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The general structure of phenomenological Lagrangian theories is investigated, and the possible trans-
formation laws of the phenomenological 6elds under a group are discussed. The manifold spanned by the
phenomenological 6elds has a special point, called the origin. Allowed changes in the 6eld variables, which
do not change the on-shell S matrix, must leave the origin 6xed. By a suitable choice of 6elds, the trans-
formations induced by the group on the manifold of the phenomenological fields can be made to have
standard forms, which are described in detail. The mathematical problem is equivalent to that of 6nding
all (nonlinear) realizations of a (compact, connected, semisimple) Lie group which become linear when
restricted to a given subgroup. The relation between linear representations and nonlinear realizations is
discussed. The important special case of the chiral groups SU(2) &(SU(2) and SU(3) )&SU(3) is considered
in detail.

1. INTRODUCTION
" 'N most phenomenological field theories the La-
~ - grange density is not an aribtrary function of the
fields. The fields transform in some well-defined way
under some internal symmetry group [typically chiral
SU(2)&(SU(2) or chiral SU(3))(SU(3)j, and the
Lagrange density consists of a main part which is in-
variant under this group and of a symmetry-breaking
part which is usually assumed to have simple transfor-
mation properties under the group. Thus, to study phe-
noxnenological field theories, we must study the trans-
formation properties of fieMs under such groups.

If the fields transform linearly, the classification of
all possible field-transformation laws reduces to the
standard problem of representation theory. However,
for most phenomenological theories, ' the situation is
more complicated: The fields transform linearly only
under a certain subgroup of the full group (in the cases
cited, this subgroup is the subgroup of parity-conserving
transformations). In this paper, we consider exactly
such a situation and we show that it is possible to
classify all possible nonlinear realizations of an internal
symmetry group which become linear when restricted
to a given subgroup. ' In a subsequent paper, we de-
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Germany.' Nonlinear phenomenological Lagrangians have been the
subject of a number of papers. We quote here only a few where
references to earlier work can be found: J. Cronin, Phys. Rev.
161, 1483 (1967);S. Weinberg, Phys. Rev. Letters 18, 188 (1967);
J. Schwinger, Phys. Letters 24B, 473 (1967);J. Wess and Bruno
Zumino, Phys. Rev. 163, 1727 (1967); Bruno Zumino, Phys.
Letters 258, 349 (1967);B.Lee and H. T. Nieh, Phys. Rev. 166,
1507 (1968).' A condensed description of the results of the present paper was
given by one of us (B. Z.) in Proceedings of the Fifth Coral Gables
Conference on Symmetry Principles at High Energy, edited by
A. Perlmutter, C. A. Hurst, and B.Kursunoglu (W. A. Benjamin,
Inc. , New York, 1968). Partial results were presented in Pro-
ceedings of the Heidelberg International Conference on Elementary
Particles, edited by H. Filthuth (Interscience Publishers, Inc. ,
New York, 1968).
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scribe the general method for constructing nonlinear
Lagrange densities which are invariant under the non-
linear field transformations. '

In order to give a useful classification of nonlinear
group realizations, one must first find a suitable defini-
tion of equivalence of nonlinear realizations. As dis-
cussed in Sec. 2, the appropriate definition is suggested
by a property of local Lagrangian field theory, namely
the independence of the on-shell 8-matrix elements from
the particular set of local fields in terms of which one
expresses the Lagrangian. It is then natural to consider
as equivalent two nonlinear group realizations which
can be transformed into each other by a fixed nonlinear
transformation belonging to a certain rather general
class. The physical equivalence of two such nonlinear
group realizations is established not only for the exact
solution of a Lagrangian theory, but also for the approx-
imation in which one uses, for each particular process,
only the tree diagrams which contribute to it (diagrams
with no internal loops, or with no integrations over
internal lines). Since one customarily restricts oneself
to this tree approximation in phenomenological La-
grangian theories, we call it here the phenomenological
approximation. 4

In Sec. 3 we give some relatively simple forms for the
nonlinear realizations of a compact Lie group which
become linear when restricted to a given subgroup. ' In
Sec. 4 we then show that these are standard forms which

' C. G. Callan, S. Coleman, J. Wess, and Bruno Zumino, Phys.
Rev. , following paper, 177, 2247 (1969).

4 Properties of tree diagrams have been studied by K. Symanzik,
Boulder Lectures in Theoretical Physics (Interscience Publishers,
Inc. , New York, 1960); R. P. Feynman, Acta Phys. Polon. 24,
697 (1963);Y. Nambu, University of Chicago Report, 1968 (un-
published). A discussion of the connection between the structure
of diagrams and the power in an expansion in the coupling con-
stant can be found in the paper by Lee and Nieh quoted in Ref. 1.

' For the case of SU(2) XSU(2) and SU(3) XSU(3), nonlinear
realizations equivalent to those given here have been used in the
papers quoted in Ref. 1.For SU(2) XSU(2), the question of their
generality has been discussed by S. Weinberg, Phys. Rev. 166,
1568 (1968).
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in a precise sense give the solution of the general classi-
fication problem. The generalization to some non-
compact groups appears possible, but will not be dis-
cussed here.

One usually requires the symmetry-breaking terms of
the Lagrangian to belong to particular linear represen-
tations of the group in question. Or one may be inter-
ested in linearly transforming local fields to describe
certain bound states. For this, one must solve the
problem of constructing functions of the nonlinearly
transforming fields which transform linearly under the
group. If one wants to understand the relation between
theories which assign fields to linear representations of
a group and theories which use nonlinear realizations,
one must ask a related question. It becomes necessary
to study the possible (nonlinear) equivalence between
representations and realizations. These problems are
studied in Sec. 4, where we discuss also the question of
the possible (nonlinear) equivalence between two dif-
ferent linear representations.

2. PROPERTIES OF NONLINEAR
LAGRANGIAN S

Let the Lagrangian be known in terms of a set of
Geld variables p:

LB]=L.[~]+L[~],
where Lo[p] is the Lagrangian of free fields and Li[4]
the interaction. H one expresses the Geld variables p as
nonlinear but local functions of another set of field
variables X,

y= xF[x], F[0]=1,
one can similarly separate the resulting Lagrangian into
a free-field term and an interaction

L[xF[xl]=Lo[x]+L~[x].

The results obtained from the Lagrangian L[P] (for
instance by means of suitable Feynman rules) can be
compared with those obtained from

L'[~]=Lo[~]+L.B].
Clearly the many-particle propagators will in general
diBer in the two cases when the momenta of the ex-
ternal lines are o6 the mass shell. However, according
to a theorem of relativistic Lagrangian theory valid
with rather weak restrictions on I. and Ii, the on-mass-
shell S matrices calculated with L[p] and L'[p] are
identical (in making the comparison it may be neces-
sary to introduce appropriate wave-function renormal-
izations). Without going into the conditions for the
validity of this theorem, nor into the precise meaning
of the local products of field operators involved, we
observe that, in all cases of physical interest, F[p] is a
local power series in the fields p and L[p] is a local
power series in the Gelds p and their derivatives; these
should be sufhcient restrictions to insure the validity of

the theorem. The result has an analog in axiomatic field
theory' (irrelevance of the choice of a particular set of
local interpolating fields). Stated in the simplest pos-
sible way, the reason for its validity is that the terms
higher than linear in the expansion of the function F do
not contribute on the mass shell because they do not
contain one-particle singularities.

We have stated the above theorem as a property of
the exact solution, but we will now show that it applies
also to the S matrix calculated in the phenomenological
approximation (tree diagrams).

First we give a simple characterization of the phe-
nomenological approximation. Given any Lagrangian
L$P], define the Lagrangian

LL4,a]=a 'L[«],
which depends upon the parameter a (clearly the origi-
nal Lagrangian L[P] is recovered for a= 1). Consider
a connected Feynman diagram and denote with E the
number of its external lines, with I the number of in-
ternal lines, with L the number of loops (equal to the
number of internal integrations), with V the number of
vertices, and with 1V; (i= 1, 2, , V) the number of
lines attached to the ith vertex. Expanding the La-
grangian in power series, one sees that each vertex
carries the power E;—2 of the parameter a. Therefore,
the diagram carries a power P given by

F=Z (&'—2).

On the other hand, since a line is either an internal line
(connecting two vertices) or an external line,

Q X;=F.+2I.

Combining these two equations, we find

F=F.+2I—2V.

Since the number of loops satisfies

L=I—V+1.,
we have finally

F=E+2L—2.

This formula shows that the smallest power of the
parameter a for which a particular process (given 8)
will occur is

P=E—2;

this corresponds to diagrams with no loops. The next
higher power of the parameter a is

F=F+2—2=F
6 R. Haag, Phys. Rev. 112, 669 (1958); D. Ruelle, Helv. Phys.

Acta 35, 34 (1962); H. J. Borchers, Nuovo Cimento 25, 270
(1960). For a discussion in the context of Lagrangian perturba-
tion theory, see the contribution by one of us (S. C.) in IIadrons
and Their Interactions, edited by A. Zichichi (Academic Press
inc. , New York, 1968).
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and corresponds to diagrams with one loop, and so on.
The tree diagrams emerge as the lowest-order term in a
systematic expansion.

We now introduce the parameter a also in the for-
mula (1) connecting the 6elds g to the fields X and write
it as

y= XF[ax].

Substituting into the Lagrangian, we obtain

L[XF[aX],a]= a 'L[aXF[aX]],

so that the connection between the power of a and the
number of lines attached to the vertex is the same as
before. For a given process, the same power of c char-
acterizes the tree diagrams for the new Lagrangian as
for the old Lagrangian. From the equality of the S
matrices calculated from the two Lagrangians using
the exact solutions follows the equality of the coefB-
cients of their expansion in a and therefore the equality
of the phenomenological approximations, which are the
lowest-order terms of this expansion.

In most phenomenological Lagrangians, there are
coupling constants which enter in the Lagrangian just
like the parameter a introduced above. This fact, how-
ever, is not directly relevant to the argument given.
One can always introduce the parameter a, as we have
done, for power-counting purposes and set it equal to
unity at the end of the argument.

The above characterization of the phenomenological
approximation permits us, in particular, to understand
the agreement often noticed between calculations per-
formed in the phenomenological approximation with
nonlinear Lagrangians and general results obtained
using current algebra (or the algebra of 6elds) and con-
servation or partial conservation equations. To see this,
let us 6rst observe that the nonlinear theories are good
models for current algebra and therefore their exact
solutions must satisfy the general relations deduced
from current algebra. If we introduce the parameter u
in the Lagrangian in the manner described above, the
new currents will also contain this parameter, but the
commutation relations between correctly normalized
currents will remain the same. However, a partial con-
servation equation, like that for the axial-vector current
A„will contain the parameter explicitly. It is not diK-
cult to see that the parameter a will enter as indicated
by the example

~.~.[4»a]= (o/a) V»

where c is a constant and p is the pion Geld. A typical
current-algebra relation connects various amplitudes
and consists of several terms which may refer to proc-
esses involving different numbers of particles (external
lines). Since these relations are obtained, using equa-
tions such as (3) in conjunction with reduction tech-
niques, it is easy to see that the parameter a will enter
into the coefficients in such a way that the sum of the
power of a and of the number of particles involved is

the same for all terms. From this observation and from
Eq. (2) it follows immediately, by expanding the exact
relation in a power series in the parameter a, that the
tree diagrams satisfy the relation by themselves, and
so do the diagrams with one loop, two loops, etc.

3. STANDARD FORM OF NONLINEAR
REALIZATION S

Let G be a compact, connected, semisimple Lie group
with m parameters and B a continuous subgroup of G.
We denote with V; (i=1, 2, , rs —d) the generators
of H and with A~ (1=1, 2, , d) the remaining gen-
erators chosen so that V; and A~ form together a com-
pIete set of generators of t", orthonormal with respect
to the Cartan inner product. From the familiar proper-
ties of the exponentials it follows that, in some neigh-
borhood of the identity of G, every group element g+G
can be decomposed uniquely into a product of the form~

g g$ Agu. V

where
f &=+ $d&, ts V=AN~V;

and f& and I, are real parameters. (For brevity, we will
frequently drop the qualifying phrase "in some
neighborhood of the identity" in what follows. However,
it should be understood that we are here investigating
only the local properties of realizations. ) Therefore, for
any element gs&G one can write

g ~$ A ~$'A~ts'V

where
~'=e(~,go), '= '(~,g )

are functions of the indicated variables which are de-
termined by the structure of the group. Let, further,

h: f~D(h)iP,

with h&H, be a linear (unitary) representation of the
subgroup H. It is immediate that the transformations

e, ~-D(e"'")~ (6)

give a (nonlinear) realization of G. To verify it, just,
observe that if

g g$ 'A —g$ 'Age V
)

then

gg g$ A g$" A~fj,"'V
where

gee'" ~ V gtf" ~ Vgu' ~ V

and furthermore that, since D is a representation,

D(eu, '"~ v) D(std'v)D(su' ~ v)

~ This decomposition amounts to a particular parametrization
of the left cosets G/II by means of the parameters $~. Any other
parametrization would give rise to a treatment completely equiva-
lent from the abstract group-theoretic point of view and would
furnish equivalent results. However, the particular parametriza-
tion we use here is very convenient because of the simple and well-
known properties of exponentials. Alternative parametrizations
have been used in concrete applications and can be found, for
instance, . in the papers quoted in Ref. 1.
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Clearly the transformation on $ can be considered a
group realization by itself. The transformation on f, on
the other hand, is meaningful only together with that
on P, since I' is a function of $ and therefore D(e"'")
also is. If D(h) is reducible, the 6eld P decomposes by
a suitable choice of basis into a set of 6elds f&' with a
smaller number of components. These Gelds do not mix.
We shall refer to Eq. (6), with D written as a fully de-
composed representation, as to our fundamental stand-
ard form for a realization.

If go belongs to the subgroup H, go ——h, one can write

goe& ~=he&'"=he&'~h 'h.

Since we have chosen our generators to be orthonormal,
it follows that

e&'~=he&'~h '

et'' F h

In this case, the transformation $~ (' is a linear
transformRtlon

P'= D &'& (h) t,
where D & ~~ (h) is a linear representation of H determined
uniquely by the structure of G )for example, if G is
SU(n) XSU(e), and B is the diagonal SU(n) subgroup,
D&~& is the adjoint representation of SU(m); if G is
SU(3) and H is the usual isospin-hypercharge sub-
group, D(') is the direct sum of the isospin- —'„hyper-
charge-1 representation and its conjugate). Further-
more, in this case u is evidently independent of $ and,
therefore, the transformation

P ~D(e"'")Q=D(k)P

is also linear. Ke see that, when restricted to the sub-
group P, the group realization (6) becomes a linear
representation.

In Sec. 4 we shall study the general nonlinear realiza-
tions of a compact, connected, semisimple Lie group G,
which have the property of being linear when restricted
to a continuous subgroup Bof G. We shall demonstrate,
by choosing suitable coordinates, that any manifold on
which these realizations are induced is equivalent to
one which transforms according to our standard form
given in Eqs. (5) and (6). This standard form has the
important property that the space of the parameters
$~ is transitive under the group transformations.

Ke wish to point out now that there is a special case
in which the form of the transformation on $ can be
somewhat simpliGed. It is the cases in which the group
G admits the automorphism Z: g -+ E(g) such that

V;-+ V;, Ag-+ —Ag.

(This is, for instance, the case for chiral groups: The
parity operator induces an automorphism- which
changes the sign of the axial-vector generators. ) Apply-

This case has been considered in detail by L. C. Biedenharn
Cprivate coInmunication).

ing the automorphism to the relation

g e$.A. e$'Lee' v

one obtains

g(g )g-t 8 ~
—P A.~u' ~ F

One can eliminate I' from these two equations with the
simple result

g pm' Ag(g —1) g2P A (7)

In this form one can verify directly that the transfor-
mation on $ is a realization of the group and that it
becomes linear when restricted to the subgroup.

4. CLASSIFICATION OF ALL NONLINEAR
REALnATIONS

We shall now try to construct all possible nonlinear
Geld transformation laws under a group and show that
the nonlinear group realizations of the previous section
give a standard form for the general case. We begin by
phrasing the problem in a slightly more abstract form.
Let 3f be an e-dimensional real analytic manifold. Let
G be a compact, connected, semisimple Lie group which
is realized as a group of transformations on 3f. In
equations

g: s~ Tgg~

where we use the symbol x to denote a point on the
manif'old as well as the real e-vector formed by the co-
ordinates of the point in some coordinate system. Ke
assume that T,x is an analytic function of both g and x.

If we identify the Gelds of phenomenological GeM
theory with some particular set of coordinates on the
manifold tile proMeQl of Gndillg RH possible Geld trRIls-
formation laws under a group is equivalent to finding
all possible ways of realizing the group as transforma-
tions on a manifold. The advantage of formulating the
problem in this way is that the passage from one set of
fields to another, which as we have shown in Sec, 2 has
no eftect upon the physical predictions of a phenomeno-
logical theory, becomes the passage from one set of
manifold coordinates to another, which has no eGect
upon the geometrical problem. The analyticity assump-
tions in the manifoM problem, which are rather strong
from a purely geometric viewpoint, are necessary be-
cause of the power-series expansions which occur in the
Geld theory.

However, the Geld problem has some further special
features. General coordinate transformations are not
allowed: as seen from Eq. (1), a change of coordinates
must leave the origin of coordinates unchanged. There-
fore we will assume that there is a special point 0 on
the manifold, which we call the origin, and we will
allow only coordinate systems such that the origin is
always represented by the zero vector. Because the
fields are ultimately used only in power-series expan-
sions, there is no need for us to attempt to characterize
the action of the group globally; it su6ices to study it
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where D(h) is evidently a linear representation of H and
fx'1 denotes terms which are at least quadratic in x.
Now let us de6ne e functions y by

y= dh D-'(h) Tpx,
H

(9)

where dh is the invariant measure and the group inte-
gral is normalized so that

dh= 1.

The y's are analytic functions of the x's; indeed, by
Eq. (8),

y= x+Lx'].

Hence the Jacobian determinant ~8y/Bx~ is equal to 1

at the origin, and we can use the y's as new coordinates

only in a neighborhood of the origin of M. Also, by the
usual properties of connected Lie groups, we can like-
wise restrict our attention to the neighborhood of the
identity in G.

There may be elements of the group which leave the
origin invariant. Their totality forms a subgroup H of
G. The subgroup H is called the stability group of the
origin and could in particular consist of theidentity
element alone or, as another extreme case, of the entire
group G. For simplicity we assume that H is continuous.
Our main problem is the following: we assume that the
group G and the subgroup B are given and we wish to
Gnd the most general way of realizing them on the
manifold M. As we shall see immediately, this problem
is equivalent to that of ending all possible nonlinear
realizations of G which become linear when restricted
to the subgroup H. This equivalence is demonstrated
by the following lemma.

LAzearisutiom lemma. Let H be that subgroup of G
consisting of all elements which leave the origin un-

changed; that is to say,

TAO= 0

for every h&H. Then there exists a set of coordinates,
valid in some neighborhood of the origin, such that, in
these coordinates,

Tpy =D(h)y

for every h+H, where D(h) is a linear representation
of H.

Proof: By the continuity of the transformation T„
the group H is closed, and therefore compact. Therefore
we can And a neighborhood of the origin that is in-
variant under the action of H. Let us choose this neigh-
borhood to lie within a single coordinate patch, and let
x be the coordinates associated with this patch. If we
expand T,x in power series, we 6nd

in some neighborhood of the origin. Under the action of
ho, an arbitrary element of H,

hp.. y~ dh D-'(h)TpTp„px

d(hhp)D '(hhphp-')Tgppx

=D(hp)y.

This proves the lemma.
This lemma is often useful in itself. Given a nonlinear

transformation law, it gives a simple test for lineariza-
bility. Also, if the transformation law can be linearized,
Eq. (9) provides an explicit formula for the new fields
that will do the job.

We now proceed to consider the main problem. We
introduce a complete and orthonormal set of generators
V;, A ~ as described in Sec. 3, that is, V; are the genera-
tors of the subgroup H and A ~ the additional generators
of G. We shall again make use of the unique decomposi-
tion of a group element given by Eq. (4), and also of
Kq. (5), in which we occasionally omit the subscript
zero.

In the following, for the sake of conciseness of nota-
tion, we shall occasionally denote the transformation
T, of the manifold M associated with a particular group
element by the symbol of the group element itself. Thus
for T,x we shall write also gx.

Let us now denote with E the submanifold of 3f con-
sisting of all points of the form T,O (or g0). We can
associate to each set of parameters $~ the point of the
subrnanifold E given by e&'~0. It is clear that, in some
neighborhood of the origin, there is only one set of
parameters for each point of S; therefore we may use
the real numbers $~ as a set of coordinates for X in that
neighborhood. The transformation properties of 37 are
completely determined, as seen from

g(e&'~0) =e&'"e"'r0= e&'~0.

Here we have used the fact that the transformation
associated with an element of the subgroup H leaves
the origin invariant.

We now introduce e—d other coordinates for M,
which we assemble into a real vector P. Thus a point of
M (in some neighborhood of the origin) has as coordi-
nates a pair (gpP). The points ($,0) lie on cV, and we have

(10)

where f($,g) is given by Kq. (5). It follows directly
from the linearization lemma that we can choose the
coordinates (QP) so that H acts linearly. According to
Eq. (10), the ensuing linear representation of H is re-
ducible and, since the group H is compact and the repre-
sentation can be made orthogonal by a suitable choice
of coordinates. it can always be written in the fully re-



COLEMAN et gl.

where D is some linear (orthogonal) representation of
B of dimension n —d and D&" is the representation in-
duced on ( by

et' Fg( A~—u»F

We now attempt to introduce new coordinates ($,g)*
by the equation

This relation is an allowed change of fields in the sense
of Eq. (I).The Geld@ transforms into

( '")

It follows that

furthermore, from Eq. (10), we see that

These equations define an allowable set of coordinates
in some neighborhood of the origin, since they define
an analytic mapping of the pairs ($pP)* into M, whose
Jacobian determinant does not vanish at the origin.

But now we know everything about the action of G
in a neighborhood of the origin. For

where u' and $' are given by Eq. (5). In practice we do
not want to use the representations D of the group H
in their real, orthogonal form but rather in their unitary
form. The transformation to the unitary form can be
achieved by combining real Ge1.ds into a complex Geld
when the corresponding representation is not truly real.

Thus, by a proper choice of coordinates, any reabza-
tion of G as a group of analytic transformations on M
may be brought into the form (6) in some neighborhood
of the origin of M and of the identity in G. Equation (6)
is therefore the solution to the problem we set ourselves
at the beginning of this section, to construct all possible
nonlinear field transformation laws.

5. RELATIONS BETWEEN LINEAR AND
NONLINEAR TRANSFORMATIONS

Let us consider a manifold ($, ) spanned by a Geld
which transforms according to a linear irreducible

(unitary) representation $(g) of the group G,

and by tile Geld $ which 'tlaIlsfoITns 111'to $' given by
Eq. (5). We show that one can go over to Gelds which
transform by our basic standard form, Eq. (6). Just
defille

where we have made use once more of Eq. (5). Natu-
rally, when restricted to the subgroup 8, the represen-
tation X)(g) becomes a representation $(h) of H. There-
fore the transformation law of the Geld 0' is exactly of
the standard form given by Eq. (6). Now, $(k) may be
reducible, in which case the Geld + breaks up into a set
of Gelds P,&' with a smaller number of components

In this case, the apparent additional physical connection
between the larger number of components of the Geld

must be illusory, since, as we have seen in Sec. 2, the
physical consequences of the theory must be the same
whether one uses the Gelds $ and or the Gelds $ and
P~»&. In a Lagrangian theory employing the fields $ and

this can be seen from the possibility of constructing
a sufhcient additional number of invariants which,
when added to the Lagrangian, destroy the "spurious"
relations between amplitudes. In any case, the dimen-
sionality of the possible multiplets is that of the irre-
ducible linear representations of the subgroup B and
not that of the irreducible linear representations of G.
Our standard form (6), with the representation D fully
reduced, brings this most clearly into light. To avoid
misunderstandings, however, let us emphasize that in a
Lagrangian theory one may well choose to use the
linearly transforming field and not to include in the
Lagrangian the additional invariants which purely
group-theoretic considerations wouM allow. In this case
the particular choice of the Lagrangian will give
stronger physical results, which are not, however, con-
sequences of group invariance alone.

It is clear that the above construction can be inverted
to construct a Geld transforming linearly like as a
function of the Geld $1 and of one or more Gelds such as

'As a special case of this result, we recall that, in nonlinear
phenomenological theories, the pion is described as a three-
dimensional multiplet and it is not necessary to introduce the e
6eld which would be needed to complete the four-dimensional
linear representation of SU(2) &(SU{2).This does not mean, how-
ever, that one cannot introduce the cr into the theory, if experi-
mental evidence requires one to do so. The 0, being an isoscalar,
would be described as an invariant under the full group SU(2)
XSV(2). The strength of its couplings to other fields will be un-
related to that of the couplings of the pion to the same Gelds.
Nevertheless, invariance under the group imposes well-de6ncd
restrictions on the a couplings.
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the f ".One is thus led to pose the general problem of
ffnding those functions f of P and f which transform
according to a linear representation of the group G:

go: f (44') ~f RV')=2 D s(go)fs(k4')

These formulas show that

We observe that it is sufhcient to study the case in which

f is a linear function of f: have the desired property

since the general case can be reduced to this one by 6rst
solving the Clebsch-Gordan problem for the subgroup
H and the tensor products of the P's. We write therefore

%e show Grst that the representation D is not arbi-
trary: when restricted to the subgroup H it must
reduce and contain as one of its components the repre-
sentation R(h) under which P transforms by the sub-
group H. To see this, write, for go=h,

In this equation set ]=0, which implies $ =0, since
]=0 is a ffxed point for transformations of the subgroup
B.%'e hand

p, s

From Schur's lemma it follows that either F,(0)=0 or
D(h) contains the irreducible representation E(h). The
first alternative is impossible because F „(0)=0 implies
F,(&)=0 for all &; this follows immediately from the
transitivity of the submanifold Ã considered in Sec. 4.

Vice versa, if D reduces and contains the representa-
tion R(h) when restricted to the subgroup H, then there
exist functions F„„(&) such that f, (&,P)=Q„F „(&)P„
transform linearly according to the representation D.
Indeed, consider the unique decomposition

g g$ A~ss 7'

which implies, in a suitable basis,

The same argument shows that, if the representation D
reduces and contains the representation Z(h) m times
when restricted to the subgroup, then one can construct
m sets of linearly independent functions F „($).

As a special case, let the representation R(h) be the
identity representation and, replace iP by a constant.
The above theorem gives then a characterization of
those linear representations of G for which one can 6nd
functions of $ alone which transform according to that
representation, as well as a Inethod for 6nding such
functions. It is also easy to see that, if there is a larger
subgroup II~ of G, containing H, and if the representa-
tion D is reducible and contains the identity also when
it is taken on Hi, then the functions D i(e&'") do not
really depend on all $i, but only on those which are not
associated with generators Ag which belong to the
larger subgroup II&. These results can be easily applied
to the case of SU(e)&(SU(e). The representations
which contain the identity when restricted to the diago-
nal SU(ii) subgroup are those of the form (ii,V), where
v denotes an irreducible representation of SU(N).
Functions of the field $i only cannot transform linearly

by any other representation.
As we have just shown, by taking linear combinations

(with g-dependent coefficients) of the components of a
6eld which transforms nonlinearly, it is possible to
construct a Geld which transforms linearly. This fact
indicates that one may sometimes be able by a similar
construction to go from a 6eld transforming according
to a certain linear representation to one which trans-
forms according to a different linear representation.
More precisely, assume that

R(e"'v) 0—D(~$ 8)
0 D(e"'v) j

~

~

~

%e seek necessary and sufhcient conditions for the
existence of functions F„s($) such that the Geld

D(go)D(g) =D(cog) =D(g«'""')
—D(g5'Ass'vga. v) —D(eP A)D(sm"v~e. v)

0

D(e"'Ve" V))

transforms according to

g: X„~X„'=R„„&'&(g)X„.

Here R&'& and R"& are two irreducible linear represen-
tations of G (summation over repeated indices is under-
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stood). We show now that the desired transformation
functions exist if and only if the product g"))(E.("
contains in its reduction one of the representations
which, as we have found above, can be realized on func-
tions of the field $ alone.

The condition is necessary. Equations (11)—(13)
imply

R""'(g)F.p(k)=p= F.-(&')R-p"'(g)=. p

or
F.-(e)=R""'(g)F.p(k) LR"'(g)]p='

=R""'(g)R-p"'(g)F.p(&)

The condition is sufhcient. Let the product 8&')&(R(')
reduce as indicated by the formula

(n, 1 [ (v, 2
~

=P (n, 1; v, 2
~
o,r)(a, r

~
.

By assumption, for at least one value ro of r, there
exists a set of function. s f, (&) such that

f.(k') =R"'""(g)f, (k) .
On the other hand, as a consequence of the completeness
of the Clebsch-Gordan coefficients, we have

B~p~"R„„&'&(P,1; v, 2~ p,r)= (n, l; p, 2~o,r)R„'&.

vector charges, the pseudoscalar 6elds transform as
given by

»755' = g s(Y5&—P)g—
»TSAR/

—s(75&+0)
7

where P=2 g;P,X;, n=i~ g&nEX&. There are only eight
pseudoscalars, which transform linearly by a vector
transformation and nonlinearly by an axial-vector
transformation. No relation to a ninth pseudoscalar or
to scalar mesons is implied by the group. However, as
explained in the preceding section, one can construct
functions of the eight-component field which transform
linearly under the entire group SU(3) &&SU(3). From
the general discussion given there we know that the
possible representations are those of the form (o,f),
where s denotes a representation of SU(3). A simple
example is afforded by the 18 fields So, S;, Po, P~ which
satisfy

(v's)So+S+iv~L(v's)Po+P]= p-""',
where S=g;S,7; and P=Q~P~7t. These 18 6elds
transform according to the representation (3,3) of
SU(3) )(SU(3).

Let us look at the axial-vector transformations for
fields other than the pseudoscalars. The formula

&
—iy5a&—iy5$ &

—iy5$'&—su'

If we define

we see that
F"(&)= (~,1 u, 2loro)f. (E),

determines u'=-', P; u X; as a function of $ and n For.
n indnitesimal, I is also infinitesimal and one must have

F.-((')= (~,1; u, 21 ohio)R"'""f~(E)
=8 p~ ~R„,~'~(P, 1; v2~prQ)f, ($)

=R„„"'F„p(f)LR "~]p —'.
Therefore Eq. (13) follows from Eqs. (11) and (12).

6. EXAMPLES

We illustrate some of the results obtained in the pre-
vious sections by considering in some detail the case in
which the group G is taken to be the chiral SU(3)
&&SU(3) group and the group El the parity-conserving
diagonal SU(3) subgroup.

The orthonormal generators of Sec. 3 can be taken
now to be the vector and the axial-vector charges. For
instance, in the three-dimensional representation of the
Dirac quarks one would have

V;= —x2iX;, A( ————2iy5X( (i, l=1, 2, . . ., 8),
where the X's are Gell-Mann's matrices. There are eight
parameters $~ which can be put in correspondence with
the eight pseudoscalar mesons of SU(3). If we introduce
the 3)&3 matrix $= —', Pt tP ~, then the matrix of the
pseudoscalar fields is aP, where, as it turns out, the
scaling factor is given by 1/a=F, the pion-decay con-
stant. From Eq. (7) we see that, if we call P; the parame-
ters of a transformation generated by the vector charges
and 0.& those of a transformation generated by the axial-

u =P n~C~;(g)
l

The functions C~, ($) can be calculated, for instance, as
power series in (. Let the infinitesimal vector transfor-
mation of an SU(3) multiplet P be

8/=i p pF'
where —i'; are the matrices of the generators in the
corresponding irreducible representation. The non-
linear axial-vector transformation is simply given by

8f= i Q u,'F,—P.

Again there is no enlargement of the dimensionality of
the SU(3) multiplet in going over to SU(3)XSU(3).
If we use the 3&&3 traceless matrix 8 for the baryon
octet, the infinitesimal vector transformation can be
written as

SB= i[P,B].
In this notation the infinitesimal nonlinear axial trans-
formation for the baryon octet (or any octet other than
the pseudoscalar) is

hB = —iLu', B].
The baryons could be required to transform linearly

under an axial transformation. For instance, one could
consider a baryon matrix 8& which transforms according



to (1,8)~+ (8,1)r, or

Bj—+e'» BIe '» .
Alternatively, the baryon matrix B2 could transform by
(3,3)g+ (3,3)J. or

~ e'b+5QB e'bpgcx

In the 6rst case the trace of the baryon matrix is in-
variant and can be set equal to zero. In the second case

it is not and we have nine bayons instead of eight. It is
easy to verify that the matrix B~ "»& transforms
exactly like BI. Furthermore the matrices e '»&B2e '»&

and e '&«Bie'»& have the same nonlinear transformation
law as the matrix B, which, in finite form, is

B—+e '"Be'" .
These examples are in agreement with the general
theorems of Sec. 5.
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The general method for constructing invariant phenomenological Lagrangians is described. The fie]ds
are assumed to transform according to (nonlinear} realizations of an internal symmetry group, given in
standard form. The construction proceeds through the introduction of covariant derivatives, which are
standard forms for the Geld gradients. The case of gauge 6elds is also discussed.

C. INTRODUCTION

l
'HE most convenient way of deriving the physical

consequences of the assumptions of (broken)
chiral SU(2)XSU(2) [or SU(3)XSU(3)] is by the
method of phenomenological Lagrangians. These La-
grangians consist of a part which is invariant under the
Geld transformations which realize the group and of a
symmetry-breaking part which is usually assumed to
transform simply under the group. The transformation
laws of the 6elds under the group are in general non-
linear, but they become linear when restricted to the
parity conserving SU(2) [or SU(3)] subgroup. In the
preceding paper, ' the general form of the held transfor-
mation law is given for the general case of a compact,
connected, semisimple Lie group. In the present paper,
we give the general method for the construction of the
invariant part of the Lagrangian. The symmetry-
breaking terms in the Lagrangian are usualy assumed to
belong to a linear representation of the group. In this
case, one can easily construct them as functions of the
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~ S. Coleman, J. %ess, and Bruno Zumino, preceding paper,
Phys. Rev. 177, 2239 (19N}.In this paper one can Gnd references
to other work, in particular to papers which describe in detail
the Lagrangian method as applied to chiral groups.

fields by using the results of Sec. 5 of the preceding
paper.

ge$+A. ~ e$ +Ac@ (2)

O'= D(&"'v)f .
Here D(h) is any linear representation of the subgroup
H which, if it is reducible, we assume to be written in

2. COVARIENT DERIVATIVES AND
INVARIANT LAGRANGIANS

Our starting point is the analysis of nonlinear
realizations of a compact Lie group given by Coleman,
Wess, and Zumino. We dispense here with all proofs
and definitions and quote only their 6nal result. Let
G be a compact, connected, semisimple Lie group and
H a continuous subgroup of G. Let V; and Ag be a
complete orthonormal set of generators of G such that
V; are the generators of H. Any element g of G may be
decomposed uniquely as a product of the form

g e$.Aee, 7'

A nonlinear realization of G which becomes a linear
representation when restricted to the subgroup H is
given on coordinates ($,P) by


