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VUKIO TOMOZAWA

CERN, Geneva
and

Randatt Laboratory of Physics, The Un& ersity of Michigan, Ann Arbor, Michigan 48104
(Received 30 August 1968)

Applying the infinite-momentum technique to the matrix elements of equal-time commutators, we
obtain superconvergence sum rules for the zero-mass-pion-nucleon scattering amplitude, which are identical
with those derived from dispersion relations, apart from a possible restriction imposed upon trajectories
with integer intercepts. Using this result, we show that a modification of the equal-time commutation
relation of pion fields (or of divergence of the axial-vector currents) motivated by a simple quark model
is not compatible with the Pomeranchuk theorem.

I. INTRODUCTION

N application of the infinite-momentum technique
~

~

~ ~ ~

to the matrix elements of the equal-time commu-
tator of the axial-vector current A'p(x) has led to a
successful sum rule (the Adler-Weisberger relationP),
under the assumptions of partially conserved axial-
vector current (PCAC)' and current algebra. 4 The sum
rule is intimately related to the low-energy theorem on
pion scattering, i.e., relations between the s-wave
scattering lengths, ' which is also in good accord with
experimental data. ' As a matter of fact, one of the
reasons for the success of the in6nite-momentum
technique is that, when it is applied to the commutator
of the axial-vector currents, one is led to a sum rule
which contains a convergent integral.

A similar method has been applied to other equal-time
commutators to derive high-energy theorems or the
ratio of the renormalization constants. ' In these cases,
however, the relevant sum rules contain divergent
integrals. In order to avoid this difficulty, various
limiting procedures have been used, the validity of
which appears to be dubious.

In this article, we discuss similar problems, but take
into consideration the high-energy (Regge) behavior
of the scattering amplitude that appears in the sum
rule. In other words, we subtract the Regge amplitude
before taking the infinite-momentum limit. In Sec. II,
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applying this method to the equal-time commutator
of the axial-vector current and its divergence (or the
pion field), one obtains a superconvergence sum
rule' "for the symmetric part of the zero-mass-pion—
nucleon scattering amplitude. The sum rule thus
obtained is shown to be 1dentlcal to that given by
Igi s method, i.e., by taking the in6nite-eat, rgy limit
in dispersion relations after subtracting the Regge
amplitude. A similar calculation is carried out for
equal-time commutators of pion fields (or of divergences
of the axial-vector currents), leading to a super-
convergence sum rule for the antisymmetric amplitude,
which is also identical to that obtained from dispersion
relations (Sec. III), apart from a possible restriction
on trajectories with integer intercepts.

Using the above result, a question of modifying the
equal-time commutation relation of pion 6elds is
discussed (Sec. IV).

II. SYMMETRIC AMPLITUDE OF PION-
NUCLEON SCATTERING'

%'e start with the relation"

(2s)46'(0)—4s f&+'(0,0)= —if '2s.&(0)

+if,—'(2s)'5'(0)(0~ Ap'+'(x, xp)d'x,

pjxgx(-)(y*p)dPy ~0), (y)
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where f&+)(vr, ,ko')
I f (vz„ko')] is the symmetric I

anti-
symmetric) amplitude for mass-ko-pion —nucleon scat ter-
ing, the lab energy ur, is defined by

vz, = pk—/e/= poko//r/, (2)

and t)), p, /r, k, and f stand for the nucleon mass, its
four-momentum, the pion mass, its four-momentum,
and the PCAC constant dered by

rl~g~&+) —f // &k&+)

P&+) being the pion Geld. The quantity f&+&(0,0) is
understood as"

f '+& (0,0)= lim f&+& (v,kp')
k0M, k0&11/~0

The states
I p) and

I 0) stand for a proton state and the
vacuum, respectively, and the second term of the
right-hand side of Kq. {1)represents the subtraction of
the disconnected diagram.

The method of Refs. 1 and 2 enables us to write
Eq, {1)as

/ 'Ix
I

d v o &+& (vn, kp')
f&+) (() 0)— (5)

2s.s g/ (Po2+2tav)1/s (~Q—ko2)2
h —(ps+ p'2) 1/s (1&9+tr&2) 1/s

5"—m' ho'
= vr+2' 2m'

~&+) (v,ko') = sl ~.-,(v,kpP)+~ ', (v,ko')],

and S" is the energy in the c.m. system. In deriving
Eq. (5), we insert the intermediate-state projections
between the two operators of Eq. (1) and sum over
them. In contradistinction to the case of the equal-time
commutator of axial-vector current, we do not have a
contribution from the one-nucleon state, since

{1-I &(& )(x,*o)d'*In) = (2~)'~{p—p-)(1- le& '(o)
I p)

~ (2s)'(&(l&—1&.)~(y)yoN (y) =0.

As regards multiparticle intermediate states, the
contributions from purely disconnected diagrams of the
6rst term are cancelled by the second term, and what
I'eQlMns ls bI'ought. by using unltallty into the forTQ

of Eq. (5), where the singularity of the integral has
been proved to be the principal value. ' '4

If one interchanges the integral and the limit
po-+ pe in Eq. (5), one encounters a divergent integral,

a &+) (v,0)dv.

'4 The proof of Ref. 2 on this point, though plausible, does not
seem mathematically rigorous, since it deals with a special limit
for an ill-defined quantity such as a product of distributions.

The high-energy behavior of &r&+)(vr„ko') for fixed kp'

should be vr~v&o) ', where &rv(0) is the intercept of the
Poxneranchon, since the Regge trajectory should not
depend on the external mass ko. Therefore, one has to
subtract the Regge asymptotic form /re&+) (vr„ko') from
/r+&)( vrk 'p) before taking the inGnite-momentum limit.

That is, instead of Eq. (5), one should deal with the
integral

/r'I pl
" dv

f&+) (() ())—
2x' „(pp'+2/tov)'/s {/r' —kp')'

/ro )
X p&+)(vr„kos)0 v—p—

I

—&r/t&+)(vr„ko')
2m, i

y4I y I

" dv o&t&+) (vr„kp')
(5')

2s' „(pop+2//ov)'/s (/r' —kp')'

Here 8 stands for the step function, and /rg&+) (vr„kp')
contains the contribution from the Regge trajectories
whose intercepts 0. are non-negative, so that one could
interchange the above-mentioned limiting procedures
in the Grst term of Eq (5').. For the second term, one

should integrate Grst, then take the limit ps ~~.Since
the integrand contains a singular function, there is a
possibility of obtaining a sensible result by this pro-
cedure. '5 If one chooses, however, the expression for the
subtraction term as

/r„&+) (vr„kps) = P 4s'P &+&P (vr, ///)/vr, (6)

as is suggested by Regge theory, the second integral
of Eq. (5') leads to a term that behaves like pp,
provided that the residue function is independent of
ko'. This means that Kq. (6) is not a correct subtraction
term to obtain a sensible result through the in6nite-
momentum limit in Kq. (5 ). The simplest choice for
&r/t&+)(vr. ,ko') to get rid of the po dependence from the

~' Such an example is a principal-value integral

( } ~ "y'f(x}Ch

f(x) ~ &.+0(1/x'+') (p)0).

Obviously one cannot perform the limit y—+~ inside the integral.
However, arranging the integral as

g (y) yl +Cym
"f(x)—C

gQ ym j gR~yR

, "f(~}—C
&

„&+1
s —y 1—y

one obtains the result

g(~) =— (f(x) ~)+&—
1

H the kernel P(1/(x' —y')) of the integral is replaced by (1/
(x'+y'}), the limit does not exist.
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second integral of Eq. (5') is to set

o/2'+'(vt. kp') =o'+'( 0)G2'+'(k ')

+ 2 4~P '+'G &+&(kp')Pn(vr, //2)/v J. , (7)
0&a&1

where

G '+&(kp') = 1+ (2—n)/(n) (kp2/p2) 0«(1. (8)

In Eq. (7) we have separated the contribution of the
Pomeranchon, for convenience. The residue function
can still be a function of &02 in such a way that

lim P '+&(kp')=P &+&.
kp2M

We assume, however, that such a k02 dependence does
not change the essential part of our discussion. This
will be justified &2 posteriori by comparing the result
with the superconvergence sum rule which will follow
from the dispersion relation. The necessity of factor
(8) can be seen from the calculation in the Appendix.
In fact, it is just an operation to drop the unwanted
pp-dependent terms, leaving the constant term un-

changed, and thus showing that the procedure is rather
stable.

We also assume the absence of the trajectory with
a=0, since otherwise it would require the existence of a
mass-zero particle with spin zero, which has never been
observed. This assumption then makes harmless the
singularity which appears in the expression of G '+& (kp').
Needless to say, if there is a Regge cut which runs over
1&0,)0, the sum in a should be replaced by the corre-
sponding integral. Our discussion will not be changed
by this modification.

With these preliminaries, and taking the limit

p, —+~ in Eq. (5'), one obtains

1 " /' /2' )f + (0,0)= dv o&+&(V,O)0~ v—p-
22r2 „E 22&2//

2P &+&

—o&2&+&(V,O) — o&+&(~,0)—g P (0). (9)
2~2 0&a&1 Sing

Ref &+& (v)kp') =Ref &+& (/2)kp')

g21t2 (k 2)
—

V2 /22

42r2&2 -v —
v&& (kp ) /Il v&& (kp )

v'd v' Imf&+' (v', kpp)

(10)
v+v'/pm-pp'/pm (v /& ) (v v )

2("—/2) "

where gE(kp2) stands for the "pion"-nucleon coupling
constant,

E (/&2) = 1 v» (kp') = —kp2/22&2

and
(V2—k 2)1/2

Imf&+&(v, kp )= o &+&(v kp').

Putting k02=0 and subtracting the expression for v=0,
after rearrangement of several terms, one gets the
formula

This is identical to the superconvergence sum rule of
Igi type in the case of zero-mass-pion —nucleon scattering
amplitude. In order to see this in more detail, and for
convenience, we repeat his argument in a slightly
diferent form which is closely related to the procedure
described above.

One may write the once-subtracted dispersion
relation

dv
f&+&(0,0)+ —o &+&(v,0)t& v —&«

—
~

—o.&2&+&(v,0)
2m 2 „v"—v' 22/2/I

2 oo

=Ref+'(v, p) — —[o +&(pp, 0)+ P 42rP &+&P (v'//2)/v'j
2x v v 0(a(1

=Ref&+'(v, 0)—
27r2

V V+/2 g
o &+& (pp, 0)—ln — + Q 42rp, &+&

2 v —p 0(a(1 Sin
(P (0)——', [P (v//2)+P (—v//2) j), (12)

where P ( v//2) stands fo—r the principal value

P (—x) =-',[P.(—x+ip)+P. (—x—ip) j
2

= COS2rn P (X) Sin2rn Q.(X), X)—1—. (13)

implies that

lim Ref&+& (v,0)
v~00

P-(v// )+P-(—v// )+ p p.&+& =0, (14)
0(a(1 S1QXQ

One notices that the Born term in the dispersion
relation (10) disappears by the required limiting the limit v &op in Eq. (12) leads to Eq. (9).
process (4). Since the assumption of the Regge behavior Although one ends up with an identity, one might
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infer the following two points from the analysis of this
section:

(i) The Regge behavior for the asymptotic form of
the scattering amplitude is compatible with the in6nite-
momentum method; and especially

(ii) The koo dependence of oR(+)(vL, ko') given by
Eqs. (7) and (8) may be justified a posteriori

Finally, one should remark that the conclusion will
not be changed if one includes the trajectory with
a(0) =0 which has a vanishing residue, such as in the
case of the conspirator"" of the pion in the zero-mass
approximation. The Regge amplitude due to this
trajectory is

P (+) (1+coss.a)P, (v/p)
Ref &+',=0———lim

a~0 sin+A

2——p.&+ Q. (v/p)

2p (+)
=C&+&

a 0

which amounts to adding C&+' to the right-hand side
of Eq. (9). Although Eq. (12) is not changed by the
addition of this trajectory, one should add C'+& to the
right-hand side of Eq. (14), which establishes the
equivalence of the two methods in this case. The
argument applies equally to the trajectory of the moving
pole, as well as the fixed pole, i.e., a(I) =0, as far as
they are handled with the above-described limiting
procedure. Incidentally, in the case of a 6xed pole with
vanishing residue, one may consider the real constant
C&+& as representing a non-Regge behavior of the
scattering amplitude. That is, one may subtract C(+'
from the amplitude, then Reggeize the remainder as
far as the dispersion relation f&+)(v,0) is concerned. In
the infinite-momentum method, on the other hand, the
de6nition by the limit, as described above, is the only
way of getting a consistent result. Therefore, if the
6xed pole with vanishing residue could not be defined
as the limiting case n —& 0, which may likely be the case,
then one would be led to conclude that there should not
be such a fixed pole or, equivalently, a real constant
C&+& of the non-Regge type in the asymptotic amplitude.

III. ANTISYMMETRIC AMPLITUDE

and

Imf&+) =()
——lim P, (+)P (v/p) =0,

a-+0
(16)

We now turn our attention to the antisymmetric
part of the pion-nucleon scattering amplitude. Appli-
cation of a similar technique to the preceding section
to the matrix element

lim 47rP (+)G,(+) (koo)I' (vL/p)/vLa~0

4 C(+&~,2

(17)
VI, P,

while the contribution to OR(+)(VL,koo) may be con-
sidered as (p'I e"'(, o)d'*, &' 'b o)d'~ IP)=o

leads to

0=
dv koo& )(VL,koo)

„~„~)0„(po'+2mv)'" (p' —ko')'

dV ko, '„'
I p yo dv koo'R (vL, ko')

(VL,ko )HI v I)( OR(VL ko ) '+ ~ (19). (Po'+2~V)"' () '—ko')' I 2m „(poo+2rRV)')' (I '—k ')'

Here o R' ) (VL,ko') may be chosen either as"

oR' '(VL,ko')

where

and
G~( ) (ko') = 1+(1 a)/(I+a)—koo/p'

-1+a&1

4sP (—)G (-)(k 2)g (v /p)a-i
(20a)

or as

(rR (vL ko ) p 4m'p 'G (ko )P (VL/v)/VL
0( A(1

4)VP & 'G & )(ko')X. (VL/p)
—'

(20b)—1(a+0

"E.g., J. S. Ball, %'. R. Frazer, and M. Jacob, Phys. Rev.
Letters 20, 518 (1968).

'7L. Bertocchi, in Proceedings of the He@'elberg International
Conference on Elenentary Particles, edited by H. Filthuth

with
P (x)=$ x +S ix '+0(x -'x- '), (22)

& =2 I'(i+a)/I~)rl'(I+a) I. (23)

(Wiley-Interscience Publishers, Inc. , New York, 1968), p. 197,
in which earlier references are found.

'8 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1959); A. L.
Read, J. Orear, and H. A. Bethe, Nuovo Cimento 29, 1051 (1963).

The choice of expression (21) for G & '(ko') is again
dictated to guarantee the existence of the proper limit
p, ~m of Eq. (19).The equality signs at a=0 or —1
of the summation in Eqs. (20) stand for the inclusion
of terms which are considered as the limiting case taken
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from the inside of the boundary, i.e., n —) 0+0 or
n~ —1+0. The other terms at n= —1, those not
considered by the above-mentioned limit, are denoted
by o,= —1—0, and are excluded from the summation
of Eqs. (20). Having the vanishing residue factor N,
all trajectories with intercept —1 give no contribution
to os( )(v,o), but do contribute to Ref@( &(v,o). In
other words, we have

P ( )N (1—cosorn)(v/p)
R.ef, '-'(.,O) =

where

one gets
f'= g'/4n(v/. 2))))'= 0 08.1 (29)

v vdv

P ( 'N (1—cosm.n)(v/p)
=v Ref' &(v,o)—

—1(a&1 sinvrn

p2
a( &(v', 0)0 v' —p —— — —oa( &(v',0)

m2 v"—v' 2m

and

—1(a&1 S1Ilz'O;

2P &-o( ))((
+ — (24a)

2P'&Np
+o(1/") (30)

—(«& s.(1+n) v

Equations (24a) and (30) then lead to the sum rule

P ( &'N. (1—cosorn)(v/p)"
Reft(-&'(v, O) =

—1(a(1 Slnmn

2P ( p
'g Pp

'
v+)(( 1)+ —+ ln +0 —

~
. (24b)

or v vr v —p v)

The last term of Eq. (24b) derives from the fact that
lim pP (—x) contains the term

(
dv vo. ( &(v,o)8] v —p —

[

—Q 4+P ( &N,
]

—
[

v — ( 251) )&a&( kp)

4)rP ( &t(N 4' &
—o( )~, -(31)

1+n

which is compared to Eq. (27) to yield

Qp(x) = o»L(x+1)/(*—1)3 P 1 0 t) Po t)+P I 0— (32)

Lsee Eq. (13)]. Since the trajectory with n= —1+0
contributes to a~( &(v,kP) as

If one had used Eq. (20b) for the subtraction term,
one would have obtained

1 Qkp v

lim 4n.P ( & —Na~1 1+n t(3

8)rP (+o( 'ko'
(25) t' u'

dv vo( &(v,o)t&~ v —p-
2m

comparison of Eqs. (20) and (24) leads to the relations

P x-o( '=Po' '+P-i-o( ' 4' ' &'P (v/tJ, ) +4xP '—'N (v/t))
0( a&1 —1&a(0

and

P (—) P (—)' 1(n&.1
(26)

4&rP ( &')((N

+4xPo( 't (27')

Choosing Eq. (20a) for the subtraction term, we perform
the limit pp ~op in Eq. (19) to obtain

Ref( & (v,kpo) =
2vf'K'(k op) (k p/t))'

v' —vso (kop)

p+p /2m —kp /2m

dv' Imf( &(v',kpo)

(28)
v"—v

v

dv vp( &(v,o)0 v —p —
i

—P 4orP (—)N. —
2mj —)&a&) t(

4m.P ( )pN
(27)

—&& a&1 1+n

where use has been made of the formulas of the Ap-
pendix. Note that only the term P )~p( & appears in
the sum rule (27), but not the termP ( p( &. Thisdiffer-
ence stems from the singularity of G ( ) (ko') at n= —1,
as stressed earlier.

On the other hand, from the unsubtracted dispersion
relation

—1(A&0

4sP ' &')MN

4orP ~ p(
—)'~

-1&a&o 1+n
(31')

which lead again to Eq. (32). Equations (27') and
(31') can be derived also from Eqs. (27) and (31) by
using the relation

I P (x) Nx ]dx=N /(1—+n), 1)n)0
=0, (33)

Relation (32) would imply that the real part of the
antisymmetric amplitude should not have a component
1/v, unless it comes from the trajectory with n -+ —1+0.
This may exclude the existence of a fixed pole at
n(t) = —1. Of course, it is not clear whether this state-
ment is valid also for the physical pion-nucleon scatter-
ing amplitude. The residue function P ( p( ) may well
vanish only for zero-mass pions. Barring this ambiguity,
an interesting case would be P &+p( &=0, so that one
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has an accessible prediction

Recently, several authors have noticed the necessity
of a singularity other than the p trajectory from the
numerical analysis of superconvergence sum rules' "
or from the observations of the polarization of the m.p
charge-exchange scattering' "' or from a remarkable
dipole 6t of the electromagnetic form factor of the
nucleon. "The second p trajectory, the so-called p', has
a small intercept, but its precise value is not known.
The magnitude and the sign of the residue function is
also not well established"; they depend very much on
the other input information or assumption. If the
intercept of p' is small, its residue may well be restricted
by the condition (34), i.e., the residue function must be
small from the continuity reason. Analysis of Ref. 10
shows that the residue function of p' at 3=0 is small
indeed. Incidentally, we should note that our conclusion
is independent of the existence of any other trajectory
or Regge cuts, although we deal with the zero-mass-
pion —nucleon scattering. The mathematical analysis
of the validity of our subtraction method is, however,
left to be investigated in more detail. "

IV. MODIFICATION OF EQUAL-TIME
COMMUTATION RELATIONS

OF PION FIELDS

Finally we remark that a modification of the equal-
time commutator of pion fields, such as

t
@+&(x,xp),y

—
(y,xp)] = CVoP(x, xp)B(x—y), (35)

where

Ip ———,
' Vo'(x) d'x

is the third component of the isospin operator, is not
compatible with the Pomeranchuk theorem. Equation
(35) may be motivated from a simple quark model in
which the pion is identified with the pseudoscalar
bilinear form of quark fields. "This is considered as the
equal-time commutation relation in a simplest example
of nonelementary pions. The matrix element of Eq. (35)

I9 P. Bonamy et al. , Phys. Letters 23, 501 (1966).
~H. Hogaasen and A. Frisk, Phys. Letters 22, 90 (1966);

R. K. Logan, J. Beauprb, and L. Sertorio, Phys. Rev. Letters 18,
259 (1967);T. J. Gajdicar, R. K. Logan, and J. W. MoGat, Phys.
Rev. 170, 1599 (1968); W. Rarita and B. M. Schwarzschild, ibid.
162, 1378 (1967).

"W. Panofsky, in Proceedings of the Heidelberg International
Conference on Elementary Particles, edited by H. Filthuth (Wiley-
Interscience Publishers, Inc. , New York, 1968), p. 371."Similar problems as in this article have been discussed recently
in a different way by G. Furlan and C. Rossetti (unpublished);
S. Fubini and G. Furlan (unpublished). The present author
would like to thank these authors for having sent him these
articles prior to publication.

"The author is indebted to Professors J. D. Bjorken and W.
Weisberger for useful suggestions on this question.

between one-proton states gives

2m tplC=
kpo& &(vr„kp')

pr Po ~(p (Po'+2mv)"' (p' —kp')'
(36)

instead of Eq. (19). Using the calculation of the
Appendix, and taking the limit pp~po in Eq. (36)
associated with the subtraction method described in
this article, one obtains

C= —o& '(~ 0)/n-y, ' (37)

which proves our statement.
The replacement of the fourth component of a vector

CVp'(x, xp) in Eq. (35) by a scalar Cspp(x, xo) or a tensor
Cr oppo (x,xp), etc. , leads to an equation similar to Eq.
(36), in which C is replaced by the term (C&m)/po or
(Crm)/pp. Since the right-hand side of Eq. (36) starts
with 1/p, ' when o& &(po,0)=0, we conclude'4 that
Cz ——C&——0. Therefore it is not possible to modify Eq.
(18) in a simple manner within the scheme of the local
quantum field theory.

APPENDIX: RELEVANT INTEGRALS

We compute the following principal-value integrals
which are necessary for the discussion of the text:

2 cx

I,&+'=I &+'+ K '+&, 0(n&1, (A1)

where

dv 1 P, (vr, /p)I (+) =~4Pp (A2)
(P &+2mv)&/& (po —k &)& vg

~4 A weaker statement would be that the relevant form factor
should vanish for the zero momentum transfer. This, however,
seems an unlikely case since there is no dynamical reason for
that to happen.
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