illus-

strate and discuss this further in Sec. IV within the
context of a specific model.

The relations (2'I) are, furthermore, consistent with
our initial assumption that 1„,has an expansion in
powers of co ' to the order of ~ '. The nonsingular
nature of the right-hand sides of (27) (e.g., the absence
of local operator products) suggests that the terms in

(7) are well defined so that the expansion should be
valid.

Ke finally note that dropping the assumption $=0
would not change any of our results. If we add to T„,
any polynomial S„„in g, then the conditions (1)=0,
(5), and (6) require that S„„=0.

IV. LIMIT OF MASSIVE YANG-MILLS
THEORY

In this section we show that the minimal current
algebra of Sec. III is the algebra corresponding to a
particular formal limit of the massive Yang-Mills
theory. This will shed light on both the singular aspects
of the model (such as the failure of the formal Jacobi
relation) and the smooth aspects (such as the good
high-go behavior). It will also enable the incorporation
of electromagnetism, PCAC (partially conserved axial-
vector current), and SU(3)-breaking into the model.
The approach is along the lines given by Bardakci,
I'rishman, and Halpern. "

The massive Yang-Mills" theory is defined by the
Lagrangian density,

(x) 1p c(x)p a(x)+'~,2y c(x)y c(x) (31)

where

p c, g y a gy c jg fcbcQ, by c+y cy b) (32)

R. A. Srandt, Phys. Rev. 166, 1795 (1968).
"K. 3ardakci, Y. Prishman, and M. S. Halpern, Phys. Rev.

170, 1353 (1968).
'9 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); see

also Ref. 18.

X= mo'/go, C= mo'/go'. (36)

The assumption of field-current identity" and field
algebra ' is that the hadronic currents are given by

J„'=XP„'.

One then has current conservation

B„J„=0.

(37)

Bardakci, I'rishman, and Halpern" have shown that
in the limit

mo —+ 0, go —+ 0, C= const, (39)

the above model becomes the 8ugawara" model
(*o=yo):

I J"( ),J"b)3= f."J"()~( -y), (40a)

LJo'(x),Jb'(y) j=if"'Jb'(x) b(x—y)
+iCb"(ii/Bxb) 6(x y), (4—0b)

I:J'(x),Ji'(y) j=0, (40c)

(aoJb'(x) abJo'(x), J—ib(y)]
= if"Jb'(x) (8/Bxi) b(x y)—

—iC 'f-'f'"'Ji'-(x) Jb"(x)5(x—y) (40d)

g Jc ij J c—1C lfcbc(J bJ c—+J cJ b) (4~)

~"=oC '(J' J:+J:J: g:Jb Jb) (—42)

Bardakci et al used the li.miting procedure (39) to
incorporate electromagnetism, P CAC, and SU(3)
breaking into the model.

We shall show that in the different limit

rrbo~ 0 go ~ 0, X= coilst, C~ oo (43)

the massive Yang-Mills theory yields the commutation

N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(1967)."H. Sugawara, Phys. Rev. 170, 1659 E',1968).

The equations of motion are

p c+iibooy c—Xg fabc(p by c+y cp b) (33)

the stress-energy tensor is

&,.= o(P,b Pb. +P.b P)„')
+'.~'(e;e:+e:~;) g-,.L, (34)

and the canonical commutation rules imply (xo——yo)

L@o'(x)Ao'(y)3= ~ 'f"v '( )&(x—y), (35a)

L~o.(*),~"b)j= &-'f "v"~(*-y)
+imo '"o'(8/Bx—b) b(x y), (35—b)

Lyb (x),yi'(y)]= 0, (35c)

I ~o~..( )-~.~"( ), ~ 'b)3
=jg'gbib(x y)+i—P. 'f "gb—'(x)(8/8xi)8(x y)—

iC 'f"—'fbd'p;(x)cd„d(x) b(x y), (—35d)

where we have defined



relations of the minimal algebra. We shall (and, in
fact, must) simultaneously take the divergence of local
held products into account. Ke assume that the diver-
gence of {P~'(x),Pq~(x) } is mild enough so that .(8=) (~), g.h)=[.(&)y, (4g)

(44) with"C '{P~'(x),P~"(x)}-+ c number

valid between physical states. All the equal-time com-
mutators in the theory are to be defined in this way.

We now specialize to the case (43) and (44). We put

-', [ .(&)j'~,.(+t)~, ( ), (45)

in the limit (43). This can be thought of as a boundary
condition to be used. in solving the theory. Under (43)
and (44), (35)—(37) give exactly the commutation rules

{27) of the minimal algebra. In addition, the c-number
parts of the commutators are given and, for (35b) and
possibly (35d), are infinite. This, of course, is acceptable
and is exactly what happens in the free-field quark
model. YVhat we attempt to do is remove the g-number
divergence from (35d) and have it become a c-number
divergence in (35b). As we have seen in Sec. III, this
makes the physical properties of the theory less singular.

Let us now give a more careful discussion of our limit-
ing procedures. Ke assume that, in analogy with soluble
models and perturbation theory, local 6eld products are
to be defined as suitable limits of nonlocal products. "
Thus the mass term in (31) becomes

«(5) ~ 0, I «($)j'4„'(x+&)P (vx) ~ c ~umber, (49)

so that the commutation rules (35), defined in analogy
with (47), become those of the minimal algebra. The
algebra is, furthermore, now guaranteed to be com-
pletely consistent, provided the limits $ —+ 0 are taken
after all commutation. In particular, the Jacobi identity
will now be satisfied. For example, whereas one has

lim C—'(P)Jp(y+$) J&'(y) = C&& ~(y) = c number, (50)

one nevertheless has (xo——yo)

=lim [J, (x),C„"(y;()j
=i lim C '((){[f""Jg"(x)+h"C(&)(8/Bxl)]

$~0

where the limit is to be taken in a spacelike direction,
say &=(0,(). The vanishing of mo(0) is supposed to
cancel singularities of the local product 4v(x)p(x). The
equation of motion (33) becomes

XJ '(y)~(x-y-&)+J"(y+&)[f""J"( )

+&"C(t)(~/»~) j&(x—y)}

= '[h"J '(y)+5"J (y)gb( —y)WO. (51)

B„P„„(x)= lim {-,'g0(&)f~'
$-+0

&&[~..'( +r)~. ( )+~. (*)&,.'( +&)3

—[«ao(5)]'4. (*)} (46)

Ke only assume this relation is valid between physical
scattering states. Let J„'(x; $)=X($)Q,'(x; $) be the
nonlocal solution of the nonlocal theory with $/0. We
assume, again in analogy with soluble models and
perturbation theory, that the equal-time local current
commutators can be calculated as limits of commuta-
tors of the corresponding nonlocal currents. '~ Thus we
assume, for example, that (35d) becomes (xo= yo)

$8pJI, (x) BIJO (x), J('(y)]—r

One can now use the method of Bardakci et al." to
introduce electromagnetism, PCAC, and SU(3) break-
ing into the theory.

In perturbation theory'2 the divergences in the local
products y(x)y(x)y(x) and @{x)a„y(x) will be worse
than that of Q(x) p(x) and, in order to obtain a non-
trivial theory, we assume that this is the case here.
We put (as boundary condition on the solution of the
theory)"

I: (~)74..(*+~)~.'(*)~ ( -~)-c ""(*) (»)
[ (r)]'~. (*+&)~~"(*) x,."'(*), (53)

for some local operators C, x; and denote by E;(x) the
particular combination occurring in (33). Thus, in
our limit, {31)—(34) become

8
= f " '() ( ) 'f-'f'"'— —

8$g

X»m [C-&(~)J, (x+~)J,"(x)]S(x—y), (47)

I.~—'I' .Z-
P a~gyv: gya

Hvv~ g (+vX ~Xv +~vX +Xv ) gvvL v

(54)

(55)

(56)

(57)

"See, for example, R. A. Brandt, Ann. Phys. (N. Y.) 44, 221
(1967); and W. Zimmermann, Commun. Math. Phys. 6, 161
(19@').

~'An example is the free scalar Geld @(x) which satisfies
t'4 (*+5)4(*)~—t/4~'.

between physical scattering states. It is important to
note that, for example, (55) can not be substituted into

"For the example of Ref. 23, one has

5'4 (x+5)4 (*)0(x—5) ~—(3/4~')0 (*)



J. D. BJORKEN AND R. A. BRANDT

(54). One must first substitute (32) into (31) and. then
take the limit $~ 0 using (52) and (53).

It is interesting to note that our expressions (54)—(57)
are exactly orthogonal to the Sugawara expressions
obtained from (31)—(34) in the limit of Bardakci e1 cl.
In our limit (43) only the kinetic terms survive whereas
in the limit (39) only the mass terms survive.

Although the minimal algebra appears to be more
singular than the Yang-Mills or Sugawara theories,
many aspects of it are, in fact, less singular. Ke must use
complicated commutator deinitions such as (47) and
impose boundary conditions such as (44), (52), and (53).
%C have, however, eliminated the singular local 6eld
products from (31)—(34) and (35c). As we have seen in
Sec. II, this has a smoothing CGcct on the high-gQ

properties of the theory. In CBect, we have made the
mathematical formalism of the theory more complicated
in order than its physical consequences become less
complicated.

(iv) Similar statements hold for neutrino and anti-
neutrino processes, e.g.,

lim lim q'
qQ~oo +~op

"dv dg(vp —+hadrons)-
— =0. (60)

M„,=P„P.Ag(v, t,q', q")+ .

the Fubini-Dashen-Gell-Mann sum rule is

(61)

dv ImA ~(r, t,q', q")=F(t), (62)

while from thc minimal algebra

(v) No statement can be made on the validity of the
Fubini —Dashen —Gell-Mann sum rule with the minimal
algebra alone. Writing, for the special case of spin-zero
matrix elements,

V. EXPERIMENTAL CONSEQUENCES

dp
lim q' —ImA~(v, t q' q'2) =0.

q& qim-woot V

(63)

Because the minimal algebra yields smoother asymp-
totic behavior in go=so, except in the almost unob-
scrvablc p1cccs proportIonal to gp oI' gp ~ thc high-g
behavior of various sum rules is weakened. Among the
results are the following:

(i) All electromagnetic mass-differences are 6nite to
order n. This follows from the vanishing of the g-number
part of [J' em J em7 25

(ii) Asymptotic sum rules for neutrino' (and in all
likelihood inelastic electron or muon scattering) in
the backward direction' have a vanishing right-hand
side because [j,(x),j;(0)7=0 for the minimal algebra.
In the case of inelastic scattering, where only inequali-
ties exist, one cannot make a rigorous argument,
because the inequality goes the wrong way. It is coe-
sistmf with the minimal algebra to have a vanishing
right-hand side.

(iii) The sum rule of Callan and Gross'

What can be said is that the value of s needed to
saturate this sum rulc grows more rapidly than linearly
with g' in the "minimal algebra, "contrary to what has
been sometimes assumed in the literature.

(iv) The minimal algebra implies that the Weinberg26
sum rules are valid. In fact, the absence of J' terms in
the [J,J7 commutator allows the second sum rule to be
derived without invoking special limiting processes.

(vll) The failure of the nllnlmal algebra to satisfy
the Jacobi identity suggests that some of the vacuum
expectation values of the commutators are divergent.
This was the case, for example, when the algebra was
obtained as a limit of the massive Yang-Mills theory.
These divergences themselves have experimental impli-
cations. The Dooher" relation,

0= lim B'lnEot «(Z).+.—

Q~oo

for example, should no longer hold.

Q, Qr ~oo

lim q'
gR ~oO

dv—W, (q', v) =const =E,
Q P

(58)

tlg (ep +hadrons) -4n.n'
W2(q' Z—8') (59)

dq'dE. '

In conclusion, we wish to cInphasize that experiments
can test the speculations in this paper. Perhaps the most
conclusive test is the behavior of the Callen-Gross
integral Eq. '(58). For it to vanish in the limit is not a
consequence of field algebra or most conventional
Inodels.
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