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Solutions of Strong-Coupling Meson Field Theory with a Hard Core
for Elastic Nucleon-Nucleon Interaction
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In Wentzel's strong-coupling solutions of the Gxed-source meson Geld theory, the nucleon isobars are
derived for pion-nucleon interaction. In the limit of strong coupling, the exact solutions of the two-source
Geld equations were also obtained; they contain the transitions between an inGnite set of isobaric two-
nucleon states. Using the matrix representation given by Fierz, these solutions can be expressed as a coupled
system of Schrodinger equations containing inhnite matrices for the central and tensor potentials as well as
an isobar mass-breaking term. In addition, a core potential of the Wigner type was derived for small sepa-
rations of the sources; this potential is here idealized as a hard core, independent of the state. This theory
contains three parameters: the pion coupling constant g~, the S»* isobar excitation energy F„,and the core
radius r,. Choosing the values g'= 13, E,=300 MeV, and r, =0.55 F for these parameters, excellent agree-
ment is obtained for the 5-wave phase shifts throughout elastic energy region. The high-angular-momentum
phase shifts approach one-pion-exchange phase shifts, and the intermediate phase shifts agree qualitatively
below 100 MeV, except for the triplet I'. The deviations result essentially from the neglect of the core struc-
ture, the absence of spin-orbit forces, and relativistic effects.

l. INTRODUCTION
' "T is known from phenomenology that the elastic
~- lV-E interaction can be described by static po-
tentials, and that there are three distinct kinds of
them. First, the long-range forces (for distances
greater than 2 F) are already quantitatively described
by the one-pion-exchange contribution (OPEC) po-
tentials; these forces are attractive or repulsive,
depending on the quantum number of the state con-
sidered. Second, the core is described by forces of the
range =0.7 F which are very strong and always
repulsive. In addition, there are spin-orbit forces
derived from these short-range potentials. Contrary to
the p-meson dominance established in other kinds of
experiments, the isospin-zcro ~-meson potential is here
obtained as the strongest one, and therefore the short-
range forces do not depend very much on the state.
Third, there are medium-range forces, always attrac-
tive, which mainly account for the rather high singlet-
even phase shifts. Usually they are either partly
explained by two-meson cxchallgc terms, 1 OI' they aI'c
described in the one-boson-exchange (OBE) model by
the introduction of hypothetical scalar mesons, ' but
in the first case it was not possible to obtain convergent
series in terms of multiparticle meson states, and in the
second case the scalar mesons (which should be the

~ Work supported by the Deutsche Forschungsgemeinschaft
and Deutsches Elektonen-Synchrotron, DESY (Hamburg).' D. Amati, E. Leader, and B. Vitale, Nuovo Cimento 17, 68
(1960); 18, 409 (1960); E. Lomnon and H. Feshbach, Ann. Phys.
(N. Y.) 29, 19 (1964);Rev. Mod. Phys. 39, 611 (1967);S. Furuichi
and W. Watari, Progr. Theoret. Phys. (Kyoto) 34, 594 (1965);
36, 348 (1966).

'N. Hoshizaki, S. Otsuki, W. Watari, and M. Yonezawa,
Progr. Theoret. Phys. (Kyoto) 27, 1199 (1962);R. A. Bryan and
B. L. Scott, Phys. Rev. 135, 8434, (1964); A. E. S. Green and
T. Sawada, Rev. Mod. Phys. 39, 594 (1967); G. Kopp, ibid. 39,
640 (1967); A. Scotti and D. V, Wong, Phys. Rev. 138, B145
(1965).

most important particles other than pions to explain
nuclear forces) could hardly be found in experiments.

The strong-coupling meson 6eld theory derives all
three kinds of forces from a static pion field and from
the assumption that the nucleons can be described as
extended sources. The long-range OPEC-type inter-
action is obtained for the phase shifts with high angular
momentum, the intermediate-range forces are created
via excitation of nucleon isobars, and the signer-type
core interaction is derived in the intersection region of
the two sources. There is no need for scalar mesons
in this theory, and possibly the vector mesons need not
be introduced explicitly. In our calculation, the long-
range and intermediate-range forces are taken into
account quantitatively, but the short-range interaction
is idealized by a hard core.

After %entzeP had introduced the strong-coupling
concept in 1940, this method was applied to the E-E
interaction by Pauli, Dancoff, and Serber, 4 again by
Kcntzel and his school, ' and also by Schwinger and
Oppenheimer' in diferent approaches. They all obtained
the same expression for the potentials in the case of
the pseudoscalar symmetrical theory. Fierz developed
the matrix representation of the strong-coupling po-
tcntlals.

The numerical results of this 6rst period did not
agree with experiments because of the selection of a
value of 50-MCV isobar excitation energy and because

~ G. Wentzel, Helv. Phys. Acta 13, 169 (1940}.
4 W. Pauli and S, M. Dancoff, Phys. Rev. 62, 85 (1942); W.

Pauli, Mesog Theory of ÃNclear Forces (Interscience Publishers,
Inc. , New York, 1946) „W. Pauli and S. Kusaka, Phys. Rev. 63,
400 (1943);R. Serber and S. M. DancofI', ibid. 63, 143 (1943).' G. Wentzel, Helv. Phys. Acta 16, 551 (1943); M. Fierz and
G. Wentzel, ibid. 17, 216 (1944);A. Houriet, i'd. 18, 4/3 (1945);
F. Coester, ibid. 17, 35 (1944); also Refs. / and 8.

6 J. R. Qppenheimer and J. Schwinger, Phys. Rev. 60, 150
(194i).

~ M. Fierz, Helv. Phys. Acta 17, 181 (1944);18, 158 (1945).
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of unpermissible approximations. Villars' then dis-
covered that good results could be obtained by assuming
a greater value of excitation energy. Finally, Houriet
and Heritier' assumed an experimental value of 300
MeV. They included only the isobars with the lowest
excitation energy, i.e., the states (zV+zV»*) with 300
MeV for the singlet, and (zVts*+1Vtt*) with 600 MeV
for the triplet. A hard-core potential was introduced
to account for the short-range forces. Good agreement
was obtained for the singlet and triplet effective-range
parameters and for the deuteron. This theory was then
extended to deal with E-X scattering in the elastic
energy region (see Refs. 10—12).

Section 2 contains the strong-coupling solutions of
the two-source meson field theory. In Sec. 2 A. the
long-range and intermediate-range solutions are given.
The short-range forces are discussed in Sec. 2 B.
section 3 contains a discussion of the calculated phase
shifts in comparison with the experimental phase-shift
analysis. In Appendix A, the structure of the inter-
mediate-coupling solutions is discussed, and the contri-
bution of the different isobaric channels is analyzed.
Appendix B contains a comparison of the strong-
coupling results with the isobar contributions in
other theories, including a discussion of isobar po-
tentials.

2. STRONG-COUPLING SOLUTIONS OF TWO-
SOURCE MESON FIELD THEORY

In strong-coupling theories, the nucleons are de-
scribed as fixed extended sources; this is why they
cannot be formulated in a Lorentz-invariant way. But
the meson field is, of course, treated relativistically,
and by applying second quantization. In the limit of
very strong coupling, as well as in the opposite limit
of weak coupling, the exact solutions of the field equa-
tions have been derived. The weak-coupling solutions
are identical with the familiar point-source solution
(OPEC) in the Born approximation, except for a
renormalization factor. The complete strong-coupling
solutions contain an infinite set of stable isobaric
nucleon states. The physical case of rather great but
finite coupling lies in between, but tends more towards
the limit of strong coupling. This is discussed in more
detail in Appendix A.

The Hamiltonian of the fixed extended-source
symmetrical pseudoscalar-meson field theory with
pseudoscalar coupling is

K=KO+Kz r

8 F. Villars, Helv. Phys. Acta 19, 323 (1946).
9A. Houriet and C. A. Heritier, Helv. Phys. Acta 35, 414

(1962).
"A. Achour, F. Ade, and S. Wagner, theses at the University

of Fribourg, Switzerland, 1967 (unpublished).
"S.Wagner and P. Winiger, Helv. Phys. Acta (to be pub-

lished).
'~ S. Wagner, DESY Report 5o. 68/9, 1968 (unpublished).

where

Xo——-', Q dV(tr '—V'P +zt'P )

f 2 s a

Kz= —(4tr)' —P P Q o,&" r
P a=j. ~=~ i=j.

X d V U(r, )V;~»y. ,

with p=rzz c/h. p and tr are the canonical meson ffeld
operators obeying the familiar boson commutation
rules. o. "' and r &") are the Pauli spin matrices of spin
and isospin of the two sources A = 1 and 2. The coupling
constant f is dimensionless. U(rz) is a source function, "
normalized to one.

P))an't, (2)

where tz is the range of the source function U(r;), the
Hamiltonian reduces to a sum of four terms:

X=Xself+Xdyn+Xrot+Xpot ~ (3)

The first term in (3) is the constant self-energy of
the field for infinite separations of the two sources.

The second term,

Xg,„=—(h'/2mzz) V',

is the familiar nonrelativistic dynamical operator.
When the separation of the two sources is large

enough, so that there is no overlapping, the third term
becomes

A=1
L(g(rt&)t —(peart))t] g= zzp&/ft for gp((] (5)

where (2&"&)' is the differential operator of the spherical

"In the prior strong-coupling paper (Refs. 3—7) it was assumed
that the range of the source function is equaJ to the proton
Compton wavelength. Therefore the numerical results disagreed
with the experiments. However, it is permissible to assume a
greater range on account of the pionic form factor of the nucleon
since in the derivation it is only necessary that the range be
smaller than the pion Compton wavelength.

A. Long-Range and Intermediate-Range Solutions

Only the results of the strong-coupling calculations
are given here. The derivation can be found in Wentzel's'
and Fierz's' original papers, and in Pauli, Dancoff, and
Serber's4 papers on the two source problem. According
to Wentzel's approach —which is essentially different
from Pauli's and also from the classical field-theory
treatment of Schwinger' —a set of canonical trans-
formations is applied to the Hamiltonian of Eq. (1)
so that the interaction part is diagonalized with
respect to spin and isospin. The lowest-energy eigen-
states of the transformed Hamiltonian are then found
by variational methods. Then in the limit of strong
coupling, i.e., with
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rotator, and where (S&"')' is attributed to the spin of
the nucleon source. The eigenvalues are

E.=~ Z Ls~()~+1)—2j )~=4*2 2
" (5')

tg= jg (6)

These nucleon isobars can be identiGed with the experi-
ment Rl ones. Thc stRtcs with jg = 2 Rnd jg = 2 Rrc
attributed to the nucleon and the X33* resonance,
respectively; the higher spin isobars cannot be attrib-
uted to experimentally known nucleon resonances. "

The last term in (3) is the distance-dependent part
of the static self-energy. In the limit of strong coupling
(2), and for suKciently large separations of the sources
the meson states split into three orthogonal parts: the
bound meson states of each source and the free meson
states. There are no interference terms between them.
In this case a simple expression can be derived for the
interaction energy:

In these states the inner part of the meson cloud is
bound to the spin of the sources, and these mesons
rotate about their respective nucleon centers. The
quantum number j~ is then the vector sum of the
nucleon spin and the angular momentum of the spinning
meson cloud, and 1/E can be interpreted in classical
Geld theory as the moment of inertia of a rigid rotator.
Hence the nucleon together with the bound-meson
cloud appears as one particle with the spin j~. In the
pseudoscalar symmetrical case the isospin quantum
number is found to be equal to the spin value in each
state:

half-integer values of spin and of isospin appearing in

P) are those given by Eqs. (5') and (6).
In the fundamental representation the generators

5; (~) are simple products of Pauli matrices, and the
weak-coupling solution of the extended-source Hamil-
to»an (1) takes the form of the perturbation-theoretical
OPE potential

V~2~ g t/"opmc

for jg= tg= ,', (7')-

except for the factor ~~. This would be the case here if
the excitation energy of the isobars werc very large
compared with the E-S interaction energy. Since this
is not so, the isobars must be taken into account,
applying Eqs. P), (5), and (5') instead of ("/'). For the
phRsc shifts with high RIlgulRr moITlcntum these sohl-
tions are obtained approximately, since the isobar
CBects have a shorter range and are therefore screened
by the angular-momentum barrier. Hence the strong-
coupling and weak-coupling solutions are identical for
the long-range forces.

Fierz~ introduced the irreducible basis

&= IL s j~ j~)

whei c I ls the RngulRl momentum, 8 is thc spin
quantum number of the S-S system, and j~=t~,
j2 ——t2 are the spin quantum numbers of the isobaric
nucleon states. The Hamiltonian commutes with total
momentum J, total isospin T, and parity I'. Therefore
the following system of Schrodinger equations results:

O' I. (L„+1)
+ b,+P,zTP(x) P,JTP(x)

&fx' x'

g-wl ~(&)-~(2) l

X . (7)
Ix&"—x&'&

I

with
=a~-'"(x) (9)

x=pr, r= lr&'& —r&'&I, p=m &,/h,
g= (mg/m ) (-',Eg—E,),

The operators 8; &~) depend only on the Euler angles
of a generalized spin-isospin space. They are the
generators of the Lie group SU(2)XSU(2)."All the

'4 The Hamiltonian equation (1}does not contain the concept
of strangeness, but it can easily be extended, as has been done
by G. Kentzel, Phys. Rev. 125, 771 {1962), and by the group
theorists (see Ref. 15}. However, strange-particle eGects are
unimportant in the E-S interaction case, since they only deter-
mine the very-short-range forces which are here included in the
source function.

'5 The Lie-group properties of Wentzel's strong-coupling
solutions for meson-baryon interaction were studied by C. J.
Goebel, Phys. Rev. Letters 16, 1130 (1966); C. Dullemond and
F. J. M. van der Linden, Ann. Phys. (N. Y.) 41, 372 (1967);and
other authors. These results are equivalent —as fax as the pseudo-
scalar symmetrical pion field theory goes—to the Fierz represen-
tation here adopted. A mass-breaking term is thus obtained
without an ad hoc assumption, which is equivalent to the expres-
sion in Eq. (5'); however, this spectrum is diGerent for SU(3)
representations of mesons and baryons and only the lowest
isobars with spin —, seem to be physically significant. Isobars with
negative parity and those with spin quantum number unequal
to the isospin do not appear in the strong-coupling limit.

where E~ is the scattering energy in the lab system, and
where the isobar excitation energy E„is given by

&.= ~Pj's(jr+ 1)+j~(j~+1)—fj
with e dered as in Eq. (5).

The potential matrices in Eq. (9) are

(9')

f'= 9f' (9/II)

because thc major part of the meson cloud is bound to
the spin of the nucleons.

V„„~r (x)=(m~/m )f,'(j&j&I Q'Ij &'jm')8ss 8rr, (s */x)

+(~ /~-)f'(sl. ~.~. l
o"Is'~'~'~')

&( (1+3/x+3/x') e
—*/x. (9")

While the isobar energy e in Eq. (5) is determined by
the full coupling constant f, the potentials contain a
reduced coupling constant



Below the threshold of creation, i.e., Eq&600 MeV,
the system of coupled differential equations (9) de-
composes into two types: erst, the usual equations of
the oscillatory type for the components with both
nucleons in the ground state; second, the infinite
system of isobaric equations, which are of the ex-
ponential type with the boundary condition that the
solutions should be zero at in6nity.

B. Core Potential

In the strong-coupling approach, the short-range
forces can be represented, as usual, by vector-meson-

~6The lowest channels and their excitation energies are the
following:

E,=O for = 1 l.e. the two nucleons ln the oundgl
state.

E„=300MeV for j=2, i.e., the symmetrical state with one
nucleon in the ground state, and the
other in the %33* state.

E,=600 MeV for j=3, i.e., the two nucleons in. the S»* state.
B„=1100MeV for j=4, i.e., one nucleon in the 37qp state, the

other in a spin-~ state.
E,=1600 MeV for j=5, etc.

The radial dependence in Eq. (9") is the same as
that of the OPE potential, but the coefficients of the
central and tensor potentials,

0'=3Q(TSjij i',jmj2'), 9lIII
0'= 97(J',T,S,S',l.,l.',jiji',jmj p') 3Q—,

are here infinite matrices containing the transitions to
the isobaric two-nucleon states. The matrix elements
of D and T can be computed using the formulas given
by Fierz. ~

The following limitations for the quantum numbers
which appear in Eq. (9) were obtained:

AI.=O, ~2, AS=0, ~2,
6j&=0, +1, 6j2=0, +1)
lj.-j.l&S, T&j+j.,

i
I. Sj &J(l.—+S,
I+S+T is odd.

In the case of elastic E-E scattering only the systems
(J,T,I') containing at least one ground-state basis
vector with jj=j2=~ are involved, and the total
isospin can only have the values T=O and T=1.
Symmetrical wave functions can be used. Then, in
accordance with the restrictions ot Eq. (10), the
quantum number

j=ji+j2
determines unambiguously an isobaric channel with
a discrete value of the excitation energy given by
Eq. (9').

The value of e is 6xed by identifying the lowest
isobaric level ji——si and j2——

2 with the state (1V+Xma*)
of 300-MeV excitation energy" taken from experiment:

exchange terms. '~ It is well known from the one-boson-
exchange-contribution (OBEC) modeP calculations that
the au meson and not the p meson is dominant, i.e.,
that the forces are nearly isospin-independent and are
repulsive. Forces of this kind are here obtained in the
intersection region of the two source functions from the
Hamiltonian equation (1) using a pure pion field.
Serber and Banco'' and later Chun" and Houriet"
derived a potential for the case in which the two source

'

functions are close together. (In this region —where the
source functions overlap —the solutions of Wentzel and
Fierz given in Sec. 2A are not valid. ) The potential
depends only on the shape of the source function and is
independent of the outer meson Geld; therefore it is
spin-isospin-independent and of the signer type. Since
spherical symmetric source functions are assumed (this
condition may be relaxed if necessary) one gets a
central potential. This is here idealized as a hard core

V.„,= ~ for r&r,
=0 for r&r„

with the core radius r, taken to be state-independent.
In both cases, Eqs. (5) and (13), only the range is
included, and not the actual form of the source func-
tions. The values E„and r, determined by the range a
and the unrenormalized coupling constant f are here
treated as independent parameters.

3. COMPAMSON OF CALCULATED PHASE
SHIFTS WITH EXPERIMENT

The coupled system of diGerential equations Eqs.
(9)—(9'"') can be solved exactly provided that the
number of components is 6nite. The wave functions are
calculated using the iterative procedures developed in
Refs. 10 and 11. The only wave functions whose
amplitudes do not asymptotically approach zero are
those for the channel with no excited nucleons. Thus
these wave functions are used for determining the phase
shifts by comparing them with the corresponding Bessel
functions. In the case of triplet J&I., the so-called
Blatt-Biedenharn eigenphase shifts are determined. "

The experimental values are taken from the energy-
independent solution of the 1968I ivermore phase-shift
analysis. " The Stapp eigenphase shifts were trans-
formed into Blatt-Biedenharn eigenphase shifts. For
330 MeV at isospin T=O the experimental values are

» Most of Wentzel's strong-coupling work (Ref. 5) deals with
vector mesons. Both he and Pauli obtained the strong-couplipg
solutions of the special M)lier-Rosenfeld-Schwinger mixture of a
pseudoscalar and vector Geld. Just recently Wentzel, University
of Chicago Report No. EFI-68-24 (unpublished), discussed the
general case of SU(3) mixture of pseudoscalar and vector mesons
in baryon-meson interaction.

'8 K. W. Chun, Phys. Rev. 112, 973 (1961).
» A. Houriet (unpubbshed).
+ F. Rohrlich and J. Eisenstein, Phys. Rev. 75, 705 (1949);

J. M. Blatt and L. C. Biedenharn, ibid. 86, 399 (1952).
» M. H. MacGregor, R. A. Amdt, and M. Wright, Phys. Rev.

169, 1128 (1968};173, 127 (1968).



2282 SIEGF RIED WAGNER

-lpga

-200-

-30-

60'-

~ ~

'
~

~ ~

Values of Parameters
jn Calculation

Strong Coupling (jM~ 5)
Er =300MeV; g&o13,2;r =0.56F

——-M33 Isobars Included(j&-3)

Er =300MeV; g&o13.0; rc =D.55F
50'- —--Weak Coupling, no Isobars Inc(.

50'-

40o-

g 30o-

20'

lPo-

10D'

90- I

80'-

40»

30~

20'-

lpo-

]
D"-

-10'

-20'-

-30'-

-40'-

-60'-

Experimental Values
taken from Energy-
Independent Solufion
of Livermore Phase Shift
Analysis.
M. M. MacGregor R.A. Amdt, and
R.M. Wright, UCLR -70075 (1960)

6(

50-

30-

20

6 [']

20'--

10-

0

-10

eV]

60'-

40o-

30o-

20o-

10o-

LOW EMERGIES

Experimental Values taken from
Ya.M, Kazarinov et aL
Rev. Mod. Phys. J3,517 (1967)

50

t,p'-

30"

20"

lpo-

19-

50-

Do s a s ~ ~ ~ po

19 20 30 40 50 6D f MeV] 100 209 300 [MeV]

C.M. Energy f MeV] -10'- C.M. Energy f MeV]

10.

0
100 200 300 f MeV]

FIG. 1. S-wave phase shifts in degrees versus energy in MeV.
Blatt-Biedenharn convention for eigenphase shifts t The Stapp
solutions of the phase-shift analysis were transformed into Blatt-
Biedenharn eigenphase shifts using the formulas of H. Stapp
eI, al. , Phys. Rev. 105, 302 (1957)j.
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still in doubt; the disagreement in this case will there-
fore not be discussed in what follows. Experimental and
calculated phase shifts are shown in Figs. 1—4.

The isobar excitation energies vrere already 6xed by
assuming the experimental value for the isobaric level
to be equal to the mean E»~ resonance energy. The
other two parameters are determined by the 6tting
of thc So phRsc shift. The shRpc of this phRsc shift
is mainly due to the core potential, (see Fig. 1), and the
other potentials cause a parallel shift.

It will be shown in. Appendix A that the solutions
contalnlng the tsobartc sta'tes with Jr+ ps (s al e
already practically identical with the limiting strong-
coupling solutions containing RD isobars. Furthermore
it will be assumed that for physical values of the
coupling constant even the 2 isobars should be neglected
because of their large resonance broadening. Both cases
(with and without the inclusion of the spin- —, states)
are considered here. The parameters obtained are the
following:

fox' Jjrl= 5 ol J~= 7: g = 13.2 RQd fr=0.56 F,
for g~= 3: g'= j.3.0 and r,=0.55 F.

In addition, the weak-coupling phase shifts (with no
isobars involved) were calculated for the parameters of
the 6rst set, and the phase shift created by the hard, -core
potential alone is plotted in Figs. 1—4 for compax'ison.

Figure 1 shows the S-wave phase shifts 'So, 'S~-'D~,
Rnd ~q. Vhth the chosen values for the parameters, the
'So phase shift is in agreement with experiments in the
whole energy region. (It was not possible to calculate
the wave functions for energies below 5 MCV; in this
region, the CGcctive-range formalism should be applied
as was done in Ref. 9 for the inclusion of lowest isobaric
states. ) In the strong-coupling case the sSt phase shift
is slightly high. Hovrever, vrith the exclusion of the —,

isobars there is complete agreement vrith experiments
for all S-wave phase shifts, except for the 330-McV
values of the triplet, which are uncertain in experiments.

The phase shifts with high angular momentum in Fig.
4 are in agreement with experiments for the same
parameters as determined for the S waves. Since in this
case the angular-momentum barrier screens all short-
range c6ects including those of the isobars, the OPEC
phase shifts are obtained accord. ing to Eq. (7'). This
justi6cs the OPEC assumptions in the modi6ed phase-
shlft RQRlysls.

Devi.ations occur for the I' and D waves, especially
for thc phRsc shift Eo. Contx'ary to thc phRsc shifts
discussed so far, these intermediate phase shifts depend

~ For comparison, the coupling parameter g~= (2m~/m )2f,m is
introduced here. The value obtained is somewhat smaller than
the one known from x-N interaction, which is also used jn the
recent OBKC 6ts. The greater g'= I5, connected with a greater
core radius, would cause the slope of the 'So phase shift to become
too steep. The pion mass was taken to be that of the charged
meson, m =139.6 MeV, thereby enhancing the disagreement in
addition to the hard-core idealization.

essentially on thc structure of the core potential and
on the spin-orbit forces, which are neglected in our
theory. Qualitatively these effects will move the phase
shifts towards the experimental ones. However, the
numerical methods implying integral equations with
iterative procedures fail to converge when steep core
potentials are involved.
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APPENDIX A: INTERMEMATE-COUPLING
SOLUTIONS IN STRONG-COUPLING

APPROACH

Wentzel's strong-coupling condition, Eq. (2), does
not mean that solutions of Eq. (1) are only available
for the unphysical limit of in6nite coupling, but rather
that it is the condition for the convergence of an
expansion in powers of 1/f'. Since the physical coupling
constant is large, the first term of this expansion (which
is accounted for in our calculations) gives already the
main contribution. The high ex' terms shou M not
essentially change the algebraic properties of these
solutions. However, the isobars are then obtained as
unstable states, because the bound and unbound meson
fieM operatoxs are no longer uncoupled. Intermediate-
coupling solutions of this kind were only obtained fox

the charged scalar theory and for the x-X interaction. "
Pauli4 derived the criterion according to which only

the isobars with low spin (and isospin),

j~&f'loi,
are stable enough to be signi6cant, whereas the higher-
spin isobars are supposed to hardly contribute. In the
case of weak coupling no isobars come into account
(as in perturbation theory with point sources), and for
in6nite coupling all isobars vrill contribute; for the
physical coupling constant only the ~ isobars should be
stable enough to be included.

Figure 1 shows indeed that the S-wave phase shifts
calculated, with the inclusion of the ~3 isobars alone are
improved compared to the phase shift calculated by the
Inclusion of higher-spin lsobars 1Q addltlon.

Figures 5(a)—5(c) show the phase shifts plotted versus
the number jsr of included isobaric states. j~=1 (no
isobars) and jsr ——eo (all isobars) are the limiting cases
of vreak and strong coupling. The main contribution to

"This was already the concept of Wentzel's 6rst papers
(Refs. 1 and 5) and was 1ater worked out hy H. Jshn /Phys. Rev.
126, 824 (1962); Nucl. Phys. 26, 353 (1961)g, who used the correct
canonical commutation rules.
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FIG. S. (a)-(c) Calculated phase shifts at 100-MeV lab energy
versus number of isobaric channels included (jl+j2&j~).
Parameters of set E: E,=300 Mev, g'=14, r, =0.56F. (d}
Calculated phase shifts for 8 waves at 100-MeV lab energy versus
assumed value of E33* excitation energy. Parameters of setF:j~——s.

the phase shifts is cleated in the channel with no
excited nucleon, and in the channels with one or both
nucleons in the E»* state. Only the ~ isobars still
contribute remarkably (which is of importance for the
8 waves). The higher-spin isobars have a negligible
inQuencc, because they do not directly couple to the
states with j&3 according to the selection rules,
Eq. (10).

Figure 5(d) shows the S-wave phase shifts for strong
coupling (Jsr =5) versus the assumed value of the 1Vss*
excitation energy E„. For E„=50 MeV (which was
the value assumed by Pauli ef al.4 and by tAtentzel
et al. '), the two 8-wave phase shifts become identical.
The weak-coupling limit —where the isobars have
practically no inQuence —is reached only for E„&j.04

MeV. Only for the experimental value E,=300 MeV
is the correct splitting of the S waves 'So and 'S3,
obtained. Since this is hardly dependent on the choice
of thc two other pRl amctcl s thc physlcR1 cvldencc
of the isobars in the S-S interaction seems to be
established.

APPENDIX 8: %33~ CONTRIBUTIONS TO N-N
DTTERACTION IN OTHER KINDS OF
THEORIES AND EFFECTIVE ISOBAR

POTENTIALS

In the OBE models' the intermediate-range inter-
Rctlon ls described by thc cxchangc of onc ol two
scalar mesons; as in Lommon and Feshbach's' boundary-
condition model no E33* CGects are included. Attempts
have also been made to account for a part of the inter-
mediate-range interaction by correlated and un-
correlated two- and three-meson exchange terms, ' but
they Rrc sufhcient only to cxplaln thc I+2 phRsc
shifts. Scotti and Kong' in one of their models as well
as Amati, Leader, and Vitale' included parts of thc
two-pion exchange contributions via E33 poles in the
crossed $ channel.

In a nonrelativistic S™matrix approach, Sugawara
and von Hippel' included the isobar levels (X+Ess*)
and (Xss*+1trss*) as intermediate states in the s
channel. They used the experimental E33* excitation
energy, and they took the E33* coupling constant from
the experimental resonance broadening. Otherwise the
CGect of resonance broadening was neglected. They
obtained a coupled-channel Schrodinger equation.
Although the latter calculation seems to have been
done without any knowledge of strong-coupling 6eld
theory, it is in principle the same approach as ours,
apart from some additional approximations made there,
such as the neglect of all higher-spin isobars and of all
matrix elements which do not couple to the ground-
state channel (E+Ã). Then the in6nite-component
Schrodinger equation, Eq. (9), reduces to a one-
component integro-differential equation. However, these
simplihcations are not allowed for the low-I. states
such as, e.g., 'So, 380, and 382. The main difference in
the two approaches is that the isobar spectrum can be
calculated in the strong-coupling theory, while it has
to be assumed ad hoc in S-matrix theory.

Sugawara and von Hippep4 derived CBectivc isobar
potentials from the coupled-channel Schrodinger equa-
tion, which are attractive for all states and are energy-
dependent (only very weakly since no relativistic cor-
rective terms are added). These potentials account for
the main part of the intermediate-range interaction, and
they can be compared with the scalar meson terms intro-
duced in Ref. 2 ad ho@. The central-potential part is
equivalent to a 0-meson term, and the tensor potential
part of the isobar potential may cause something like
the s-meson contribution.

~H. Sugawara and I". von Hippel, Phys. Rev. 172, j.'M4
(&9|8).


