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Generalized supc1'convcI'gent sum rules aI'c dcrlved foI' rcact1ons of thc type P+P ~ P+V, whclc P
and V are pseudoscalar and vector mesons, respectively. The sum rules are of such a form that a natural
range exists, over which saturation by a limited number of resonances is appropriate and outside of which
negligible contribution to the sum rules is made. Results include SU(6)-type Ielations such as ns„~—m ~
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SUPKRCOQVERGKNT sum rules have been used

to relate high-energy parameters, such as those
assoclRtcd with Rcggc tI'ajcctoI'lcs Rnd with low-lying

resonances, by means of equations of the form'

N PJli a+m+1

v" ImF(v, t) =P
I'(a+ I)(a+I1I)

In thc dellvRtlon of such cxpI'csslons, thc assumption

is made that the Regge expansion is an accurate
r'cprcscDtRtloD of thc function F for phd. In,

early superconvergence paper of de Alfaro e1 ul. ,' the
information about the Regge terms inferred from the
high-energy data was used to determine direct-channe&

resonance parameters. Saturating the superconvergen. ce
relations is related to assuming that the right-hand

side of Eq. (1) is negligible with respect to the in-

dividual contributions to the left-hand side. This reso-

nance saturation by a few low-lying states has been.

found in some cases to reproduce the results of various

symmetry schemes. ~' (Of course, complete saturation

of superconvergence relations for a 6nite range of
momentum transfer t is generally only possible if the

spin of the particles is not limited. ') Furthermore,

superconvergence relations for pseudoscalar-meson (E)
vector-meson (V) scattering have been studied by
Venturi4 in the approximation of saturation with

Qonets of V and I'. Nonet symmetry breaking at the
vertices was related to nonet symmetry breaking in

the masses.
~e are concerned here with the derivation of sum

rules from superconvergent dispersion relations, es-

pecially for the case of broken SU(3) symmetry. We
will discuss processes of the kind I'+P -+ I'+ V only.

These processes have been studied by Ademollo
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A cl. (ARVV), uslllg techmques somewhat slmllar to
these used here. They found simple algebraic equations
for the parameters of the leading Regge trajectories
which are assumed to be exchanged. However, their
results are not unambiguous, since some of the param-
eters treated as constants emerged at the end with R

functional dependence on f. Furthermore, ARVV arc
mainly interested in the exact SU(3) symmetric
limit.

The techniques used here will diGer from those of
ARVV mainly ln thc usc of gcncl allzcd sUpcI'COQ-

vergence relations which are so contrived as to make
saturation by a limited number of resonances ap-
propriate over a natural, wcH-de6ned range, and so as
to make the contribution to the intcgrals outside this
range negligible. Most previous work in superconvergent
dispersion relations, such as saturation by a few
resonances, had been used with Iittle or no justi6cation
other than hindsight. Moreover, herc wc are explicitly
interested in the broken symmetry case while the
emphasis in ARVV is placed on the exact symmetry
limit. Finally, our results will not contain an ambiguity
of the sort mentioned above, but will show that coupling
constants wiH not turn out to be $ dependent.

~c shouM mention thRt PRkvRsR Rnd Papastamatiou
have glvcn R dcrlvatlon of some mesoD mass formulas
by means of superconvergent dispersion relations. They
assume that the asymptotic behavior of I'V —+I V
amplitudes are given by SU(3) symmetric Regge
formulas; they furthermore assume SU(3) symmetry
for form factors, and 6na1ly treat the case of EVI—+EVI,
where VI is the unitary singlet vector meson. The
approach employed by us is free of such symmetry
assUInptlons Rnd mRkcs Do Usc of scRttcr'lng amplitudes
involving 6ctitious states such as V~. Of course, we do
not obtain, with our limited input, as much information
Rs do PakvRsa RQd Papastamatlou.

The results that we are able to obtain here by study-
ing reactions of the type I'+P ~ I'+V include the
SU(6) relations mp' —m '=mx" —m~' and m, =m . It
should. be emphasized that for these resu1ts just men-
tioned we make no use of group theoretic arguments.

SM. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A.
Virasoro, Phys. Rev. Letters I9, 1402 (1967).' S. Pakvasa and N. I, Papastamatiou, Nuovo Cimento 50A,
1022 (1967).
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They are consequences of dynamical assumptions about from the above assumptions on the asymptotic form
asymptotic behavior of scattering amplitudes of A, we 6nd

We consider the class of reactions
(f, (v, t) —+ pv" 'av tan2«v.

I' (P2)+f"(P2) ~ ~'(P 2)+~'(C)

~blare a P & g are gP(3);nd;ces The scatter, ng Since A is crossing even, (t must be crossing odd and

amplitude is of the form will satisfy a dispersion relation:

T e&'(v, t) = p„„,.e„p2„ppppp, A»'(v, t),
v= :(P2+-C)(P2+P )= p(s I), —
t= (P2—C)'*

(3)

A"(,t) (P e,pr)/Lsin«r(t) j
XLe-'-&(o+1jv «}-'a,(t)[ar(t)+1j, (6)

where ep and Q.p are the trajectory functions for the
vector and tensor trajectories and Pv, Pr are the analog-
ous residue functions. Note that we have not assumed

any SU(3) symmetry for the }8's, nor have we assumed
factorization of them. The SV(3) indices are just for
labeling convenience. The power of v is reduced because
of the helicity Rip that is required by the V production. '
This also gives rise to the multiplicative factor of a(t).

Restricting our attention now to the amplitudes
dominated in the I, channel by Regge exchange of the
vector-meson trajectory, we construct the function Q, by

e(v, t) =ivA (v, t)/(v' —vp'—)"'. (&)

Then, if I, is chosen so that the cuts in v are separated
(i.e., vp) 0), 8 and A wiH have the same reality proper-
ties as the same domain of analyticity. Furthermore,

where e„ is the polarization vector of the V meson.
Conservation laws and Bose statistics imply that the
intermediate states in any channel must have J~~= I
2++, 3, ~ . In Regge terminology, the states lie on
the usual vector and tensor trajectories.

For 6xed-momentum transfer f, the amplitude A
is analytic in the cut v plane with branch points
determined by the s- and I-channel thresholds, sp and

Np, respectively. The symmetry of the scattering
processes implies sp ——Np. Therefore, the cuts in u start
at ~vp, where

4vp=2sp+t —(mp+m2'+mp'+mv'). (4)

For example, in the case of mm —+me, sp=4m ', and
v(}——5m.2—m '+t.

Wc assume that thc asymptotic form for thc cvcn-
crossing and odd-crossing parts of the amplitude A»'
are given by the usual Regge expressions

A'"'"(v, t)~ LP-ev 2'(t) j/L»n«v(t) j
@~CO

yL1 e b'av(t}$&av(—t} 1—

2v " dv' v' ReA (v', t)
Ree, (v, t) =-

v~2 v2 (v~2 v 2)((2

We are interested in obtaining expressions that are
valid when t is more negative; as we see from Kq. (4),
as $ grows large and negative, eventually vp becomes
negative. This means that the s- and u-channel cuts
overlap. In order to study this situation, we employ the
device of giving the external vector-meson mass a small
imaginary part. This has the effect of separating the
cuts. Cauchy's theorem then provides a dispersion
relation (for nonforward scattering) when vp&0

where A, and 3 are the jumps across the s and I
cuts, respectively. We have, of course, assumed that
the limit, in which the external vector-meson mass is
real, may be taken without introducing any further
complications. This limiting process is implicit in the
dispersion integrals we write.

From the asymptotic form of 8(v, t) given in Eq. (8),
we see that for av(t) &0 the function 0', vanishes faster
than v '. Therefore, for this range of f, the following
superconvergence relation must hold:

0=
itol

v ReA(v, t)(v' —vp') '~2dv

l~ol

+ v[A (v t)+A (v t)](vp —v ) (2dv. (11)
-Idol

The in6nite-range dispersion integral converges at the
upper limit, since the integrand is asymptotic to
av(t) v~v('& ' tan22«v(t) for av(t) (0 and is asymptotic
to v~&(o ' for a}(t)&av(t)=0, where a2(t) is the next
highest Regge trajectory that contributes to the
amplitude A(v, t) The contrib. ution from the topmost
Regge trajectory vanishes like tan -,'«v(t) as av(t) ~0,
since the integration removes the extra factor of
av(t). It is expected that a2 and av are separated by a
finite gap; therefore, the point ty, dehned by

2v " v'ReA(v', t)dv'
Ree(v, t) =-

}
(v~p v2) (vi2 v 2)l/2

v i "pi v'LA, (v', t)+A„(v', t)j+—,(10)
-i~pi (v"—v')(vo' —v")"'

' See, e.g., S. Matsuda, Phys. Rev. 169, 1169 (1968). av(tv) =0, (12)
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which is the endpoint of the range of validity for the
superconvergent relation Eq. (11), is singled out as a
point at vrhich the contribution of the inhnite-range
integral should be especially small. Furthermore, it is
reasonable to approximate the integrands of both
integrals for small p by the s and u poles of A (p, i). In
the case of the first integral, this vrould again lead to
the conclusion that the integral is small since the
integrand involves ReA (p, i). On the other hand, a pole
approximation for the 6nite-range integral vrould not,
/I priori, be expected to be small, since the integrand
involves essentially IInA (p, i). Finally, the endpoint
ty is probably a better point at which to make a pole
Rppl'oxBIIRtlDII to A (v i) 'tllR11 R p0111't furtllel' RWRy froIn
the forward direction.

As ~tj grows larger, so does V2, so does the range of p

over vrhich vre will approximate ImA by poles, and
therefore so does the number of poles that we must
include. The fewer poles we need, the fewer parameters
vre must introduce. To illustrate this point, consider
again the process mx —+ mar. The poles in v that are due
to R p-meson 1ntcrmcdlatc stRtc occur Rt

p p
——a-,' (2m, '—m '—3m.'+/I),

p,'—V22=x2(mv2 —4m.2)(mv2 —m '+m 2+(). (13)

Thus, for t only slightly negative, the p poles lie in the
interv» (—( po(, ( po~) However, the next important
pole, which presumably comes from a g-meson inter-
Incdiatc stRtc w91 lic outside tllls interval until
becomes so large and negative that n, (t) is considerably
less than zero.

In the SU(3) limit, consider those processes EP -+ I' V,
for vrhich no tensor meson can occur as an intermediate
state in any channel. Then we conclude that the point
tp at which the trajectory function np(t) for the de-

generate octet of vector Regge poles must vanish is
determined by

This result agrees precisely with the zero of e~ given

by the expression for IIV(/) obtained by ARVV. With
the zero of o,y novr 6xed, we now observe that considera-

tion of the remaining processes for vrhich tensor-meson

states can contribute gives no new information, since

the tensor-meson poles do not lie in the interval

(—) po) & )pa() This interval is 6xed by putting i=tp,
which makes V2=22(4m' —mv'). The tensor-meson

poles occur at p= +-'2(mg —mp2).

We now drop the assumption of SU(3) symmetry
and consider the various I'I' —+ I'V processes. Applying
the method outlined above to the cases of xw-+ me,

&~-+E~, and E~—+~X*, in vrhich all have their

asymptotic form determined by the p trajectory

II, (t), we 6nd

12,(1,)=0,
tp= —2m, '+m„'+3m '

=—2mx"+m '+m 2+2mx2
= —mxa2+2m 2+mx2,

which implies
5$P SS(22

2= 2

mp mw —mme mx

iv = —mv2+3m, 2. (16)

From the e-trajectory-dominated process Em ~Ep
vre get

n. (i )=0,
t~= tp ~

Next we turn to the E~-trajectory-dominated processes,
such as EE~m&, EE-+2p', and EE*—+IIII. The
last-mentioned reaction satls6cs our criterion of havmg
the threshold value of v, given by

iv'A (p, i)
O', (V,t) =

(V2 V 2)1/2

As before, if t is chosen so that the cuts in u are sepa-

negative for / at the point tx. where nx~(t)=0 The.
value of t~~ is uncertain, since there is both a direct-
channel p pole as vrell as a crossed-channel E~ pole
in this case, and so the position of the vanishing of the
amplitude depends on the relative magnitudes of the
coupling constants. The value of t~* may be estimated
by using SU(3) coupling constants, and the result is
that it is not much diferent from t,. On the other hand,
the reactions EE-+ n.co and EX~ Irp give a value
for pop

P2=x4 (6mx2 m' —mp2+—t), (19)

vrhich is positive. This means that in our approach vre
obtain no information from these processes, since there
is no contribution in Eq. (11) to the 6nite-range
dispersion integral involving ImA. In particular, we
do not encounter any contradiction to the results
previously derived from consideration of those reactions
for vrhich the p trajectory is dominant. Finally, we note
that those reactions, such as ~g —+ mp, which are
dominated at large energies by vector Regge trajec-
tories in the t channel but have no vector-meson poles
in the s or I channels, give no further information and
thus no contradictions.

We novr turn our attention to those reactions of the
type I'I' —+I'V vrhich have their asymptotic form
determined by tensor Regge trajectories; this includes,
for example, the process xm —& gp. In analogy with the
above discussion of the vector-trajectory-dominated
processes, vre construct the function
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Since A is crossing odd, 6, must be crossing odd and
will satisfy a dispersion relation:

2v " dv' v" ReA (v', t)
Ree(v, t) =-

v~2 —v2 (v~2 —vp2)~12
(22)

Using the same trick to extend t to the left we may
obtain an equation similar to that obtained for the
crossing-even case above, Eq. (10). Then, from the
asymptotic form of Q, (v, t) given in Eq. (21), we see
that for nT(t)& —1 the function 8 vanishes faster
than v '. Therefore, for this range of t, the following
superconvergence relation must hold:

rated (i.e., vp) 0), then 8 and A will satisfy the same
reality properties and will enjoy the same analyticity
domain. Furthermore, from the assumptions we have
made on the asymptotic form of A, Eq. (6), we 6nd

8(v, t) —& iv T(n T+1)t ta n22(nT+1)+ij. (21)

4vp ———4222V2+ 11222g '. (23)

The position of the vector-meson pole v would be
given by

diGerence between the present case and that discussed
previously is that we no longer will have only vector-
meson poles contributing to the finite-range integral.
We have continued in t so far that

~
vp~ is now large

enough that the tensor-meson poles most likely fall
in the interval (—~

r p~, ~ vp) Consequently, any
results obtained along these lines will involve coupling
constants and masses of both vector mesons and tensor
mesons. Since the experimental situation regarding the
octet of tensor mesons is uncertain at present, we will
only consider the theoretically simpler SU(3)-symmetry
limit here.

If the tensor trajectory is degenerate with the vector
trajectory, that is, ny=nz, and if we approximate both
by straight lines, then we would expect nz ———1 at
t= —322ivp+6mP2 from our discussion above of nv(t)
Then we would find

0= v' ReA(v t)(v vp) ~ dv 4vV= —2222V +32I1P . (26)

J vp/

(vp/

+— v'LA, (v, t)+A„(v,t) j(vp' —v') —'i'dv. (23)
—fvp)

Thus everything is similar to the crossing-even case,
with nv(t) replaced by nT(t)+1 and with an extra
factor of v in the integrand. We conclude that the point
tp, defined by

uT(tT) = —1, (24)

which is the endpoint of the range of validity for the
superconvergence relation Eq. (23), is singled out as a
point at which the contribution of the infinite-range
integral should be especially small. We use the same
approximations here as above, namely, dropping the
infinite-range integral and using a pole approximation
for A in the integral (—[vp~, ~

vp)). There are two
significant points of difference between the present
situation and the vector-trajectory case. The most
obvious one is that here we are considering trajectories
in the left-half complex-angular-momentum plane. We
have ignored any possible complications that might
arise from the existence of singularities other than the
ordinary Regge pole described by nT(t) Cuts and.
essential singularities may well contribute as we

approach nz = —1. Moreover, the continuation in t to
the point t~ is a stronger assumption than we made
previously if only because it is a much greater distance
away from the forward direction. The second point of

The tensor-meson mass is, of course, fixed by the value
of t for which nT(t) = 2, and so

mT2 ——3 (222 V2—222P') (2&)

which implies that the position of the tensor-meson
pole vz is given by

4vT=+25lv 322$P-
= —4Py. (2g)

Therefore we have the result that vy'=v~'. , further-
more, we easily find

pp —py %0, (29)

so that both the vector and tensor poles lie in the range
(—~

vp [, ~
vp

~
).With the same approximation for av we

may estimate the position v3 of the next most likely
pole to contribute, that of the 3 octet. The result is
that this pole occurs at 4v3 ——6m'' —3m'' which is
outside the interval (—) vp~,

~
vp(). Thus we need only

consider vector- and tensor-meson poles. Using this
information. to evaluate the sum rule Eq. (23), we
obtain

gVPVgVVP/gPPTgPVT 2(2 222V3222P ) (30)

where we have adopted the definitions of ARVV for
the coupling constants gp p~, etc. Because of the equality
of vy and vz all our kinematic factors have disappeared
and we have found the ratio of coupling constants to be
as given by ARVV if their relation is evaluated at tz.


