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Resnikofls have shown that for the SU(6) limit, a
multiplet structure of 70Qxl is likely to occur for the
negative-parity baryons. This has also been demon-
strated by Capps, ' whose arguments are consistent
with bootstrap theory. The content of 70Qxl includes
two octets and a decuplet with spin and parity ~3 . Since
a precise estimate of the masses of these particles is not
possible at this time, further word on the mixing
conjecture must wait for further experimental study of

excited states. If the current P ( 'ZK) upper bound is
upheld, then the concept of '(1815) mixing will be

enhanced. However, should the value of P( 'ZK) turn
out to be larger, octet dominance will probably be
sufhcient to explain the ~3 decay widths.

Sofe added in proof: A related work on the negative
parity baryon spectrum has been done by S. Pakvasa
and S. F. Tuan, Nucl. Phys. (to be published).
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An explicit multipole decomposition of the vector and pseudovector N-E*(1236) transition form factors
is made, and the predictions of asymptotic chiral symmetry are discussed. A general consistency between
the chiral predictions and the simplest assumptions on multipole behavior is found for one choice of de-
cuplet chiral representation.

I. INTRODUCTION
' 'T has been found' that assigning the octet baryons to
- - a definite chiral representation leads to several very
well satisfied relations among the various vector and
pseudovector E-E transition form factors. In order to
obtain these relations, it was necessary to interpret
the predictions of chiral symmetry as holding only for
very large spacelike momentum transfers. ' 4 The
reasoning behind this point of view is that chiral sym-
metry is an expression of the tendency of nucleons to
retain their helicities when they engage in interactions
with other particles. At low energies, they are not par-
ticularly successful and emit pions as an attempt to
compensate. However, at high energies (which we shall

interpret as large momentum transfers for the case of

*Supported in part by the U. S. Atomic Energy Commission.

t Supported in part by the National Research Council of
Canada.

f Present address: Iowa State University, Ames, Iowa.
' J.Schechter and G. Venturi, Phys. Rev. Letters 19, 276 (1967).
~ Y. Nambu, in Group Theoretical Concepts and Methods in

Elementary Particle Physics, edited by I'. Gursey (Gordon and
Breach, Science Publishers, Inc. , New York, 1964).

3 A. Logunov, V. Mescheryakov, and A. Tavkhelidze, in
Proceedings of the International Conference on High-Energy Physics,
CERE, 196Z (CERN Scientific Information, Geneva, Switzerland,
1962), p. 151.

4 T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (1967).

form factors), the nucleon mass may be considered
negligible and nucleons tend to behave as massless spin--',

objects which do conserve their helicities.
In order to test the relations at large spacelike mo-

mentum transfer (g'), it is necessary to have some idea
of the functional dependence of the form factors. For
the case of the vector E-S transition form factors, the
e-p scattering experiments give us a lot of information.
These experiments' indicate that it is the Sachs form
factors' which are simple functions of q' and that these
behave as (1+g'/Mv') ', where Mv' ——0 71 BeV'
About the axial-vector E-E form factors and about all
the E-E* form factors, much less is known and we will
have to rely mainly on analogy, although there is, of
course, some available information from electroexcita-
tion, photoexcitation, and neutrino excitation experi-
ments. If we take the analogy with the vector E-Ã
case seriously, the most natural assumption is that the
objects which behave simply as functions of g' are the
analogs of the Sachs form factors, these analogs being
the relativistic multipoles introduced by Durand,
DeCe]les, and Marr. ' Thus the Grst part of this paper is

5 See, for example, L. Chan, K. Chen, J. Dunning, Jr., ¹

Ramsey, J. Walker, and R. Wilson, Phys. Rev. 141, 1298 (1966).' See, for example, L. N. Hand, P. G. Miller, and R. Wilson,
Rev. Mod. Phys. 35, 335 (1963).

7 L. Durand, P. DeCelles, and R. Marr, Phys. Rev. 126, 1882
(1962). We shall refer to this paper by DDM for brevity.



devoted to an explicit multipole decomposition of the
vector and pseudovector /7-X and E-X* form factors.
These do not all appear to have been given before, so
this section may be of use to experimentalists. In
particular, we suggest that neutrino production experi-
ments be analyzed in terms of the axial-vector multi-
poles. It is reasonable to expect that the formulas in-
volved will thereby become much simpler, in the same
way that the 1ntroductlon of mult1poles d1agonallzes
the Rosenbluth formula for electron-proton scattering.

The second part of this paper is a review of the asym-
totic chiral SU(3))&SU(3) predictions for the 1V-1V

transition form factors. One interesting feature is that
the d/f ratio of the axial vector current at q'=0 is
correctly given by the asymptotic chiral symmetry
but would be predicted completely incorrectly if the
chiral symmetry were applied at q'=0. The reason for
this situation is that at q'=0 chiral symmetry relates
the d/f ratio to the static charge multipole, while for
large gs it relates the d/ fratio to the magnetic multipole.

In the third part of this paper we discuss the asymp-
totic chiral SU(3)&&SU(3) predictions for the Ã Ee-
transition form factors. A feature similar to that in the
X-N case is observed; namely, if chiral symmetry were
to be used at g'= 0, the sign of one axial-vector coupling
constant would contradict experiment. This contradic-
tion is avoided by using the asymptotic symmetry. %'e

find that in this case there are three possible sets of
chiral predictions. Only one, however, is consistent with
a behavior for the form factors which is the exact
analog of the X-X case. This enables us to express a
preference for the asymptotic chiral representation of
the spin--,' baryons.

Bbc +i d'x (Psc) 4,
——

next, identifying the electric charge„

and finally assuming (to establish the relative scale of
V and I') Gell-Mann's SU(3) XSU(3) commutation
relations, s

(3a)[As'A ']=8 As' bs'As—
' M. Gell-Mann, Physics 1) 63 (1964).

2. MULTIPOLE DECOMPOSITIOÃ OF
FORM FACTORS

I,et us denote the octet of vector currents by (Vs')„
and the octet of pseudovector currents by (Ps )„,where

p is the Lorentz index and a and b are SU(3) indices.
The definitions may be made precise by first defining
their "charges":

As +ci d'x (Vs')4

H i~—(g'/43P) Ps"——0. (5a)

Since the axial-vector current is only partially conserved,
we must, following Nambu, ' replace this equation by

& "—[(g'+ ')/4M'je, "=0, (5b)

where p, is the mass of the pseudoscalar meson.
The vector and pseudovector form factors' for the

g+*-n transition can be defined by

(P Po'/~~*)'"(l(P')
I
(v').

I &+*(P))
= r2(P')Vs[F ib„,+iFg „P.'

+~sp'(P'+P). +P4P'(P' P)ul~. (p), (6a)—

9 V. Nambu, Phys. Rev. Letters 4, 380 (1960). Actually, we
should probably modify Eq. (5b) somewhat for q'&&p. I'Qr
example, if it is assumed that the axial-vector current is dominated
by a pseudoscalar meson pole and an axial-vector meson pole,
Ecf. (5b) is modl6ed to

&+I

where M, is the axial-vector meson mass. (See Ref. 1.)
10The F; and G; are related to the f; and g; of Y. T. Chiu,

I Schechter, an. d Y. Ueda t.Phys. Rev. 150, 1201 (19661) by
f;= —Il;; g;=+G;. There the full SU(3} matrix element is given
with anal and initial states reversed and the connection is made
with the notation of C. H. Albright and I . S. Liu, Phys. Rev. . 140)
8748 (1965}.

[&b' R']=4'»' —&s'A (3b)

[g c fl c] g cd c h cg c (3c)

The usual vector and pseudovector form factors of
the octet baryons are defined by the expressions

(Popo'/~')'"(ll'(P')1(Vs ).I &(p))
= iN(p')(v, [di'(a')» +fr'(a')~s j

+(a,e./2~)[d"(Q')»'+fs'(9')P» j)N(p), (4a)

(Popo'/~')'"(&'(P')
I (~s ).I &(p))

= ig(p') fv.vs[dr(a')»'+f (a') ~s j
+(g./2~)v [d V)D +f (a'9' j} (P) (4b)

where M is the octet baryon mass, D~ and I'b are the
symmetric and antisymmetric SU(3) matrices, and.
gs= (p —p )s. SU(3) syiiiilletiy was assuiiled iii wiitiilg
Eqs. (4); this has the consequence that all the octet
vector form factors are known if the usual neutron and
proton form factors are known. In order to make Eqs.
(4) less unwieldly, we shall introduce the abbreviations

(&i, ').'=di. '(a')D. '+fr.s'(a')~. ', (4c)

(&i.s").'=dr, s(a')D. '+fr.s(a')~. ' (4d)

and furthermore we shall not write the SU(3) indices
explicitly.

The conservation law for the vector current,

(Pspo'/~')'"O'I v.(Vs ).I
&)=o

is satisfied automatically by Eq. (4a). If we assume that
the axial-vector current is conserved, we would, on the
other hand, get a relation between Hg~ and H2"..



J. SCHECHTER AND Y. UEDA

(Popo'/~~*)'"&~(P')
I
(~i'), I&+*(P))

=~(p') [Gi~"+iGiV.p'
+G.p.'(p'+p), +G.p.'(p'-p). ]'(p). (6b)

For purposes of identification it may help to note that
the combination (Vi')„+(Pi')„enters into the leptonic
weak-interaction Hamiltonian in the form

B„=(G/v2) cos8 l„(VP+Ei')„+H.c. , P)
mhcrc G ls thc Fermi constRnt, 8 ls thc Cablbbo Rnglc,
and /„ is the lepton current. All the other baryon-
decuplet form factors are proportional to those of Eqs.
(6) when SU(3) symmetry is assumed. Thus there is
no loss of generality in just considering Eqs. (6).
Furthermore, we may show that if the currents (Vp)„
and (E(N)„go over into (—1)'~4(V,~)„and (—1)'&4(E ~)„,
respectively, under both the CI' and Hermitian conju-
gation operations (as would quark currents, for example)
the form factors in Eqs. (6) are real.

Conservation of vector current leads to the following
relations among the four vector form factors:

P,+(flf+ flf *)F,+(M*' M')&~+—g'F.=o, (g)

where M is the octet mass and M* is the decuplet mass.
Similarly, the partial conservation of the axial-

vector current leads to the relation

G,+ye* iv)G,+(v—*' ~')G.+(g'+I")G.=0. (9)

Now, having mllttcn down thc usual form-factor
decomposition for the S-S and E-S transition matrix
elements, let us give the multipole decompositions.
These are de6ned in terms of the Breit-framc matrix
elements of the currents. %C shall follom explicitly the
notation of DDM~ and define the Breit-framc matrix
elements between an initial stateii of momentum p
along the +s axis, spin s, and helicity )(, and a final

state of spin s' and helicity X' as

1', ). ..i(» = (POs')('! e' ~'V„!POsX) (1())

for a vector current V„.&n Eq (10), the ~~(3) ~nd~ces

were suppressed and e' ~~ is a rotation of 180' about the

y axis which directs the 6nal-state momentum along
the negative z axis. For the pseudovector current, mc

similarly de6ne

I',.)...,g'(» = (POsV! e' ~'P„!POs'A).

Thc zcrot11 con1poncnt of the cullcnt CRn thei1 be
simply expanded in terms of charge multipoles, Qq(s'»),
b

fs J s)
1.' .'=(—1)'" Z I, !Q.(", ),

~=o k)(' 0 ) i

(—1)'= (—1),
"The states of Kq. (10) are normalized covariantly, while those

of Kq. (6a), for example, are not. However, the whole left-hand
side of Kq. (6a) is properly covariant and may be identiled with
Kq. (j.o).

where the tVvigncr 3-j symbols have been used and
(—1) is the relative final-initial state parity. The
threshold behavior of Q~ is p~.

The plus and minus components of the current
[Vy——%(1/v2)(vi&iv2)] cail be exparided iii teriiis of
electric and magnetic multipoles as

s' J s1',i, . i(k)= ( 1)2s' P
X' &1

X{2[1+(—1)~" ]Eg(s',s)

+~[1—(—1)~+ ]My(s'»)}. (13)

Eg behaves as p~ ' at threshold while M& behaves as p
J'.

Because of the conservation of the vector current the
expansion of the third component does not give any-
thing ncm.

VVC may make an analogous expansion of the zcroth
component of the pseudovector current in terms of
"axial charge" rnultipoles "Q~'(s'»):

(s' J s
1'. i', .i'")=(—1)'" 2 I, Q~'(&'»)

~=0(v 0 ) (14)
(-1)'=-(-1) .

The threshold behavior of QJ' is p~.
The analog of the electric and magnetic multipole

expansion for the pseudovector case is

s' J si
!pig, g5(k) ( 1)20

V ai )(J

X(a[1—(—1)'+ ]Eg'(s', s)

~1[1+(—1)~+ ]~z'(~' ~)} (15)

At threshold Eq' behaves as p~-' and ~~5 behaves as p~
Since the pseudovector current is not conserved there

is another set of multipoles corresponding to the expan-
sion of the third component:

s' J s
1'"v;ai""=(—1)"' Z I J5

@=0 g' 0

(—1).= —(—1)~.

"To derive the multipole expansion for the third and fourth
components of an axial-vector current j„'which satis6es thepartial-
conservation law B„j„~=cp,where c is some constant and @ is a
pseudoscalar 6eld, we may proceed analogously to the treatment of
DDM for the case of a conserved current. Following their notation,
we would have in this case

~( 1)' " (~)i le '.

Kalian

58 i"x&II~SR)-
(pos'X'

~

s' ~&y
~
pos'x),

i' sinh~&0

h
PO PO

2p 0 0 —1

I 811lh——cosh—
PO PO 2

In this form both the erst and second terms can be expanded as
relativistic multipoles. A similar formula holds for the fourth
component. We note that since the equation B„j„'=c@is actually
nothing more than a dednition of @, this derivation is valid for
any nonconserved current.
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L F= —(v'6) [Hi"—(V'/4M')Hs"j

(18b)

(18c)

Comparison of Eq. (18c) with Eq. (Sa) shows that Iy
vanishes in the limit of conserved axial vector current.
For a partially conserved axial vector current, Eq. (Sb)
shows that I.q'= —(g6) (p'/4M')H~~ and hence shouM
be small at large g' (away from the pion pole in H~").

In the case of M~, experiment indicates that we must
factor out the threshold dependence to 6nd a "simple"
function of g'. For E~' the threshold factor is just unity
but, as we shall see, asymptotic chiral symmetry sug-
gests that we take out the factor (g'+4M')'" to obtain
a "simple" function of g~.

The connection of the S-Ã* multipoles with the usual
form factors is made more complicated by the fact that
the initial and fjnal states have diferent masses. This
has the consequence that the momentum transfer
g„= (p —p')„ is no longer always a spacelike vector. A
convenient generalization of g„ is a spacelike vector
which we denote by Q„(see Appendix) and whose square
is related to q' by

Q =~~+(M» —M2)~/[qm+2(M*+-M )j. (19)

Evidently Q„goes over into g„when the 6nal and initial
masses become equal. It might be more meaningful
to consider form factors as a function of Q' rather than
q'. In the Breit frame the magnitude of each particle's
space momentum is simply given by

lpl -=p=-'v'(Q')

The threshold behavior of Iq' is P~ ' for j/0 and P for
j=0. In deriving" Eq. (16),we formally assumed partial
conservation of the axial vector current. For large-
rnomentum transfer it is expected (and certainly re-
quired by asymptotic chiral symmetry) that I',./. ..q'/'&

be dependent on the other components. Thus this
multipole is not particularly interesting for our present
purposes.

To Gnd the connection between the multipoles of
Eqs. (12) and (13) and the usual $-$ vector form
factors of Eqs. (4a) and (4c), it is only necessary to
evaluate explicitly Eqs. (12) and (13) with one specific
nonvanishing helicity transition on the left-hand side.
This gives

Q0=~2[Hav —(g'/4M')H2vj,

Mg= —(Q6) (p/M) (Hp+Hmv),

where M is the octet baryon mass. We recognize Eqs.
(17) with the threshold dependences factored out as
essentially the well-known Sachs form factors. For the
axial-vector S-E transition form factors, the connection
between the multipoles and the usual decomposition is
provided by

F/5= —(Q6) (g'+4M') '"(1/2M)Hg", (18a)

Details of the calculation of the E-S* transition
rnultipoles in terms of the form factors of Eqs. (6) are
given in the Appendix, With this warning, and with the
hope that no confusion results, we shall use the same
symbols for the E-X~ multipoles as we did for the g-Ã
multipoles. The vector X-E* transition multipoles are

Mg ——p(Fgi/' —FgX),

Fg= —(+5)p(FgI"+F2X),
lt2

Q~=2 —
l pl'L —F~+(M' —M)F2—x~F3

3 3f~
+(M'—M~')F,]I', (21c)

where for compactness we have used the symbols

+2 119

X=- — [(-'Q'+M')'/'+M('/2
2 %M*3

[(|Q2+M2) 1/9+M+3-j/2

X[(—X')'/'+M* —Mj, (22a)

Qm )1/2

X

&&[(—E')"'+M*+M$, (22b)

(—Z')"'= —',[(Q'+4M')"'+(Q'+4M*')'/']. (22c)

In Eqs. (21), the momentum dependence at threshold
in the Breit frame has been explicitly factored. Proceed-
ing by analogy to the case of the E-Evector form factors
would lead us to expect that it is the remaining factor
which should have a "simple" dependence on g' (or Q').

The pseudovector E-E* transition multipoles are
given by

Ey5= 23I*XGg—— G2

5 III XII"
M,5= —ll l2 ———G2—E2 M*

QF =p [Gx—(M+M*)G2
( It9)1/2

+E'Gs+(M*' —M')G4], (23c)

Q'+4M*' "' (M*—M)
Lp= X G/, + Q'P'G2—E2 2M*

where the same abbreviations as before have been used
and again the threshold dependences have been factored.
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In accordance with the discussion given after Eq. (18a)
we would expect the functions with "simple" Q' de-
pendences to be the multipoles with both the threshold
factors and the (—E')112 factor removed.

d '(g')--lI -C' (g'), (29a)

{29b)

into Eqs. (27) gives the following asymptotic behaviors:

3. ASYMPTOTIC CHIRAL SYMMETRY
FOR N-N TRANSITIONS fi"{g')-(I.+21 -)C'v(g') (29c)

In this section we shall review the S-E case» in order
to extract the features which will be useful in the treat-
ment of the E-E~ case.

The predictions of asymptotic chiral symmetry for the
form factors of Kqs. {4a) and (4b) are

di(g') = d '(g'),

fi(g') = fi'(g'),

d2(g') = f~(g') =~2"(g') =f"(g')=o.

(25a)

(25b)

(26)

d Iq(gm) 3 (1+gm/4M2) 1(G~qq G@qq)—

fi "(g')= (1+g'/4M') '
(27b)

X Gz"+-,'Gz"+ (G~'+2G~"), (27c)4''
fgv(g') = (1+g'/4M') '

X(Gm "+2GIr" Gz" kGs") —(27d—)

Now the following empirical relations seem to hold

very well as far as the form factors have been measured:

G~ /I -=G~"/~, =Gs"=Cv(g'), —(28a)

(28b)G e 0

where /I ~2.79 snd )(I„~—1.91. Sllbstl'tilting Kqs. (28)

The derivation of these equations is similar to the one
which will be given in the next section for the g-g*
case. %C interpret these equations as holding only at
large spacelike g'. Equation (26) will be interpreted to
mean that the subscript-2 (induced) form factors fall
o6 faster in g' than the subscript-1 form factors.

The faster falloff of d2(g') and fm(g') is guaranteed

by Kqs. (5) which we must certainly accept in the
asymptotic chiral limit. We can verify that (Emv(g')

and f~r(g') fall off faster than did(g') and fir(g') if
we assume that the usual phenomenological Gt to nu-

cleon form factors can be extrapolated to very large
g'. The usual 6t is in terms of G~ and G~ which are,
respectively, proportional to Qo of Kq. (17a) and Mi
of Eq. {1'/b) with threshold factor, p taken out. Par-
ticular linear combinations of dv and f" correspond to
neutron and. proton form factors and are labelled by
superscripts n and p. Knowing these, it is possible to
solve fol' dl, s Rnd fi, m slid obtR111

gm

q, ~(q') '(1+q'/4)q') 'l G="+—GM"),

4M2
f~'(g')-(I v+2~- 1)— C'v(g')

q'

It is clear from Eqs. (29) that the induced vector form
factors do fall away faster as a function of g' when we
Rcccpt thc clllplrlcRl Eqs. (28). Thlls Eqs. (25) Rlld (26)
appears to be mutually consistent.

Now let us consider the parametrization of the axial-
vector form factors. From Eqs. (5) and {18)we see that
HI" [defined in terms of di(g') and fi(g') by Eq. (4d)j
is the only independent form factor and is essentiajly
the same as our multipo1e E»'. However, if we require
both that Eqs. (25) be satisfied and that the "simple"
function we introduce to describe the E»' multipole
fall off with g' in the same way as C r(g'), we are led to
the requirement that EP with the quantity (g'+4M')'I'
factored out should have a "simple" behavior. Namely,
we should write

di(g') =di(0) C g(g'),

fi(g')= fl(0)C'~(g'),

(30a)

(30b)

where C z(g') falls oR in the same way as C r(g').
Taking the ratio of Eqs. (30a) alld (30b) and equating

this to the ratio of Eqs. (29R) Rnd (29c) by Eqs (25)
gives the remarkable result

~I(0)/fl(0) = —3) -/(2~&+/ -)=156 (31&

This is very close to the usually accepted value" of
I.l' for this well-known ratio. It is in marked contrast
to the result we would obtain by using Eqs. (25)
at q'=0 rather than at large q'. In that case, reference
to Kqs. (27a) and (2/c) shows that we would predict
dl(0)/fl(0) =0. It is also evident from Eqs. (27a) and
(27c) that the reason for this diRerence is that at low
g' we are picking out the d/f ratio of the static charge
multipole (GII), while at large g' we are picking out the
d/f ratio of the Ml multipole (G1r).

Next we note that the function Cr(g') seems to be
experimentally' given by

C r(g') = (1+g'/Mr') ', (32)

where My2=0. 71 BCV'. This form is not well under-
stood theoretically, although it can be predicted in
certain models. '4 The quantity My is presumably some-
thing 1Ikc a vcctol ITlcson ITlass. Thc Dlost str'alght-

"W. Willis et al. , Phys. Rev. Letters 13, 291 (1964).
'4 See, for example, A. 0. Barut, D. Corrigan, and H. Kleinert,

Phys. Rev. Letters 20, 167 (1968).
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v (qs)+II v(qs) ~If A(qs)

rv(q2) (q2/4M2)+sv(qs) ~0

g2
Hr" (q') — Hs" (q') 0.

435'

(35a)

(35b)

(35c)

These equations come, respectively, from equating M&

to Er', Qs to zero, and Lrs to zero. Upon noting Eqs.
(4c) and (4d) we see that Eqs. (35b) and (35c) are
equivalent to Eq. (26) while Eq. (35a) then becomes
equivalent to Eqs. (25).

4. ASYMPTOTIC CHIRAL SYMMETRY FOR
N-N* TRANSITIONS

A. Introduction

First we shall give in sections 8, C, and D the pre-
dictions of chiral symmetry and then in Secs. E and F
discuss the consistency of these predictions with
"reasonable" behavior of the multipoles and whatever
experimental data are available.

Once we have assigned the octet baryons to a definite
chiral representation there are two choices for the
decuplet baryons. These lead to two different sets of
chiral predictions (Secs. 8 and C). One set appears at
this stage to be favored over the other. Still a different
set of predictions (Sec. D) can be gotten by equating

"S. steinberg, Phys. Rev. Letters 18, 507 (1967). See also
Ref. 4.

forward analogy for the axial-vector case would lead
us to write

C g(q') = (1+q'/Mg')-' (33)

Taking the sum of Eqs. (25a) and (25b) at large q' then
gives the formula

gA—=di(0)+f~(0) = (M v/M~)'(l .—P.) (34)

This has the numerical consequence that

(M~/M v)'—3 99,

which seems extremely reminiscent of Weinberg's
relation" for vector and axial-vector mesons:

(M~/Mv)'=4

Thus, the fact that asymptotic chiral symmetry for
the E-S transitions leads to such a consistent picture
when combined with the most natural extrapolations
of our present data encourages us to go on and investi-
gate the X-E* case.

Finally, we remark on a different way of deriving Eqs.
(25) and (26), which were first derived by assuming the
octet baryons to belong to a definite chiral represen-
tation. Let us simply require that the corresponding
(same J) vector and pseudovector multipoles given by
Eqs. (17) and (18) become equal at large q'. Writing
this out explicitly, we then have

the corresponding vector and pseudovector multipoles,
as discussed previously for the X-S case. This is a
phenomenological prescription which works in the g-g
case but does not appear to be favored here.

(36)

We shall denote this representation as [(8,1),(1,8)]
corresponding to the representations of the entries in
the upper and lower parts of the spinor. Other repre-
sentations which contain the octet also bring in ad-
ditional particles and do not appear to be favored in
this scheme. "

Let us first assign the decuplet baryons to the
[(1,10),(10,1)] representation. Then we have

((L" ").&
(D.s.)„=i i, D "=(8 "'L ~"—") (37)

(R.s,)„)
To 6nd the chiral predictions, it is only necessary to

construct an effective operator out of Eqs. (36) and (37)
which transforms like the weak current, namely, (8,1).
This operator will correspond to the combination
V„+P,. Thus we have for the effective weak current
operator

V s„'+Pg„=e«[ALs'(R, ps) „+BB,Lg'r)„(R,fs)„
+Cr)„r).Ls'(R,ps) „]

= -', e»'[AN, '(1—ps) (D,fs)„
+Br)jV, '(1—ys) ej„(D,yb) „

+Cr)„r).NO'(1 ys) (D, s)„r), —(38)

where A, 8, and C are some arbitrary real constants.
Comparison of Eq. (38) with Eq. (6) then leads to the
predictions

Pr(q') = —Gr(q'),

&s(q') =Gs(q') = 0,

Ps(q') = —Gs(q'),

~4(q') = —G.(q'),

where q' is to be considered very large.

(39a)

(39b)

(39c)

(39d)

"For discussions of notations and representations see M. Gell-
Mann, Physics 1, 63 (1964);P. Freund and V. Nambu, Ann. Phys.
(N. Y.) 32, 201 (1965);R. Marshak, N. Mukunda, and S. Okubo,
Phys. Rev. 137, 8698 (1965); Y. Hara, sMd 139, 813& (1.965);
J. Schechter and Y. Ueda, ibid. 144, 1338 (1966).

B. Favored Decuplet Representation

The "left-handed" SU(3) of chiral SU(3))&SU(3) is
generated by —',(As +Bs') of Eq. (1) and will be desig-
nated by unprimed tensor indices. The right-handed
SU(3) is generated by &(A b' Bs—') and will be desig-
nated by primed tensor indices. In a representation of
of the Dirac matrices where y5 is diagonal we may then
write the octet baryon as
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C. Alternative Decuplet Representation

The I(10,1),(1,10)1 decuplet representation corre-
sponds to the spinor decomposition

t' (1-.~.)»
(D.~.).=-

I
(40)

E(Rg& b&@&)p

The effective current operator which takes the place of
Eq. (38) in this case is

V y„'+py„'= A'8,Iig'0„{l.,f p) per'

', A'e«-8&, '(1 yg)y„—(D.r t)„(41)
where A' is an arbitrary real constant and 0„=(—e,&).

Comparison of Eq. (41) with Eq. (6) gives the asymp-
totic chiral predictions for this case:

Mg Fg————(q'+4M')F22'

Ss———5"' Fg+ — (q'+4M')F2
2M

M, (44b)

Q2
—— 2(5/—3)"' Fg (q'+—4M')Fa Mm. (44c)

(c) The fall off in g' (for the M~ transition) seems to
be about the same, or somewhat faster than in the g-g
case.

For simplicity, we shall set J|1"'=3f in our analysis.
In view of the lack of present experimental knowledge
this seems acceptable. In this limit the vector transition
multipoles of Eqs. (21) can be written as

F2(g') = —G2(g') (42a)

Fg(g') =Gg(g') =F,(q') =G3(g')

=F4(g') =«(g') =o
(large g') (42b)

D. Equating Multipoles

Before discussing our favored set of predictions, we
shall list the predictions which result from the intuitive
prescription of equating multipoles.

Taking the asymptotic limits of the multipoles in
Eqs. (21) and (23) and equating corresponding {same J)
vector and pseudovector multipoles gives rise to the
following large g' predictions:

Fg(g') +Gg(g'), (43a)

Fi(g')- —k(g'/M*)l:F2(g')+Gm(g') j (43b)

Fg+ (M —M*)F2—g'Fg+ (M~' —M')F4 0, (43c)

Gg —(M+M"')Gm —g'Gg+(M*' —M')G4 0 {43d)

Gg+ (M*—M)G2+g'G4 0. (43e)

E. Comparison vrith Experiment

Here we shall show that the predictions of Eqs. (39),
when combined with a model which is the simplest
analog of the E-E case, lead to results which are con-
sistent with experiment and also to one prediction which
shouM be testable in the future.

First let us briefly summarize the experimental'~
situation as follows:

(a) Fx(0) = —5.6, Gg(0) —1."
(b) The Mq multipole dominates the vector tran-

sition; i.e., the Ii 2 multipole is small. Not much is known
about Q2.

"For discussions and further references on the vector transitions
see A. J. Dufner and Y. S. Tsai I Phys. Rev. 168, 1801 (1968)).
These authors analyze the data in terms of only the MI multipole.
For the axial-vector transition see C. H. Albright and L. S. Liu,
~b~d. I40, S1611 (1965).

"This value is rather rough but the relative sign seems to be
definite. See Ref. 17; the 5V(6) prediction given there is —0.83.

In Eqs. {44) the tilde significs that the threshold de-
pendence has been taken out.

For the axial-vector multipoles we shall not only fac-
tor out the threshold dependences from Eqs. (23) but
also multiply what remains" by (g'+4M')'~'. This is
similar to the procedure we followed in the Ã-Ã case.
The results are

1$ qEg'= (q'+4M') —
l Gx+ Gg l))' (45a)

Mm'= (q'+4M')G2,
3f~

Qgs= (qm+4M') [Gq—2MG2 —(qm+4M')Gg]. (45c)
3P

The conservation and partial conservation laws,
Eqs. (8) and (9), here simplify to

Fg+ 2MF2+g'F4 ——0, (46a)

Gx+(g'+p, ')G4=0. (46b)

Equation (46b) is essentially the multipole I.P, which we
therefore have not written here explicitly. Comparison
of Eqs. (46a) and (44b) shows that, provided F4
doesn't have a pole at g'=0,

(47)

This vanishing of the electric quadrupole transition
seems to be roughly in accord with experiment and is
due to the fact that we neglected the M*-M mass dif-
ference. Insofar as the M~-M mass diGerence does not
affect the physics of the situation this might be inter-
preted as a theoretical prediction.

As in the previous E-E case the most useful way to
compare the chiral predictions with the multipoles is

' This is necessary to insure that FI and G~ fall off with the
sane power of q' in accordance with the predictions of either
Eq. (39a) or (43a).
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to solve Eqs. (44)—(46) in reverse. Then we have

1

gS )
—M't 1

P2—
~

~,+—z.),q'+4M' 5 +5
—'M 1

Fg
—— M g

— Zg+ (Q-,')MQ2
q'+4M2 —+5

~M —q'Mg+ (q'+8M')E2 i,
q'+4M2 QS

M q'
Gy= E',&-

q'+4M' 4+5
M2/+5

G2= Mg',
q'+4M'

q2P4=

(48a)

(48b)

(48c)

(48d)

(49a)

(49b)

G3=
(q'+4M') '

1
X M 2—Zis q 8' ~2 y

49c
5

z, '—
q'+ p' q'+4M' 4+5 )

(49d)

In the case of the Ã-E vector transitions it was
found empirically $Eqs. (28)] that the two multipoles
were proportional to each other. It would therefore be
rash to assume anything else for the S-S* transitions.
Let us then write

PUB(q')/Mg(0) =82(q')/Zm(0)

=a.(q)/a. (0)=~,(q), (50)

ZP(q')/Eg'(o) =M2'(q')/3II '(o)
=0~'(q')/0~'(0) = C'~(q') (51)

where 4 v and gz are assumed to fall off in the same way
at large g' and as a 6rst guess may be taken to coincide
with Eqs. (32) and (33). This will probably have to be
slightly modified in the future as more experimental
information becomes available.

Now let us consider the chiral predictions of Eqs. (39).
First we note that Eq. (39b), which we interpret as
meaning that Fg and G2 fall off as 1/q' times Fq and Gq

respectively, holds. For P& and Pj this is seen by
substituting Eq. (50) into Eqs. (48a) and (48b). For
G2 and G& we must substitute Eqs. (51) into Eqs. (49a)
and (49b) and pass to the large q' limit.

Next consider the prediction F~(q') = —G~(g'). If we
were to (incorrectly) use this formula at q'=0, then
Fq(0) and Gq(0) would have opposite signs, in contra-
diction with experiment. However, if we use this formula
for large q' we see, noting Eq. (49b), that it is G2(0)

not G~(0) which becomes related to F~(0). This is
exactly analogous to the situation concerning the pre-
diction of the axial vector d/f ratio in the 1|I1V c-ase.

The prediction of Eq. (39a) is

M~(q')-(1/2+5)MP(q') (52)

which may be restated through the use of Eqs. (50)
and (51) as

G2(0) = (Mv/M~)'(1/M)Fi(0). (53)

A different assumed form for Cy and Cg would, of
course, lead to some modification of the factor
(Mv/Mz)'. In the future, Eq. (53) may be tested
experimentally. It would be desirable for neutrino
production experiments to be analyzed in terms of
multipoles; then we could test the prediction in the
form Mq(0) = (1/2+5)MP(0)(Mg/Mv)4.

Now, inspection of Eqs. (48c), (48d), and (49c) and
(49d) shows that assuming the validity of Eqs. (50)
and (51), the form factors Fg, F4, Gl, and G4 all fall
off as 1/q' times F~ and thus should be considered zero
asymptotically in our way of thinking. Nevertheless,
setting F4(q') G4(q'—) as required by Eq. (39d) does
not lead to an absurdity but to Eq. (52) over again.
Furthermore, setting Fa(q') —Ge(q') leads to the
plausible result g2(q') 0.

Thus the simultaneous consistency of the predictions
for the L(1,10),(10,1)]representation and the "natural"
assumed forms of Eqs. (SO) and (51) gives results
in accord with experiment. One of the three axial multi-
poles is related to the M~ multipole and the other two
are unspecified. It goes without saying that more ex-
perimental information is really needed to check this
scheme. It would seem quite reasonable to analyze the
data in terms of the relativistic multipoles.

F. Other Possibilities

(i) Suppose that instead of assigning the decuplet
baryons to the L(1,10),(10,1)] representation we had
used the L(10,1),(1,10)] assignment. Then the predic-
dictions would be those of Eq. (42). This leads to an
immediate contradiction if the "natural" behavior of
the multipoles given in Eqs. (50) and (51) is accepted;
namely, Eqs. (48a) and (48b) show that F2 falls off
faster at large g' than Pi.

(ii) A phenomenological way of obtaining asymptotic
chiral predictions is just to equate corresponding vector
and axial vector multipoles at large g'. This procedure
leads to Eqs. (43) which also contradict Eqs. (50) and
(51). Specifically, if (50) and (51) are substituted into
(48a), (48b), (49a), and (49b) and the results are substi-
tuted into (43a) and (43b), we derive the fact that
Mg= 0.

(iii) So far we have imposed the requirement that
the chiral predictions we adopt be consistent when all
the vector and axial vector multipoles are respectively
proportional to each other. This is the exact analog of the
Ã-N case. If this restriction is relaxed there is endless



2308 J. SCHECHTER AND Y. UEDA

t M+ppq'I') x+
!I'+'(P) =

I

4 2M i & [p/(pp+M)jx+i

&
M+ ppy 'i't xI' '(P) =I

2M i k —[P/(pp+M)]x i

where
(1't (01

x+=
I

Eoi E1i

(Ai)

To get the helicity eigenstates for a particle moving
along the negative s axis with momentum p, we must

apply the rotation operator e '~~' to (A1) and (A2). In
the Dirac-Pauli representation of the y matrices which

we are using e ' ~'=p&pa. This gives, for a negatively
directed particle,

M+ p
'&' x

(A3)
2M i ~[p/(pp+M)]x i

)M+ pp~
'I'

p
—x+I' '(P)=I

I I I
(A4)

'E 2M ) 'E[p/(p, +M)]x+3

room for speculation. We shall mainly refrain from this
temptation and only observe that if we assume double-
pole forms for Fi(g') and Gi(g') and substitute in Eq.
(43a) we would find Fi(0)/Gi(0) = (M~/M& )' +4,
which is about right and as in the E-E case seems to
give a good idea of the relative scale between the vector
and axial-vector couplings at low momentum transfer.

APPENDIX

Here we present some details which a reader interested
in checking our formulas for the multipoles might Qnd

helpful.
The helicity matrix elements defined in Eqs. (10)

and (11) were calculated by substituting explicit spin-p

and spin-p helicity eigenstates into Eqs. (6a) and (6b).
For the case of spin ~, the plus and minus helicity eigen-
states for a particle moving along the positive s axis
with momentum p are given by

The spin--,' eigenstates are given, for example, in the
paper of Frishman and Gotsman. '

Two typical helicity matrix elements are

1 1
r, , „&-&=m"PI

happ'+M

pp+M*i

p-) 1 1
r»., »&-& = m

'—
!

v3 &p,'+M p,+M*i

(A5)

+ (pp+pp')I 1+ IF, , (A6)
2 ) p

M* (pp'+M)(pp+M*)

t'(M+ po') (M*+p,)i '»
1V1P=

These may be generalized to covariant form with the
help of the vectors

gp=pp Pp ~

E.=p.+p' (A8)

r. .... ( ~=-,w, — z„
2 5

—1
r». I;&-&= Mi ——',(g-,')z, .

2

(A10)

(A11)

Solving Eqs. (A10) and (A11) gives the results stated
in Eqs. (21a) and (21b).
"Y. Frishman and S. Gotsman, Phys. Rev. 140, 31151(1965).

Q„=g„+E„[(M*'—M')/E'j. (A9)

E„ is timelike while Q„ is spacelike and Q„E„=O.It is
sufficient to note Eqs. (19) and (20) to achieve the
covariant form.

The helicity matrix elements of (A5) and (A6) are
connected to the multipoles Mi and Ep by Eq. (13).
Explicitly, this reads


