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We investigate a multichannel ED parametrization for the m-S partial-wave amplitudes. Using a
two-channel, one-input-pole form of the model, we present Qts to all the interesting vr-E partial waves up
to pion laboratory kinetic energy ~1.4 BeV. Reasonable 6ts are obtained for most of the partial waves.
An exceptionally good 6t is obtained for the F33 partial wave, in which the E33 resonance appears as a
quasi-bound state with respect to the higher-mass inelastic channel. Applications of the model are discussed.

I. INTRODUCTION
' /HASE —SHIFT analyses' ' of pion-nucleon scatter-

ing have revealed many interesting features such as
highly inelastic resonances. The principal difhculty en-
countered in attempting to obtain phase shifts for pion
laboratory kinetic energy TI,& I.S BeV is that the num-
ber of sets of phase shifts which produce acceptable 6ts
to the data grow rapidly with increasing energy. Thus
the method of interpolating from one energy to the
next plays a crucial role in obtaining the phase shifts.
Energy-independent analyses are done, and two general
approaches have been used to eliminate the ambigui-
ties The Berkeley group' de6nes a distance between
solutions and joins those "closest" together but makes
no use of the dynamics of m-E scattering. The analysis
of Lovelace and co-workers~ uses partial-wave disper-
sion relations (parametrized in a polynomial expansion)
to produce very smooth phase shifts from the single
energy solutions.

The purpose of this article is to investigate a multi-
channel ED ' parametrization for the partial-wave dis-
persion relations which we believe is more eKcient and
Qexible than that used by Lovelace since it contains the
correct analytic structure of the inelastic cuts. Further-
more, the results can be dynamically interpreted as
well as directly applied to the detailed analysis of other
experiments, e.g., the inelastic xE experiments and
pion photoproduction.

The partial-wave amplitudes are represented by a
multichannel ED-' formalism with the interaction
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given by simple poles. For each partial wave, we use as
few poles and channels as the data will allow. Ball,
Shaw, and Wong' showed that two channels and a
simple pole were suQicient to produce a reasonable 6t to
the rather complicated features of the P~~ partial wave.
We will show that reasonable fits up to moderate ener-
gies can also be obtain. ed for most partial waves (with
the notable exceptions being the 5 waves) with two
channels and one pole. We believe that the addition of
one or two more inelastic channels would produce
really good fits for all the partial waves.

One of the basic requirements for the success of this
method of parameterizing a partial-wave amplitude is
that the inelastic scattering channels can be well-

represented by quasi-two-body channels such as o.-E,'
x-S3~*, p-S, or actual two-body channels such as q-S
and E-V. At present the only partial wave in which
production is known to be dominated by a single chan-
nel is S~i in which g production accounts for most of the
inelastic cross section. However, we emphasize that in
order for the XD ' formalism to give an accurate repre-
sentation all the "important" inelastic channels should
be considered even if in the energy region of interest the
channel may be closed (see, e.g. , the analysis of the
Xa~* in Sec. III). Considerable experimental effort is
being directed at analyzing the pion-nucleon inelastic
processes in terms of two-body channels. "In the ab-
sence of this information we will represent the inelastic
scattering in each partial wave by a single phenomeno-
logical channel. Furthermore, for simplicity, we will use
a single-interaction pole.

The two-channel, one-pole Ã/D parametrization
(that we use for the calculations described in Sec. III)
is a simple function of only 6ve parameters. Three
parameters are directly related to the strength of the
interaction in the two elastic amplitudes and the pro-
duction amplitude, the input-pole position is related to
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the range of the interaction, and the 6fth parameter is
the threshold of the phenomenological channel chosen
to correspond to the effective threshold of the inelastic
scattering.

The analytic properties of the partial-wave amplitude
are reasonable, having the correct threshold behavior
and being analytic everywhere in the complex energy
plane except for the physical cut and the input pole.
Furthermore, the amplitude is decomposed into E and
D which is convenient for applications to electromag-
netic and weak processes. The fact that the analytic
structure of the amplitudes are reasonable allows one
to search for nearby poles on unphysical sheets of the
scattering amplitude and thereby distinguish true reso-
nances from "kinematic bumps".

This model can readily be extended to include more
two-body channels and/or more input poles. Although
we obtain reasonable fits to most of the partial waves,
this extension is necessary to quantitatively fit the de-
tailed features found in the phase-shift analyses. Based
on our calculations, we think that in general it is more
important to consider additional inelastic channels
rather than more poles and that the addition of one or
two more inelastic channels would produce good fits
for all the partial waves. This extension is certainly
feasible (in terms of introducing new parameters) since

there are many data points in each partial wave. Fur-
thermore, we expect that in the near future, the shift
analyses will be extended to higher energies and more
detailed knowledge of the production processes will be-
come available.

In Sec. II, we will formulate the model. Section III
contains a comparison between the calculations using
our model and several of the more interesting phase
shifts. In particular we note that an exceptionally good
6t is obtained for the P~3 partial wave in which the %33*
resonance appears as a quasibound state of the higher-
mass inelastic channel.

In Sec. IV we draw some general conclusion from the
calculations in Sec. III, and discuss some applications
of the model. In particular by considering pion photo-
production, we illustrate how partial-wave amplitudes
obtained from a multichannel, energy-dependent phase-
shift analysis could be used in calculating nonstrong
processes.

II. PARAMETRIZATION OF THE PARTIAL-WAVE
AMPLITUDE

Consider a partial-wave amplitude for a system of
e-coupled two-body channels. As a function of the total
energy 8", the ED ' equations are

f' =(»p''"»'") '(~' —~*)=(ND ')',
n

N'~(W)= B'~( W)+ Z — + d W'K, ~( W, W)Ng; (W'),

IV—IVp 1
Kg, (W,W')= B;p(W') — B,g(W) p, (W')

lV' —tVp tV' —8'

D,;(W) = 8,,—
ai

p (W')Nv(W')
DV'

(W' —Wp) (W' —W—ie)

where p; is the phase-space factor and o.; the threshold
for the ith channel. The amplitudes f in the &W regions
for a given J have the opposite parity. The input gen-
eralized potential B (regular in the physical scattering
region) is symmetric as required by time-reversal in-

variance; the solutions f are symmetric and indepen-
dent of the subtraction point 5'p in D.

Our model consists of representing the combined
effects of the interaction cuts and the —8' unitarity cut
by a sum of p poles in B.That is, in (1) we neglect the
—8" region and write

The kernel K(W, W') is degenerate, and the equations
can be solved by quadrature. A useful relation gives S
in terms of D evaluated at the pole positions tV, :

In the case where only one interaction pole at 8'& is
used (making the subtraction at Wo ——W~), the solutions
to (1) are

f,,= P N, ~(D-')~, ,

N, ,(W) =B;,(W)=, g,,=g, ;8"—IVg

D'~(W) =4—g*~d'

W—Wg " p;(W') dW'
P

„(W'—Wg) '(W' —W)

ip'(W)
+ 8(W—o) .

(W—Wx)
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P55 choice of the power of W in (5) is arbitrary. However. we
investigated other forms and found that the 6ts to the
data were not sensitive to this choice. Also note that in
(6) we have decomposed the inelastic channel into a nu-
cleon plus a meson; further, we choose the orbital angu-
lar momentum /s ——lt (except where otherwise noted).
These latter assumptions can obviously be dropped
when we treat the inelastic channels more realistically,
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Fxc. 1. Calculated values of 5 and q for the Peg partial wave
versus laboratory kinetic energy TI,. In Figs. 1-8, the x's are from
the phase-shift analysis of Ref. 3 and the three g's are the points
which the calculated curves are forced to pass through. Here the
Q's are 8(98 MeV) =21.2', b(151)=45.3', b(195)=90.0'. The
solid curve is calculated using the two-channel one-pole model
with W1 ——6.5, 0.~ ——10.7, g11 ——70.15, g12 ——253, g~~

——1005. The
dashed curve is calculated using a single-channel two-pole model
with B= —1157/(W+13) +4700/(W'+ 618).

Here, if w'e use e channels in a given m.S partial w'ave,

there are -', (ns+e) g's (plus Ws) which we vary to fit the
5 matrix,

~~2i8

as a function of energy for a given partial wave 321,2g.

III. ONE-POLE, TWO-CHANNEL FITS TO
THE ~N PARTIAL WAVES

To illustrate the usefulness of the simple ED '
model described in Sec. II, we consider one input pole
in 8 and approximate all the inelastic channels by a
single phenornenological channel, i.e., we use Eqs. (4)
with e= 2.

Denote the mA channel as 1 and the phenomenologi-
cal second channel as 2. The phase-space factors are
taken to be"

p;= (k;/W)"'~ ',
k p= [Ws—(m —p;)'][Ws—(m+ p;)s]/4Ws, (6)

with p&= j. and p& taken as a parameter. Clearly the

"Ke use units A=c=m =1.

l
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Fto. 2. Variations of model calculations as a function of W1 for
the P33 partial wave. The solid curve is the same as in Fig. 1.The
dash-dot curve corresponds to the parameters W1=6.0, ay=10.7,
g1~=93, g12

——224, g22=928. The dashed curve corresponds to the
parameters W1=2.0, F2=10.7, g11=229, g1g=109, gg2=807.

i.e., explicitly consider all the "important" two-body
and quasi-two-body channels for a given partial wave. "

Our calculated 6ts to the phase-shift analyses were
obtained in the following manner. For a given JM2 and
input pole position Wt, the integrals d; in (4) are calcu-
lated. Taking either 3 8's below the inelastic threshold
(so that ri= 1), or 1 5 below and 8 and ti at one energy
above the inelastic threshold from the phase-shift
analyses, Kqs. (4) w'ere solved for the 3 input couplin. gs

g;,.We choose rrs (=m+ ps) to correspond to the inelastic
threshold, and varied 8"~until we obtained a reasonable
6t. No X' search on the parameters was made.

In Figs. 1—8 we compare our model calculations with
the phase-shift analyses for those partial waves which
exhibit interesting features for TI.&1.2 BeV. (Note
that the analysis of the P~y partial wave was reported
in Ref. 6.)

"In treating an actual quasi-two-body channel (consisting of
particles e+b where b decays strongly into c+d) one might use
the phase-space factor )instead of Eq. (5)j

ps(&) = &~.sos(&,~a)
~ f.s . (~. )~ s'. s

frt y+trs g
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The P» partial wave has received the most attention
experimentally and theoretically. As seen in Fig. 1, the
detailed shape of the P» resonance is easily Gt by this
model. However, the dominant force is the diagonal in-
teraction in the inelastic channel and the N33* appears
as a quasibound state or Castillejo-Dalitz-Dyson
(CDD) effect" with respect to the nX channel. A one-
channel calculation which approximates the input 8 by
2 poles is also shown in Pig. 1. This one-channel model
does not give a good fit (and we note that the nearby
input pole in 8 is repulsive). Furthermore, the two-
channel model yields a satisfactory Gt to the inelastic
factor g.

The sensitivity of the P» solution to the position 8'&

of the input pole in 8 is shown in Fig. 2. The value"
8"i=6.5 gives an excellent Gt. Recall that in the static
model, " the position of the input pole due to nucleon
exchange (which dominates the vrX forces in the Pq~

loo

80

It is likely, however, that with enough input poles in
the mN channel, we would Gnd solutions which would Gt
all the present data in such a manner that the P» reso-
nance did not appear as a quasibound state with respect
to a higher mass channel (as in the above calculation).
We can only appeal to "simplicity. "Furthermore, even
if the physical interpretation of the P» partial wave ob-
tained from the two-channel calculation is essentially
correct, we cannot conclude that the Chew-Low boot-
strap results'4 were totally fortuitous. The bootstrap
equations only give relations among the residues. Thus
even though the forces determining the position of the
N33* might come from a second channel, the forces in
the xN channel might have considerable e6ect in
determining the residue.

The two-channel one-pole Gts to the Sii, Sai, Di3, D&5,

Fj„, and Ii37 partial waves are given in Figs. 3—8. The
poorest Gts are for the S waves; clearly more inelastic
channels would greatly improve the results. Before mak-
ing some general conclusions (in the next section), we
make a few comments on some of the individual cases.

Sii'. The inelastic channel was taken to be qÃ since
it is known that it dominates the reaction cross section
for this partial wave. Here we again stress that in order
to be an accurate representation, all the important
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FIG. 3. Calculated values of y and g for the Sii artial wave
versus Tl..The Q's are b(250) =9.5', b(400) =15.0', 8 550) =35.0'.
The 0's (in Figs. 3 and 8) correspond to the phase-shift analysis
of Ref. 4. Theparameters for the solid curve are Wi=5.0, a2=10.6,
gag =0.5, gyp=13.6) g22 =17.9.
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wave) is at 6.7. We caution that this sensitivity of the
Gt to 8'& has been exaggerated by Gtting the 3 8's at
low energies. The two-channel, one-pole calculations in
Pigs. 1—8 all have the pole position 8'i) 0. We note that
in situations where 8'i&0, the physical interpretation
of these pole positions is not as clear.

"See, e.g. , M. Sander, P. Coulter, and G. Shaw, Phys. Rev.
Letters 14, 270 (1965).

'4 G. Chew, Phys. Rev. Letters 9, 233 (1962); F. Low, ibid. 9,
279 (1962l.
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FIG. 4. Plots of 8 and p for the S» partial wave. The Q's are
8(400) = —25.0', b(780) = —45.0', g(780) =0.45. The parameters
are Wi=5.0, a2 ——10.0, gij ——12.0, g22=2125. Here, we have taken
l2=2 so that p2=(k2/8')'. In all of the other figures, wehave
taken l2=lq.
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inelastic channels must be explicitly included even if
they are closed in the energy region of interest.

S3~. The angular momentum /2 of the inelastic chan-
nel was taken to be 2 so that pg= (k2/W)'. Even though
all our fits were poor, this choice for /2 seemed to be the
best. (For all the other partial waves, the fits are given
for l2= l&). If we attempted to fit the phase-shift analysis
5 at —60' instead of the —45' point, our calculated
curve had a jump of 7r (and took on the value+120').

D~3. The model calculations here were quite sensitive
to the position of the inelastic threshold.

IV. CONCLUSIONS

In general, we observe that, with the exception of the
S» and Ssj. partial waves, reasonably good fits to the
phase-shift analyses can be obtained up to moderate
energies with the simple two-channel, one-pole ED '
model. We would like to inject a note of caution con-
cerning the procedure of fitting results of phase-shift
analyses: The analyses of diferent groups 1—5 are cer-
tainly not always in agreement (see, e.g., the experi-
mental points from Refs. 3 and 4 in Figs. 3 and 8). Note
that errors in 6 become large when q is small. Further-
more, as emphasized by Lovelace, ' the errors on the
phase shifts in different partial waves are correlated

and thus it is difBcult to interpret the meaning of an
error associated with a given phase shift. Thus, in
principle, one should really use our model directly in an
analysis of the observables.

The extension of the calculations to include more
input poles and more channels is easily done. We be-
lieve (as in the case of the 2~3 partial wave discussed
above) that the most effective way to extend the present
calculations is to explicitly consider more inelastic
channels for each partial wave. We think that really
good fits could be obtained for all the partial waves by
treating up to 3 (or 4) inelastic channels. They would
correspond to the actual 2-body (e.g., &$) or quasi-two-
body inelastic channels (e.g., 0$, m%33*, plV) that were
important in the particular partial wave. This would
then involve determining 10 (or 15) input-in. teraction
couplings g;; (plus the pole position Wi). This is not un-
reasonable since in a given partial wave up to Tl, 1600
MeV, there are more than 40 values of g and 8 to fit. ' '
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Fro. 6. Plots of 5 and g for the D15 partial wave. The Q's are
B(550)=5.4, b(870) =0.0, q(870) =0.16. The parameters are
$1——5.0, ~2=10.7, g11

———51.9, g12= 699) g22=2084.
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Fxo. 5. Plots of 5 and q for the D13 partial wave. The Q's are
B(350)=5.0', 8(630)=90.0', g(630) =0.1. The parameters are
5')=5.0, 0~2=9.8, gag= —74, g12=1074, g22= 1659.

This proposed program has the large advantage that
it could be directly tied into the analysis of the inelastic
m-X bubble-chamber data in which one would treat
the 2m% events in terms of quasi-two-body channels.
Large numbers of these inelastic events are now being
measured. '

In addition, the parameters of the model can be inter-
preted physically, i.e., the g couplings might be com-
pared with theory. Also (as discussed above for the F33
partial wave), the dynamical origin of a resonance can
be examined, i.e., whether it is mainly due to the forces
in the elastic or inelastic channels. "We should bear in
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mind, however, that all such conclusions are very model
dependent.

An important theoretical application of the ED '
form which we have suggested is in the calculation of
the strong-interaction rescattering effects in weak and
electromagnetic processes. To illustrate how this is
accomplished, we will consider the problem of pion
photoproduction. The unitarity condition satisfied by
a particular partial-wave photoproduction amplitude
of 3f is

ImM= f+pM, (7)

where if f, the strong interaction fmatrix, has rr chan-
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Fro. 8. Plots of b and q for the F37 partial wave. The 0's are
b(900) =8.0, b(1229) =23.4, q(1228) =0.61. The parameters are
Wg=5.0) ~2 ——12.1, g11=12157 g12=1793, g22=16118.

0 200 400 600 800 1000 1200 1400 ~ ra ~ i s)

Noting that f may be written as p '[(D*D '—1)/2i]
and writing a dispersion relation for D(M —B), we 6nd,
using (7) (to show that DM has no physical cut), that
the amplitude M is given by

1 g(W') p(W')B(W')dW'
M=B+[D(W)] ' . (g)

7r

Owing to the simple form of X given in Eq. (3), we
can write M; in terms of the functions b;(s),

as follows:

00

b;(W) =— p,(W') B;(W')
dW'

8"'—lV

b;(W) —b;(W„)
XP P v;. (1O)

g=» r=» p' —p'„nels, M is a column vector with e components represent-
ing the pbotoproduction of each of the e two-body
channels. The general problem of including the strong-
interaction effects is then the construction of M which
satisfies Eq. (7) on the right-hand cuts and has the left-
hand singularities given by the input (Born approxima-
tion). The particular choice of the interaction terms used
to describe photoproduction is not relevant to our dis-
cussion and therefore we will assume that for each par-
tial wave we have prescribed functions B,,(s) which con-
tain only the desired left-hand singularities and are
analytic elsewhere.

What functions 8 one chooses for the coupling of
photoproduction channel to a phenomenological chan-
nel clearly requires some thought. It is possible that the
above expression could be the basis of a phenomeno-
logical treatment of photoproduction in which the m-37

phenomenology has been correctly included. However,
in the extended analysis of the elastic xA' partial waves
proposed above in which the inelastic channels corre-
spond to actual quasi-two-body channels, reasonable
expressions for 8 could be calculated.

Fro. 7. plots of s and ri for the F~~ partial wave. The g's are M (W) B,(W)+ p [D-i(W)] .
B(195)=0.064, B(900)=90.0, g(900) =0.3. The parameters are
W1=5.0, n2=10.7, g11=—401, g12=5435, g22=12930.


