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A representation for the scattering amplitude that contains Regge behavior, crossing symmetry, and
analyticity is discussed. It is shown that it provides a different ghost-eliminating mechanism (the
Mandelstam-Wang one) from that given by Veneziano's proposal. Furthermore, it does not restrict the
external masses, but reduces to Veneziano's formula when 0.(s)+n(/)+a(u) equals a particu1ar integer that
depends on the reaction. Several examples are discussed. The behavior of the Regge residue P, ,(t) at
n, (t}=0 is proposed as a test that distinguishes the two representations.

'IXIN6 analyticity, crossing symmetry, and
~ Regge behavior in a suitable approximation

scheme has been the aim of all the recent developments
in superconvergence and finite-energy sum rules. The
idea has been stated that these requirements could
produce enough constraints on coupling constants and
masses to become the basis of a bootstrap. ' ' In this
work we concluded, in fact, that the program was both
feasible and predictive. However, it was not clear
whether the whole content of crossing symmetry was
indeed taken into account by the sum rules.

The next, important step forward was taken by
Veneziano, ' who recently was able to take advantage of
all the hints given by the sum-rule approach to propose
a closed, explicit form for the amplitude that embodies
the following properties: (a) complete crossing sym-
metry; (b) that the only singularities present (for linear
trajectories, in the narrow-resonance approximation)
are the simple poles corresponding to resonances on
Regge trajectories; (c) that it satisfies all superconver-
gence sum rules; and (d} that, when averaged (as in
the duality-principle approach, ') it displays Regge
behavior at asymptotic energies.

For the particularly interesting example mm —+ mes

and the invariant amplitude A(s, i,g) defined by
T= e„„p.e„&"&p,& '&pp& "p.& slA(s, i,l),

his representation becomes

A(s, t,N)

~ 1(1-.(1))i'(1- ())
+(s —+I)+(1~u) i. (1))F(2—&r(s) —&r(t))

The properties (a)-(d) above are essential ingredients
of the program stated at the beginning, and Veneziano's
formula may be looked at as one complete fu1611ment of
this program. But in addition, the expression (1) pro-
vides a particular ghost-eliminating mechanism and
restricts the external masses by the condition &r(s)

+n(t)+&r(u) = 2.' Both these aspects are shared by the
sum-rule solution. ' The ghost-eliminating mechanism
provided may be an interesting property for certain
reactions, but it is obviously not on an equal footing
with (a)-(d).

In this paper we want to show that a diferent closed
solution exists that satisaes the properties (a)-(d) but
provides for a diferent, more general ghost™eliminating
mechanism and does not restrict the external masses in
the same way. Furthermore, this new solution becomes
Veneziano's when &r(s)+&r(t)+&r(u) = 2 (or a correspond-
ing integer in other reactions). The idea for it stems
from the observation that each term of the formula (1)
is very similar to a product representation of poles in
two different channels. ' Therefore the obvious gen-
eralization is to write the amplitude as a triple product
of poles in the three channels. We propose

I(-.'-!-())I(-:-!(1))1(!-!( ))
(2)

I'(1—-,'&r(1)——',&r(e))1"(1—-',&r(s) —',&r(N)) I'(1—-,'&r(s) ——,'&r(1))
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It is perhaps important to stress in what sense this restriction is needed. First, if it is not satisaed, and the amplitude is still given
by (1), then there are poles at even values of a(s). This in turn requires the existence of a trajectory spaced by one unit of angular
momentum but with the same signature as the leading one. Its existence does not contradict any fundamental principle, but is
neither predicted nor required by any other theoretical scheme Lanalyticity at &=0 or 0(4) symmetryg. In fact, it should belong
to an independent Toiler family. On the other hand, if we want to eliminate these ad hoc poles, we can always add nonleading terms
to (1) so as to push them to higher energies. Then the asymptotic region where Regge behavior holds will be reached at higher
energies too. In principle, if we add an infinite number of nonleading terms (and the coeKcients do not decrease fast enough), then
not even the whole sum will display Regge behavior.

6 In fact, one can obtain each term of (1) by writing an in6nite product of polesin s and t multiplied by zeros to prevent double
poles. 1n this way the relevance of linearities of the trajectories becomes clear. I thank C. Goebel for these remarks.
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To prove that this expression reduces to (1) when n(s)+n(t)+n(u) = 2, one uses the duplication. formula for the I'
function. It is noteworthy tnat Eq. (2) contains poles only at odd values of s, independently of any restriction on
the external masses. Furthermore, the limit s ~~, t fixed, is

lim A(s, t,u) =P$-,'n(s)] "& 'Ltan —',zra(s)+tanmzrn(t) j
tt ~00 I'(-', +-,' (t))1'(1—-', (s)—-', (u))

At a(t) =0, ImA is, in general, different from zero. This means that the Regge residue that has the factorization,
P,„is proportional to n 'I', i.e., it corresponds to the Mandelstam-Wang mechanism. z If we try to impose P, ~ n't'
(choosing sense or nonsense mechanism), then we find once more that n(s)+a(t)+n(u)=2n, as in Veneziano's
solution. In this way, the restriction appears here as in the sum-rules approach. ' In the more general case the triple-
product representation will have a zero at n(s)+n(u) = 1, but this zero depends on the trajectories in the crossed
channels. If there is more than one trajectory in the s or I channel that contributes to the t-channel Regge tra-
jectory, then the residue function that has the factorization need not have a zero at any particular value.

For other cases, a modification of (2) may be used. For instance, for zrrt ~ zrp (also discussed in Refs. 2 and 3)
one finds that

r(1——', (s))r(-,' —-', (t))1(1—,'( ))
(3)

g?=2—2
I'(1——'n(s) ——'n(u)) I'(1——'n(t) ——n(u)) I"(1—in(t) ,'a(s))——

I'(1——,'n(t))r(-,'——',n(s))r(-,'—,'n(u))—2
I'(1——,

' (s)—-', (u))l'(-', ——', (t)—-,'(u))I'(-',——', (s)——,
' (t))

r(-, —,(t))r(-;—,(s))r(1—,.(u))+3, ,r(,' ——,
' ()—-', (u))r(-,' —-', (t)—-,'(u))r(1 ——,

' (.)——', (t))
I'(-,' ——,

' (t))I'(1——,
' (s))I'(-,' —-,'(u))

I'(~——', (s)—-,'(u))l"(1——,
' (t) —-', (u))i'(-,' —-', (s) ——,

' (t))
7 S. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967).

The solution obtained from the sum rules is even closer to the form (1). In fact, in Ref. 2 we found it necessary to change the
expression for ImA from the usual one

p I a(g) ' I'(a(s)+n(t) —1)
i'( (llew( (z))

in order to get an exact algebraic solution to the sum-rules equations. This latter expression is exactly equal to the average
imaginary part of (1).

9 See L. Bertocchi, in Proceedings of the Heidelberg International Conference 0N 8/erlerltary Particles, edited by A. I'ilthuth (Inter-
science Publishers, Inc. , New York, 1968).

A s,t,u =
I'(-,' ——',n(t) ——,'n(u)) r(1——,'n(s) ——,'n(u)) I'(-',—-', n(s) ——,'a(t))

is a suitable representation. Once more, for n(s)+n(t)+n(u) = 2, it reduces to Veneziano's proposal. One can easily
imagine reactions for which the restriction is not satisfied: for instance, mg —+ mp. In these cases, obviously the
triple-product representation is more flexible. On the other hand, for those cases where in one of the channels there
are no resonances, one is forced to use a double-product formula.

An interesting 6nal example which may be a more definite test to decide between expressions (1) and (2) is zrm.

scattering. In fact, for this case the double-product representation predicts also a zero of the P, at n, (t) =0 in
dependently of any nonteading term that one may add and jor any other traj ectory in the s, u, or t channel. There is
definite evidence against such a zero. ' Furthermore, the condition n(s)+n(t)+n(u) = 1 is badly violated (using the
parameters of the p trajectory obtained from the same condition applied to xm —+ mm gives 1.46 for this sum, while
the experimental no=0.57 gives 1.79, for a sum that may vary only between 0 and 3). So it will be interesting if a
solution of the triple-product type exists. In fact, the expressions

I'(1—-', (t))I'(-', —-', (s))l'(-,'——,
' (u))

gr=o
I'(1—2n(s) —2n(u)) I'(k —kn(t) —2n(u)) I'(2 —Qn(s) —2n(t))

I'(1——', (t))r(1——', ())r(1——', (u))

I'(I—l (s)—l (u))l'(I —l (t) —l (u))l'(I —l (s)—l (t))
I'(-,' —-', n(t)) r(1——,'n(s)) I'(-',——,'n(u))

A~='=5
I'(-', ——', (s)—-,'(u))r(1 —-,'(t) —-,'(u))r(-',——; (s)——; (t))

I'(-,' ——,
' (t))I'(-', ——', (s))l'(1——,

' (u))—5
r(-,' —-', (s)——', (u))i'(-,'—', (t) ——,

' (u))l(1—', (s)—-,'(t)) '

I'(I——,
' (t))r(1——,

' (s))r(1—-,'(u))
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are completely crossing-symmetric. The p and f trajectories appear degenerate. These expressions show resonances
in the I= 2 channel, but they are not on the leading trajectories and can be pushed to higher energies by the usual
trick of adding nonleading terms. So if the present evidence against the p choosing nonsense is con6rmed, then the
triple-product representation must be chosen to describe ~x scattering.

The author acknowledges very fruitful discussions with C. Goebel and B.Sakita.
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The S-wave E+-nucleon scattering lengths are calculated in a phenomenological chiral model containing
baryons and pseudoscalar mesons. Good agreement with experiment is found, in contrast to the usual
current-algebra results which correspond to unphysical limits of our expressions. The sensitivity of the
calculation to various modifications of the Langrangian is also discussed. In particular, the scattering
lengths are observed to be rather dependent on the way SU(3) symmetry breaking is introduced into the
model.

INTRODUCTION

ANY authors' have recently discussed applica-
- ~ tions of chiral SU(2) XSU(2) and SU(3)

~ ~

XSU(3) effective Lagrangians wherein the pseudoscalar
mesons are taken to transform nonlinearly under the
group. In this way many of the so-called current-algebra,

(CA) results can be obtained when the appropriate ex-
trapolations to zero meson momenta are made. In this
note, we compute the E+-nucleon S-wave scattering
lengths with a chiral SU(3)XSU(3) Lagrangian con-
sisting of baryons and pseudoscalar mesons. Our results
reduce to the CA results' in the appropriate unphysical
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limit but are rather diGerent for the physical processes.
In this way, good agreement with experiment' is found
and the reason that the CA results are so poor becomes
understandable. We must point out, however, that the
results depend on the way in which SU(3) symmetry
breaking is introduced. We do not consider here the
case of K+-nucleon scattering which is complicated be-
cause inelastic channels are already open at threshold.

Our choice of effective Lagrangian is made so that the
(partially) conserved axial-vector current (PCAC) com-
puted in the canonical way has the experimental D/F
ratio. However, the results for the scattering lengths
turn out to be extremely insensitive to this ratio. The
pion-nucleon scattering lengths are also computed and
the same insensitivity is found.

The choice of chiral representation for the octet
baryons is, of course, not unique. The L(8,1),(1,8)j
representation which does not contain any additional
particles is used in the 6rst part of our paper. We may
also group a ~ singlet together with the ~~+ octet to
form the L(3,3*),(3*,3)j representation. A discussion of
this case is also given and the results are also found to
be in good agreement with experiment. Our Lagrangian
gives the correct width for the decay Fo~Zx.
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