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There exist several coupling-constant sum rules describing the interaction of three arbitrary octets in
the presence of octet breaking of SU(3).For decays of the ~~ baryon y octet to D-wave baryon-pseudoscalar-
meson composites, one of the sum rules involves observable modes only. Comparison of the sum rule with
experimental data yields a test of the octet-dominance hypothesis, and in addition is potentially a probe of
mixing phenomena in excited baryon systems.

I. INTRODUCTION

q~ XTENSIVE experimental investigation over thc
~ past decade has established that the baryon reso-

nance region may be characterized by SU(3) multiplets
of particles, and that there exists a remarkable pattern
of symmetry breaking which transforms as an octet
(octet dominance). The latter feature is sometimes use-
ful as a phenomenological tool in assigning particles to
specific SU(3) multiplets or in checking the consistency
of such assignments. The best-known examples of this
are the Gell-Mann —Okubo mass sum rules' for octets
and decuplets (see Sec. II). The importance of octet
mass and coupling-constant sum rules to baryon spec-
troscopy is heightened by the possibility that the follow-
ing two phenomena exist in the baryon system:

(i) Mixing —an effect produced by the presence of at
least two particles having the same spin and parity and
roughly comparable masses. As a consequence, SU(3)-
representation mixing may occur, leading to physical
effects which can simulate breaking of SU(3). A case in
point is the Q-~ mixing in the vector-meson system,
which was first detected by observing the violation of an
octet mass sum rule. 2 There is now mounting evidence
that, mixing also occurs in the baryon system as well~s
(see Secs. III and IV).

(ii) Chew has pointed out' that if SU(3), like sheQ
structure in nuclear physics, has a dynamical origin,
there may be many particles for which SU(3) is
meaningless, i.e., SU(3) may hold only for certain
groups of poles. The octet mass and coupling-constant
sum rules could well play a role in exposing these
particles, if they exist.

We have derived several coupling-constant sum rules
describing the interaction of three arbitrary octets in
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the presence of octet breaking of SU(3).One of the sum
rules is particularly simple and can be used to study
decay modes of the ~-baryon y octet to 8-wave baryon-
pseudoscalar-meson composites. '0 The derivations are
given in Sec. II. In Sec. III we confront the sum rule
with experimental data, erst discussing the extraction
of phenomenological coupling constants from decay
widths. The latter is a nontrivial problem, as empha-
sized in Refs. 5 and 8. In addition, we study carefully
the implication of mixing between the isoscalar particles
Fo'(1520) and Fo'(1690), and the consequent effect that
this has on the empirical coupling constants. We sum-
marize our results and present our conclusions in
Sec. IV.

II. MASS AND COUPLING-CONSTANT
OCTET SUM RULES

It is true that SU(3) is a rather badly broken sym-
metry. To make this statement more precise, we use
SU(3) tensor analysis to describe the masses of particles
which comprise the 61led baryon multiplets. To preserve
hypercharge and isospin invariance, the breaking of
SU(3) can transform only as an I= F=O member of the
1-, 8-, 27-, and 64-dimensional multiplets (our dis-
cussion is restricted to octets and decuplets in this
paper). We ignore effects of electromagnetic and weak
interactions, and thus use isospin-invariant units such
as the nucleon rather than charge states to describe the
baryons. Using the Wigner-Eckart theorem, we can
express the mass M of baryon b in multiplet B (B=8 or
10) as

~B Z B,y
M(B,b)= Q Fz(B,b)i

zv Eb 0 b]
tB Z B~
&b 0 bi

is an SU(3) isoscalar factor, " the sum goes over
multiplets 1, 8, 27, and 64 as explained above, and the
index y differentiates between the f,d couplings of two

@Only after this paper had been submitted for publication did
the author become aware that the sum rule (8) had previously been
derived, but not applied, by V. Gupta and V. Singh, Phys. Rev.
136, B782 (1964).The sum rules (9) are evidently linear combina-
tions of those appearing in the Gupta-Singh paper.» J.g. de Stuart, Rev. Mod. Phys. Ss, 916 (1963).



E. GOLOW I CH

TABLE I. SU'(3} tensor analysis of baryon masses. (a) and (b)
describe the 6lled octet multiplets, whereas (c) and (d) describe
the decuplet. The input masses are given in (a) and (c), and the
reduced tensors of Eq. (1) are given in (b) and (d). All units are in
MeV. The data are taken from Refs. 12 and 18.

FI
1151
1669
1794

FI
1383

(a)
A

1115.6
1690
1827

(b)

Fgg

92.8
—22
—61

(c)
F' Q

1385

(d)

F8
—414

F8y
—378.6
—290
—250

F27
—9.4

F27
13.7
25

—14

Ffl4

2.5

X+ =—,
' (3h.+Z);

and for the —,'+ decuplet:

(3)

Q ~~+ ~~+ p' Q p' Q gQ (4)

Each of these holds empirically to better than 1%%uo,

although the mass splittings involved can be of order
20%. Notice in Table I that the 27 mass tensor is twice
as large for the ~~

—octet as for the -',+ and —', octets. This
has been taken by some to be a manifestation of SU(3)
mixing in the +~ octet.'4

Although equally valid, octet sum rules for coupling
constants'~" have proved less useful because of the

'~ The -', octet has apparently been completed wIth the sub-
stantiation of a particle, *(1930),with the correct properties. See
J. Alitti et a3., Phys. Rev. Letters 21, 1119 (1968)."M. Muraskin and S. Glashow, Phys. Rev. 132, 482 (1963).

'4 V. Gupta and V. Singh, Phys. Rev. 135, B1442 (1964)."C. Becchi, K. Eberle, and G. Morpurgo, Phys. Rev. 136,
3808 (1964).

octets to a third octet. For instance, the nucleon and Z
baryons have the expansions

(10V 5)Fs&+ s Fsf+ (1/3+5) Fs&

Z = Fl+ (1/+5) Fsr —(1/9+5) Fsq,
(2)

where we let the particle symbol represent the mass of
the particle. Equation (1) may be inverted to de-
termine the SU(3) tensors from the measured particle
masses, At present there are three filled baryon octets":
-', +, ~-, and -',—;and one filled decuplet: ~+. The mass
tensors implied by the data are shown in Table I. It is
evident that singlet and octet tensors dominate the
others, and in the limit that only these tensors are non-
zero, one has the Gell-Mann —Okubo mass formulas for
the -', +, ~, and ~ octets:

where k is the decay momentum, Mg is the resonance
mass, and E and M are the decay-baryon energy and
mass. A comparison of Eq. (5) with experiment" is
given in Table II.Notice that although SU(3) breaking
may shift the value of a given coupling constant by
almost 40% (the * s. transition), the octet sum rule
holds to better than 1%.It is clear that apparently large
deviations from SU(3) symmetry need not vitiate the
usefulness of the symmetry.

Kith the aim of ultlnlately studying decays of the 2

baryon octet, we consider here transitions involving
three arbitrary octets, 8' —+BI', in the presence of
SU(3)-symmetry breaking. There are 17 independent
coupling constants, e.g., E'Es, FI'SE, etc., each given
fol' thc 11IIllt. Qf pul'c SU(3) 111 tcl'Ills of 'tllc f,d pal'alllc-
ters. If the SU(3) symmetry is broken by some effect
transforming as an octet, then a coupling g(n+P -+ y)
between members of the three distinct octets J3', 'J3, and
Emust in general be described by additional parameters

TABLE II. Coupling-constant sum rule for —,'+ baryon decuplet.
All couplings are normalized with respect to the S*Em transition.
The empirical values are determined from experimental decay
parameters with Eq. (3) of the text. The sum rule is Eq. (2) of the
text.

Isospin-invariant
coupling constants
SU(3) Empirical

Contribution to
sum rule

SU(3) Empirical

1.000
0.707

1.000
0.47

1.414 1.41
1.414 0.94

0.707
0.577

0.61
0.44

2.121
0.707

1.83
0.54

16 In this paper we use isospin-invariant coupling constants only.
These may be related to couplings of particular charge states with
appropriate SU(2) Clebsch-Gordan coefficients.

'7 J. G. Rushbrooke, Phys. Rev. 143, 1345 (1966).
's A, H. Resenfe11 eI al. , Rev. Mod. Phys. 40, /7 (1968).

paucity of experimental information. The hghtest
baryons occur as bound states, and hence do not decay
strongly, whereas partial widths for highly excited,
typically inelastic baryon resonances are hard to mea-
sure. In fact, the only previous successful application of
a coupling-constant sum rule is the description by
Gupta and Singh" and by Becchi et al. i5 of the transition
{s+,10) —+ {s'+,S)Qx(0-,8), which includes, for instance,
thc P-wave decay $*(1236)—& Xlr. Expressed in terms
of isospin-invariant coupling constants, the sum rule
reads

V2g(S*Elr)+2g( " s.)
=3g(F1*As-)+-', (+6)g(FI*Zm). (5)

I'-wave coupling constants g may be extracted from
observed decay widths I' with the formula'I (also sce
Sec. III)

~F 6'g

ks X+M



xN(i,j):
g(&+P ~7)=g»&o) (&+P~V)

(o I N;)(I
o N;

The discussion in Sec. III is devoted to a specific
application of the sum rule (8). As examples of less
useful sum rules, we exhibit the following:

3[g (F'i'As )+ g(F i'Zg) —g(I"o'h g)]
+(+6)[g(Fi'XK)+ g(Yi'- K)]+@2[g (I'o'SK)

—g(I'o' K)]+g(I'o'Zz)/43 =0, (9)
2[2g(I'i'As)+2g(Fi'Zg) —2g(P'o'Ag)+g(1PEs)

+g( 'ZK) g(" s.) g(—1V'ZK)]-
+(+6)[g(I','SK)+g(I', '-K)]

—(4/v3)g(I'o'Zvr) =0.

III. COUPLING CONSTANTS AND DECAY WIDTHS

Because there is at present no complete theory of the
strong interactions, the extraction of coupling constants
from decay widths is beset with ambiguities. "The two
most popular approaches appear to be use of a non-
relativistic barrier penetration formula based on a
square-well potential, "and employment of lowest-order
perturbation theory to evaluate a relativistic field-
theoretic interaction Lagrangian. '~ For the decay
+-—+ -',+0, one can define the potential-theory coupling
constant g& as

Mg I' j.
gs =

MN k io(kE)
(10)

'~ The sum rules, Eqs. (8) and (9), have been successfully tested
in model calculations. E. Golovrich (unpublished).

30 For instance, see g. D. Jackson, Nuovo Cimento 34, 1644
(1964). Also see Ref. 5.
"J.M. Blatt and V. F. Weisskopf, Theoretical Nuclear I'hysics

(John Wiley 8z Sons, Inc. , New York, 1952), especially Chaps.
VII-IX.

the sum on E going over j., Io, 10, 27, and 8 and the
indices ij representing f,d couplings for N=S. The
quantities in parentheses are SU(3) isoscalar factors. In
brief, each of the 17 couplings is expressible in terms of
10 parameters, two from SU(3) and eight from the
breaking, so that seven sum rules relating the couplings
may be constructed. However, most of these are not
suitable for confrontation with experiment, containing,
for instance, decay modes of the g, etc, However, we
have derived the following useful sum rule" ":
4[g(WX~)+g(=-'ZE)]

= (v'6) [g(I" '&&)+g(I' 'Z~)]

(g(I'o'&K) g(I'o'Zs))
+6 + —.(8)

VZ W3

TmLE III. Comparison of potential- and Geld-theoretic
coupling-constant formulas. Each entry is the ratio of squared
potential- to squared Geld-theoretic coupling constants gp'/gz'.
The ratio is normalized to unity at M+@,=1680 MeV, p/M =1.
The relevant formulas in the text are Eqs. (10) and (13}.We take
A=1 F in Eq. (10).

+p
(MeV)

y/Afar

1.0
0.8
0.5
0.2
0.08

1 1.9 3.9 6.5 9.9 13.8 18.3
0.90 1.7 3.5 5.9 9.0 12.7 16.9
0.74 1.4 2.7 4.6 7.1 10.2 13.9
0.56 0.87 1.5 2.6 4.2 6.3 9.1
0.49 0.69 1.0 1.7 2.7 4.3 6.6

I= (g~/I )A o4.'~ "4, (12)

where f and p are free-field creation operators for the —,'+
baryon and 0 meson, respectively, P„' is a free-Geld
destruction operator for a ~3 field, and gp is the field-
theoretic coupling constant. The inverse factor of p is an
arbitrary mass which makes gp dimensionless as de6ned
in (12). The operator (12), evaluated between ap-
propriate initial and 6nal states, squared and summed
over spin, and finally integrated over phase space of the
decay particles, implies'~

3Ãgp I
gp =

k' E—3f
(13)

where again the notation is that of Eq. (6). Although
this approach is rdativistic, it contains the defect of
omitting particle structure, a property now believed to
be common to all hadrons. One conceivable remedy is
multiplication of Eq. (12) by a form factor to electively
parametrize the structure. Unfortunately, it is very
diflicult to evaluate such form factors in a reliable
manner, especially when comparing momentum trans-
fers as diferent as ns ' and ns g'.

(AR)4
vo(kR) =

9+3(AR)'+ (kE)4

In the above, we use the same notation as described
below Eq. (6) except for the range of the potential R
and the nucleon mass M~. The presence of the latter in
(10) is purely artificial, serving to make gi' both
dimensionless and of a convenient scale. ' Aside from the
ambiguities arising from the choice of R and the
necessity of making gp' dimensionless, the general
vahdlty of Eq. (10) ls doubtful because i't ls Iioii-
relativistic. This could be particularly serious for the
higher resonances where the momentum of the decay
particles is usually appreciable, For example, a decay
pion from the transition Fo'(1690) -+ Zm carries a mo-
mentum of 403 MeV/c, about three times its rest mass.

The 6eld-theoretic coupling constant for the transi-
tion ~

—~ -', +0 is found as follows. "We start with the
interaction
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TmLE IV. Coupling-constant sum rule for ~s baryon octet. All
couplings are normalized relative to the N'Fm-. The sum rule is
Eq. (8). A mixing angle 8= —12' is used in determining the
Fo EE, Fo ZK empirical coupling constants. Equation (13) has
been used to extract the couplings from decay widths.

N'¹
g'XE b

/ling O

Isospin-invariant
coupling constants

Empirical Empirical
QU (3)+ (no mixing) (Inixlng)

1.0 1.0 1.0
1.0 &0.26 &0.26
1.0 1.76 1.76

Contribution to
sum rule

Empirical
SU(3) (mixing)

4.00 4.00
4.00 &1.0
4.00 7.0

FI'EK
FI'Zm
Fo'E&
Fo'Z~

—0.16
0.98
1.04
0.46

—0.41
1.22
0.46
1.02

—0.41
1.22
0.81
0.68

—0.182 —1.0
2.182 2.99
4.182 3.44
1.818 2.36

We take f 0.6, f+d =1.See Ref. 3.
& Based on data taken from Ref. 18.

Based on data taken from Ref. 26.

To gain some quantitative feeling for the seriousness
of the difference between the formulas (10) and (13),we
have performed a model calculation involving the decay
of a fictitious particle of mass 1700 and width 100 MeV
into a D-wave baryon —pseudoscalar-meson composite of
mass M+p and meson-to-baryon mass ratio p/M. The
potential- and 6eld-theoretic coupling constants are
normalized to be equal in the nonrelativistic limit,
M+11=1680 McV p/M= 1. Tile results al'e glvc11 111

Table III, where we exhibit g&'/grP for a variety of de-
cay masses. Clearly the transition from threshold or
nonrelativistic kinematics to the relativistic domain can
lead to important differences between the two ap-
proaches. For the D-wave decays studied in this paper,
e.g., Fp'(1690) -+Zpr (M+11=1331MeV, p/M=0. 12)
and Fp'(1690) —+ XE (M+@=1435MeV, 11/M=0.53),
the kinematics are such that differences between for-
mulas (10)and (13)of order 40 jo could appear. Because
we have no a priori justification for either Eqs. (10) or
(13), the sum rule (8) will be tested with both types of
coupling constants. However, we are somewhat more
inclined to believe the results of (13),the ficld-theoretic
approach, because of its adherence to I.orentz invariance.

Before Eq. (8) can be confronted with the data, we
must study the possibility that SU (3) mixing is present.
With the input E'=1525 MeV, ~~'=1815 MeV, and
Fg'= 1660 MeV, the Gell-Mann —Okubo mass formula

Yp' ——-', (2 '+2K' —Fl') (14)

implies R mass of 1673 Mev for- the lsoscRlRI' membel' of
the —,

'-
y octet. If one associates the Fp'(1690) with this

octet and attributes the 17-MeV discrepancy entirely to
mixing between the Fp'(1690) and Fp'(1520), a mixing
angle ) 8

~

=16' is found, ' where 8 is defined by

Fp'" =cos8 Fp'(1690)+sin8 Fp'(1520),
Fp"' = —sin8 Fp'(1690)+cos8 Yp'(1520),

(»)

the states Fo& & and Fo&" transforming according to
octet and singlet representations, respectively. LThis

parametrization is standard, '' "although not entirely
compelling as applied here. For instance, the assumption
that effects of mixing and SU(3) breaking separate
cleanly is not obvious. $ We believe that it is somewhat
extreme to blame the entire 17-MeV discrepancy on
SU(3) mixing. Instead, if we adopt the criterion that the
27 mass tensor of the -', octet should roughly equal
those of the ~+ and ~ octets, we 6nd a mixing angle

~ 8~ =12'. We use this value in the following. Although
the sign of the mixing angle is not determined by the
mass sum rule (14), we can obtain it from coupling-
constant values. The octet Fo&& and singlet Fo&'~

coupling to the Zm and EK channels can be found from
the observed Fp'(1690) and Yp'(1520) decays by using
(15):

Fp&PWK = cos8 Fp'(1690)1VK

+sin8 Fp'(1520)XK,
Fp&'%K = —sin8 Fp'(1690)FK

+cos8 Fp'(1520)EK, 16

Fp&@Zpr =cos8 Fp'(1690)Znr+ sin8 Fp'(1520)Zp. ,

Fp&'1Zpr = —sin8 Yp'(1690)Zpr +cos8 Fp'(1520) Z1r.

Equation (13) and the current values for decay widths'p

imply

g(Fp'(1520)Z7r) = —1.27,
g(Fp'(1520)XK) =1.13

g(Fp'(1690)Zpr) =0.'l5,

g (Fp'(1690)XK)=0.34.

Although the magnitude of the mixing angle is small,

~
8

~

= 12', the size of the Yp'(1520) couplings relative to
those of the Fp'(1690) implies that the mixing phe-
nomenon has an appreciable effect on the Fo(8) couplings.
Results are given in columns 1—3 of Table IV. The value
for the octet parameter f=0.6 (f+d=1) is taken from
Ref. 3 and is consistent with previous dynamical models
of the 2 octet."We And that for a negative mixing
angle, 0= —12', the agreement of F0&a)EK and Fo(s)Z+

with SU(3) is markedly improved, as is that of the
singlet Fo&'&.24 The combined impact of these results is to
support the concept of baryon mixing.

We are now ready to compare the sum rule (8) with
experiment. Except for the Fl'(1660) and "'(1815)
decays, the data used are taken from Ref. 18. The
Fl'(1660) —+ Zpr mode has recently been analyzed. by
Primer eI, ul. and by Button-Shafer, who obtain con-
sistent branching ratios. "We take an average of their
results. For the Fl'(1660) ~SE decay, we take the

~ R. F. Dashen and D. H. Sharp, Phys. Rev. 133, 81585 (1964).
ss For instance, we cite Y. Hara, Phys. Rev. 133, 1565 (1964);

J.J. Brehm, ibid. 136, M16 (1964).
~SU(3) implies a ratio of coupliag constants g(Fo(')Zx)/

g (Fo(ogg) =—1.23. The unmixed empirical ratio is —0.89,
whereas a mixing angle g= —12' implies a ratio —1.17.

"M. Primer et ut. , Phys. Rev. Letters 20, 610 (1968); J.
Button-Shafer, ibid. 21, 1123 (1968).
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branching ratio used by Tripp et al.3 At present, there
exist two mutually inconsistent values of the '(1815)—&

ZE decay width. The Rosenfeld compilation' lists an
upper bound I'("ZE)&0.4 MeV, whereas a very recent
analysis by Alitti et al." implies I"(Z'ZK) =18 MeV,
although with estimated errors, 12 MeV &I'( 'ZK) &28
MeV. Numerical results based on each of these I'( 'ZK)
values are given in Table IV. Equations (13) and (16)
are used in determining the numbers shown there. The
right-hand side of Eq. (8) gives

(v'6) Lg(l'~'NK)+g(I'~'Z~) j
(g (Yp'NE) g (I'p'Zm) )

+6I +
v2 v3

whereas we 6nd for the left-hand side

4[g(N'N~)+g( 'ZK) j&5 "
4(g(N'N~)+g("ZK) j=11."

If we use the potential-theory coupling constant of
Eq. (10) with an interaction range R= 10-"crn, we And
6.0 for the right-hand side of Eq. (8) and &4.6, 8.0 for
the left-hand side, using the I'("'ZK) data of Refs. 18
and 26, respectively. Clearly, the octet coupling-con-
stant sum rule (8) applied to decays of the —,'baryons is
badly violated by the existing data. However, note that
for the I'( 'ZE) of Rosenfeld, the left-hand side of (8)
is too small, while the I'( 'ZE) of Alitti et al. implies a
value too large. For purposes of comparison, we have
also shown in Table IV contributions of each coupling
constant to the sum rule in the SU(3) limit.

IV. SUMMARY AND CONCLUSIONS

Octet dominance is apparently a basic property of the
baryon system. In those situations where the data have
been determined with quantitative accuracy, octet mass
and coupling-constant sum rules are typically obeyed to
within several percent. However, the results of Sec. III
show that the —,

' baryons violate the relation (8) by a
magnitude of order 30—60%. We now consider possible
explanations for this.

In a phenomenological analysis like that described in
this paper, one can only assume that the data are
correct. The recent analysis by Alitti et al. of the 'ZK
decay width" suggests that the current upper bound for
this mode" is too small. Indeed, we And that the
N'(1525), F~'(1660), and Fp'(1690) couplings along
with octet dominance imply I'( 'ZK) —5 MeV. We feel
it likely that the violation of (8) is related to uncertainty
in I'( 'ZK) and we urge that further exPerimerttal study of
this mode be carried olt.

It is possible that the violation of the sum rule (8)
arises from the method used to calculate coupling

"J.Alitti eI, al. , Brookhaven National Laboratory Report No.
BNJ -12808 (unpublished).

constants. Our discussion in Sec. III of the extraction
procedure from decay widths leaves little doubt that
present approximations to the unknown correct pro-
cedure can lead to significant numerical errors. In
particular, the definition of coupling constants with
dimensions and the subsequent artificial elimination of
these dimensions via suitable rede6nitions is a common
malady in the theory of high-spin baryons. Only when
coupling constants with a degenerate kinematical prop-
erty, such as occurrence of a common decay meson, are
compared is it possible to circumvent this di6iculty
with con6dence. The remarkable agreement of the
(10,—,p+) -+ (8,-',+)Qx(8,0-) coupling constants of Table II
is due partially to the occurrence of decay pions in all
transitions considered there. This fortunate experi-
mental situation has made it possible to uncover for
these coupling constants the underlying octet-domi-
nance phenomenon. When decays involving pions amd
kaons are compared, the validity of Eqs. (10) and (13)
becomes correspondingly more suspect. Our only guide
in the calculation presented here is that both formulas
(10) and (13) lead to violations in the sum rule (8) of the
same sign and magnitude for a given set of input data.
This implies that the violation of (8) is real, and is
produced either by incorrect data or by some physical
eGect not accounted for. We conclude by considering the
possibility of such an effect, '(1815) mixing.

Capps' and Mitra and Ross~ have recently questioned
the octet assignment of 8'(1815) with the following
observation. Consider the following SU(3) coupling
constants: N'Nm, ' f+d; Z'ZE. ; f+d; 'AK; pd —f; and

' ~; f d. Most th—eoretical models~ of these states
have predicted f=d, and, in particular, Capps' has
found f/d =1.2. Clearly, if f=d, it is impossible to have
both 3'ZK amd g'gx couplings small. Further, the
N'Nor and 'ZK SU(3) coupling constants are equal,
regardless of f/d. Yet from Table IV we see that the
data are at odds with both these statements, and the
trouble evidently lies in the very small value of the
empirical 'ZE coupling constant (if we use the current
Rosenfeld compilation" ). Capps and Mitra and Ross
attempt to resolve the dilemma by conjecturing that

'(1815) is not pure octet, but is mixed with some other
baryon belonging to a decuplet. Capps can explain the
anomalously small ZE branching ratio with a mixing
angle of 25'. (We refer the reader to Ref. 8 for details. )
The weak point in the above argument is the assump-
tion of pure SU (3) symmetry, for we have seen that, for
example, the ~+ resonance coupling shifts may approach
40%, although the octet sum rule, Eq. (5), is almost
exactly obeyed. In this paper we have explored the
possibility that SU(3) breaking alone can explain the
magnitudes of the ~3 decay widths, and have concluded
that it cannot. In particular, the sum rule predicts a

'ZK coupling constant much larger than that which
the present I'( '~ZK) upper bound" implies. The
mixing conjecture is not completely arbitrary. In the
quark model, Mitra and Ross~ and Greenberg and
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Resnikofls have shown that for the SU(6) limit, a
multiplet structure of 70Qxl is likely to occur for the
negative-parity baryons. This has also been demon-
strated by Capps, ' whose arguments are consistent
with bootstrap theory. The content of 70Qxl includes
two octets and a decuplet with spin and parity ~3 . Since
a precise estimate of the masses of these particles is not
possible at this time, further word on the mixing
conjecture must wait for further experimental study of

excited states. If the current P ( 'ZK) upper bound is
upheld, then the concept of '(1815) mixing will be

enhanced. However, should the value of P( 'ZK) turn
out to be larger, octet dominance will probably be
sufhcient to explain the ~3 decay widths.

Sofe added in proof: A related work on the negative
parity baryon spectrum has been done by S. Pakvasa
and S. F. Tuan, Nucl. Phys. (to be published).
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Baryon Excitation Form Factors and Asymptotic Chiral Symmetry
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An explicit multipole decomposition of the vector and pseudovector N-E*(1236) transition form factors
is made, and the predictions of asymptotic chiral symmetry are discussed. A general consistency between
the chiral predictions and the simplest assumptions on multipole behavior is found for one choice of de-
cuplet chiral representation.

I. INTRODUCTION
' 'T has been found' that assigning the octet baryons to
- - a definite chiral representation leads to several very
well satisfied relations among the various vector and
pseudovector E-E transition form factors. In order to
obtain these relations, it was necessary to interpret
the predictions of chiral symmetry as holding only for
very large spacelike momentum transfers. ' 4 The
reasoning behind this point of view is that chiral sym-
metry is an expression of the tendency of nucleons to
retain their helicities when they engage in interactions
with other particles. At low energies, they are not par-
ticularly successful and emit pions as an attempt to
compensate. However, at high energies (which we shall

interpret as large momentum transfers for the case of
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1962), p. 151.
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form factors), the nucleon mass may be considered
negligible and nucleons tend to behave as massless spin--',

objects which do conserve their helicities.
In order to test the relations at large spacelike mo-

mentum transfer (g'), it is necessary to have some idea
of the functional dependence of the form factors. For
the case of the vector E-S transition form factors, the
e-p scattering experiments give us a lot of information.
These experiments' indicate that it is the Sachs form
factors' which are simple functions of q' and that these
behave as (1+g'/Mv') ', where Mv' ——0 71 BeV'
About the axial-vector E-E form factors and about all
the E-E* form factors, much less is known and we will
have to rely mainly on analogy, although there is, of
course, some available information from electroexcita-
tion, photoexcitation, and neutrino excitation experi-
ments. If we take the analogy with the vector E-Ã
case seriously, the most natural assumption is that the
objects which behave simply as functions of g' are the
analogs of the Sachs form factors, these analogs being
the relativistic multipoles introduced by Durand,
DeCe]les, and Marr. ' Thus the Grst part of this paper is

5 See, for example, L. Chan, K. Chen, J. Dunning, Jr., ¹

Ramsey, J. Walker, and R. Wilson, Phys. Rev. 141, 1298 (1966).' See, for example, L. N. Hand, P. G. Miller, and R. Wilson,
Rev. Mod. Phys. 35, 335 (1963).

7 L. Durand, P. DeCelles, and R. Marr, Phys. Rev. 126, 1882
(1962). We shall refer to this paper by DDM for brevity.


