
to (1,8)~+ (8,1)r, or

Bj—+e'» BIe '» .
Alternatively, the baryon matrix B2 could transform by
(3,3)g+ (3,3)J. or

~ e'b+5QB e'bpgcx

In the 6rst case the trace of the baryon matrix is in-
variant and can be set equal to zero. In the second case

it is not and we have nine bayons instead of eight. It is
easy to verify that the matrix B~ "»& transforms
exactly like BI. Furthermore the matrices e '»&B2e '»&

and e '&«Bie'»& have the same nonlinear transformation
law as the matrix B, which, in finite form, is

B—+e '"Be'" .
These examples are in agreement with the general
theorems of Sec. 5.
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The general method for constructing invariant phenomenological Lagrangians is described. The fie]ds
are assumed to transform according to (nonlinear} realizations of an internal symmetry group, given in
standard form. The construction proceeds through the introduction of covariant derivatives, which are
standard forms for the Geld gradients. The case of gauge 6elds is also discussed.

C. INTRODUCTION

l
'HE most convenient way of deriving the physical

consequences of the assumptions of (broken)
chiral SU(2)XSU(2) [or SU(3)XSU(3)] is by the
method of phenomenological Lagrangians. These La-
grangians consist of a part which is invariant under the
Geld transformations which realize the group and of a
symmetry-breaking part which is usually assumed to
transform simply under the group. The transformation
laws of the 6elds under the group are in general non-
linear, but they become linear when restricted to the
parity conserving SU(2) [or SU(3)] subgroup. In the
preceding paper, ' the general form of the held transfor-
mation law is given for the general case of a compact,
connected, semisimple Lie group. In the present paper,
we give the general method for the construction of the
invariant part of the Lagrangian. The symmetry-
breaking terms in the Lagrangian are usualy assumed to
belong to a linear representation of the group. In this
case, one can easily construct them as functions of the

*This work was supported in part by the National Science
Foundation, by the U. S. Air Force Once of Scienti6c Research,
and by the U. S. Oflice of Naval Research under Contract No.
Nonr-1866(SS}.

t Permanent address: University of Karlsruhe, Karlsruhe,
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~ S. Coleman, J. %ess, and Bruno Zumino, preceding paper,
Phys. Rev. 177, 2239 (19N}.In this paper one can Gnd references
to other work, in particular to papers which describe in detail
the Lagrangian method as applied to chiral groups.

fields by using the results of Sec. 5 of the preceding
paper.

ge$+A. ~ e$ +Ac@ (2)

O'= D(&"'v)f .
Here D(h) is any linear representation of the subgroup
H which, if it is reducible, we assume to be written in

2. COVARIENT DERIVATIVES AND
INVARIANT LAGRANGIANS

Our starting point is the analysis of nonlinear
realizations of a compact Lie group given by Coleman,
Wess, and Zumino. We dispense here with all proofs
and definitions and quote only their 6nal result. Let
G be a compact, connected, semisimple Lie group and
H a continuous subgroup of G. Let V; and Ag be a
complete orthonormal set of generators of G such that
V; are the generators of H. Any element g of G may be
decomposed uniquely as a product of the form

g e$.Aee, 7'

A nonlinear realization of G which becomes a linear
representation when restricted to the subgroup H is
given on coordinates ($,P) by
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fully reduced form. The main result of Coleman, less,
and Zumino is that, by a suitable redefinition of
coordinates, any nonlinear realization of G which is
linear on H can be brought into the above standard
form. Equation (3) can also be written as

(4)

where T; are the matrices which represent the gener-
ators V; in the representation D(h). If g is an element
of the subgroup H (which we call h), then the transfor-
mation given by Eqs. (1)—(3) is linear:

(W) ~ (&'A') = (D'"(&)5»(h)4) (5)

where D(~)(h) is the linear representation of II in-
duced on $ by

A8~'+h ~= 8~ '~.

%C also recall brieQy how the standard coordinates

{g,)p) can be introduced in the manifold on which the
group operates. One 6rst 6nds a set of coordinates

(]P) which, by the subgroup H, transform linearly
as in Eq. (5), i.e.,

h: (4+) (D("(f)t,D(f)+)
The standard coordinates of the point (f,%), are then
defined as {p,p), where )pis defined by

(6)

6nitesimal displacement dx„ in space-time we have,
from Eq. (2),

g(de("")= (de&'")e"' v+ e&'"d(e ' v)

and, according to Eq. (4),

d)P'= e"'~d)P+ (de"'~))P. (11)

These equations could be used to work out explicitly
the transformation laws of the 6eld gradients. Accord-
ing to Eq. (7), we now take for g the g-dependent
transformation

g ~-$ A,

which has the effect that

f'=0, I'=0,
In this case

de@.A=e(P+dP) A eP ~ A ed@ A

and similarly
de"'~=dN' V.

Equation (10) now takes the form

e & "de& "=du' 'V+d$' A,

which can be used to compute dl' and df', and Eq. (11)
becomes

dg'=d)p+dN' T)p.

These standard coordinates can be shown to transform
under G according to the standard form given in Eqs.
(1)—(3). In particular, they satisfy Eq. (6):

Therefore the covariant derivatives are

DA= p.

DA'= ~A+&~ &4')

(13)

(14)

A I,agrangian dcnslty ls a function of thc 6clds and
their gradients. The transformation properties of the
gradients 8„$and 8„$are, of course, determined by those
of the 6elds; therefore, the group can be realized by
transformations on the manifold ($,$,8„$,8„$) These.
transformations are not in standard form but, since the
gradients transform linearly by the subgroup H, they
can be brought into standard form by a change of co-
ordinates. Let us denote the new coordinates, which
transform in the standard way, by ($,)P,D„&,D„)P).
According to Eq. (6), they are given by

where p„and ()„are defined from

e—&'~8 e&'"=e .V+p A. (15)

Clearly D„$ and D„)P are not themselves gradients.
It is perhaps instructive to verify, using the explicit

formulas (13)—(15), the transformation properties of
the covariant derivatives, given in (8) and (9). If we
eliminate g between Eq. (2) and the equation obtained
f10m lt by diGercntlatlon)

g() ef.A —(g ef'A)ee' v+eP A(g eu. ' v)

we obtain

-$'Ag eP 8 ee'Ve —f A(g e$ A)e—u'V

The new coordinates D„( and D„)P are a sort of "co-
variant derivatives. " They have been constructed so
that their transformation under G is analogous to Kq.
(3), i.e.,

Therefore

+ea, 'v((t e-e'v)

p„' A=e"'vp„Ae "'v

(DA)'=D'"(e"")(DA)

%'e seek now explicit expressions for the covariant
derivatives.

Vfe 6rst need to 6nd how the 6eld gradients trans-
form. Let us observe that, corresponding to an in-

e„' V= e"'ve„Ve "'"—(B„e"'v)e-"'v. (17)

Equs, tion (16) can also be written

p
i D(b)(eu'v)p

and Eq. (17) implies
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1
Dif=B,k+ (—B„AX&)X$+

3'l $'I

We are now able to Gnd the general form for an in- In the case of SU(2) XSU(2), these formulas give the
variant Lagrangian. First we observe, using the group transparent series
element (12), that an invariant Lagrangian must
satisfy

On the other hand, from the transformation laws for
the Geld |t and for the covariant derivatives it follows
immediately that a function of 1P, D„p, and D„1P is
invariant under 6 if and only if it is constructed to be
superficially invariant under the subgroup H.

3. EXPLICIT FORMULAS AND EXAMPLES

Equations (13)—(15) for the covariant derivates can
be made more explicit. To compute v„and p„one can
use the formula

e-& ~B„e& "=[(1—e
—~( &)/ht. g]B $ 3 (18)

where we dehne
A(.gX=[) A,X]

and let functions of the operator h~.& be defined by
their power-series expansion. One sees immediately
that

D.&=BA+ "

1
D„N= B„N 12ir—-B„—(X$

2I

l1
+ [(—B„&X~) X~]X~+

4f )
where N is the two-component nucleon Geld (T= ——,'ir).

The above methods can be used to construct a
Lagrangian, invariant under SU(3)XSU(3), describing
the interaction between the pseudoscalar octet and the
baryon octet. We use the familiar 3&(3 matrix notation
and denote with 8 the traceless baryon matrix. The
matrix

8

is proportional to the pseudoscalar matrix; similarly,
we write

where the dots denote nonlinear terms.
For some groups (for instance, for the chiral groups)

the commutator of two generators of the type Ag is
equal to one of the generators V;. Whenever this hap- and
pens, in the right-hand side of Eq. (18), one can sepa-
rate the odd from the even multiple commutators. One
obtains in this way

8

p.—.& p.'~'

8

vp —
g Q v~,X~.

s=l

and
v„V= [(1 coshht )—/ht ]B„.$ A.

P„A = (s111hkt A/t1t &).BA A. .

1—cosh(f t)
D„1P=B„f+T &.1)t

If we consider, in particular, the group G=SU(e)
XSU(e) and identify A1 with the e-axial generators
and V; with the e-vector generators, the above equa-
tions may be further transformed. Let f@z be the totally
antisynunetric structure constants for SU(e) in a
canonical basis where the Cartan inner product is
given by g,;=—cb;;, with c)0. The matrices (t,);&

f;;& satisfy the c—ommutation relations of the group
algebra (adjoint representation)

[t,,t,]=f;;I tI .
Treating $, B„$,v„, and p„as n-component vectors, we
can write

D„)=P„=[sinh($ t)/] t]B„],
v„= [(1—cosh(& t))/& t]B„],

In this notation, Eqs. (13)—(15) take the form

D.k=p. =B.$+ "
D„B= B„B i [v„,B], —

where now

e'»&B„e '&5&= iv„iy—~p„,—

v~= 2&[GBA]+"

If we express L in terms of the matrix ~, and neglect
higher nonlinearities, we find a pseudovector meson-
baryon interaction with independent F and D coupling

a Tr(By„yq(b1B„n B+bmBB„v)}

A simple invariant Lagrangian is

L=Tr( a'p„'+iB(y„B—„+M)B+By„[v„,BJ
+By„ys(b1p„B+b~Bp„)}.

The first term indicates that the normalized pseudo-
scalar matrix is

CC ))' +'e consider here Lagrangians containing only the fields and as well as a current-c«rent" couphng
their first derivatives, but the generalization to Lagrangians with
higher derivatives is straightforward. ,'ia' Tr(By—„[[v.,B„v],B]}.
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In a meson-baryon scattering calculation one must
include the second-order effect of the trilinear pseudo-
vector interaction as well as the 6rst-order eGect of
the quadrilinear current-current interaction. Only this
total contribution has an invariant dynamical meaning
(independent of the particular choice of fields).

4. GAUGE FIELDS

The construction of a Lagrangian invariant under
coordinate-dependent group transformations requires
the introduction of a set of gauge 6elds p„; and a„g,
associated respectively with the generators V; and Ag.
Let their transformation law be given by

term, the field $i, which appears in Eq. (19) as a gauge
parameter, could be completely eliminated from the
Lagrangian. %ith the mass term, the gauge 6elds
satisfy the conservation equations

~II,@pi=0 p ~p@pl= 0

(or corresponding partial conservation equations if one
also adds to the Lagrangian terms which break the
coordinate-independent group invariance). Observe
also that, while the fields p„; have (bare) mass m, the
mass of the fields a„) divers from ns. This follows from
the fact that the invariant kinetic term for the 6eld
$ has the form

where f is a constant which, as it turns out, gives the
strength of the universal coupling of the gauge fields
to all other fields. Instead of defining v»; and p»i by
Eq. (15), we now define them by

& '"L~»+f(p» I'+&» ~)3&"=&» ~+A» ~ (19)

This equation can be used to compute e» and p» as
functions of $, 8»$, p», and a». It is easy to verify that
the transformation formulas for p» and v» given by
Eqs. (16) and (17) are now valid also if the group
element g is a function of the space-time variable x„,
since the additional terms which arise from the differen-
tiation of g are compensated. by corresponding terms in
the transformation law of the gauge 6elds. The "co-
variant derivatives" can therefore be de6ned, as
before, by

D»P=P» DA=~»4+&» ~4

wltli the llew Illeaillllg of p» and 5». Cleal'ly

D»$= 8»$+ fc»+ ~

where the dots denote nonlinear terms.
The most general Lagrangian invariant under co-

ordinate-dependent group transformations can be
obtained by adding to the generalized Yang-Mills
Lagrangian for the 6elds p„and u„any local function of

g, g, v» and their derivatives which is superficially
invariant under the coordinate-dependent subgroup H.
If we further add to this Lagrangian a mass term for the
gauge 6elds

—k~'I:Z (p»')'+Z (~»i)'j

the invariance is restricted to coordinate-independent
group transformations. Observe that, without this mass

where g is a normalization parameter. This introduces
in the Lagrangian an additional term proportional to
Pi (a»i)' as well as a term proportional to Pi 8»&~a»i.
When this bilinear coupling is transformed away' by
introducing the 6eM

o»i= &»i+ I n'f/(n'f'+~') j~»6,
the associated mass is seen to be given by

m,'= m'+vP f'.
For completeness we recall here the form of the

generalized Yang-Mil1. s Lagrangian. 4 Let us denote the
entire set of gauge fields p„;and u»i by p», and the entire
set of generators V; and A ~ by Z, .Let c,q, be the totally
antisynnnetric structure constants of the group in a
canonical basis where the Cartan metric tensor of the
group is g ~= —cb, ~, c&0. The structure equations of
the group are then

Lz.,zi,)=c.i„z,
(sum over repeated indices). The generalized Yang-
Mills Lagrangian is given simply by

4 (4»~»)
where

4'»~» = ~»4~» ~usa+ f&»t c4»any» ~

~ For the case of chiral groups see J. Schwinger, Phys. Rev.
Letters 248, 473 (1967); J. Ness and Bruno Zumino, Phys.
Rev. 163, 1727 (1967).

4C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954);
R. Shaw, dissertation, Cambridge University, 1954 (unpublished);
R. Utiyama, Phys. Rev. 101,1597 (1956).After these early papers,
the subject of non-Abelian gauge groups has been extensively
treated by many authors. %e quote only a recent paper which
is more directly relevant to the present approach: T. D. Lee,
S. %einberg, and Bruno Zumino, Phys. Rev. Letters, 18, 1029
(1967).


