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Motivated by its implication of a divergent pion electromagnetic mass shift BeP, we study some apsects
of the Bjorken limit relating the high-qs behavior of the amplitude T (q; p) = ij'C—h s '& *(p

~
T(J (x)J'(0)}~ P)

to the equal-time commutators t BpJ, J j.Our aim is to 6nd ways to avoid an in6nite bm' without altering
the usual current-current commutation-relation models which have LJ,J'jg0. It is noted that, contrary
to what is usually assumed, perturbation-theoretic T products rarely vanish at high qo. %'e rigorously
show that when T (q; 0) is the pion-photon scattering amplitude at p =0 and admits a spectral representation
J'da a(a) (q'+a) ' (including an arbitrary number of subtractions and an arbitrary additive polynomial),
the corresponding mass shift bmo' can be 6nite only if the moment I=J'da 0.(a) is either zero or does not
exist; in the latter case, o.(a) must change sign in6nitely often in any neighborhood of a =+~. The non-
existence of I corresponds to the presence of ambiguities in the commutator [J,j'j, although, as
we emphasize, the commutator can be given a consistent nonvanishing value with &no remaining 6nite.
As an interesting example of this possiblility, we consider the function T(q; 0) =expL —(q)" j, which
gives hmo~ & ~ and I unde6ned, but which can correspond to any value of t J,J'j, provided that the equal-
time limit is taken in a suitable way. It is argued that such an exponential falloff for the forward photohadron
scattering amplitude M is a likely consequence of an exponentially falling nucleon electromagnetic form
factor, a behavior which is consistent with experiment and a number of theoretical ideas. Additional support
for such behavior for M comes from the observation that this type of behavior might be expected to hold
in theories with asymptotic (on-shell) hadronic scattering amplitudes of the form, e.g., expt' —(—t)" j,
and the considerable theoretical and experimental evidence in favor of such behavior is reviewed. Finally,
we discuss the extension of our analysis to the case where p &0 and Schwinger terms are present. In particular,
an exponential falloff for T(q; p) implies an oscillating spectral function and strongly suggests that I is
unde6ned. Some purely mathematical results concerning the existence of spectral representations when
no explicit assumption is made about the asymptotic behavior of the spectral function are also obtained;
these may be useful in other contexts.

I. INTRODUCTION transfer. This connection is based on the following
observations:

(a) If E„, is ambiguous, then the moment I of the
spectral function o associated with M»(q; p), the trace
of the forward photohadron scattering amplitude
3f„„(q;p), will, in general, not exist.

(b) If I does not exist, it seems to be necessary that
o change sign infinitely often (oscillates), in order that
the mass shift be finite.

(c) An oscillating o is precisely what is expected on
the basis of an exponentially falling G(qs) or, more
generally, any G(qs) which decreases more rapidly than
an inverse power of q~.

Under these circumstances the current-algebraic
implication that 8m~= is invalid, since a n.onvanishing
E„„can result from a suitable equal-time (KT) limit
even though bm' is finite.

Although in this paper our emphasis will be on the
deductive approach outlined above, a possible and, wc
bebeve, convincing inductive approach is the follow-
ing. ' There is considerable experimental and theoretical
evidence, which we review in Sec. VI, that the nucleon
electromagnetic form factor G(q') is an exponentially
decreasing function of q2, viz. ,

G(q') ~expL —u(q')'") qs -+ oo . (1.1)

Then, if G(q') is polynomially bounded, the spectral

DISTURBING feature of the current-algebra
appx'oach ls that '~ when using thc B)orkcn llmlt

one appears to get divergent expressions for the electro-
magnetic mass shifts of hadrons, because the q-number
part of the equal-time commutator (KTC) E„,(x)
=t J„(0,x),J„(0)1, where J„ is the electromagnetic
current, does not vanish in any of the familiar models. '
The purpose of this paper is to discuss this dif6culty and
to suggest that it may indeed be only apparent. In
particular, we wish to point out that there may exist a
remarkable connection between (i) the requirement of a
finite mass shift, (ii) the probable ambiguity in the
definition of E„„and (iii) the experimental indications
that the electromagnetic form factor of the nucleon,
G(qs), is an exponentially falling function of momentum

* Supported in part by the U. S. Air Force 0%ce of Scienti6c
Research under Grant No. AFOSR 68-1453.

~ J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
~M. B. Halpern and G. Segre, Phys. Rev. Letters 19, 611

(1967); 19, 1000(K) (1967); G. C. Vhck and B. Zumino, Phys.
Letters 258, 479 (1967).

ll These include the quark model (Ref. 1), the algebra of 6elds
LT. D. Lee, S. Weinberg and B. Zumino, Phys. Rev. Letters 18,
1029 (1967}j,the U(2) x U(2) a model LM. Gell-Mann and M.
Lsvy, Nuovo Cimento 16, 705 (1960)j, and the U(3)QxU(3)
o model PM. Lsvy, sNd 52A, 23 (1967)g. A.n exception is a model
recently introduced by Y. D. Lee LPhys. Rev. 171, 1/31 (1968)1
based on a set of intermediate vector bosons; herc E„„is a c
number. See also, J.Bjorken and R. Brandt, Phys. Rev. this i
177, 2331 (1968).

ssue, ~ A more complete account of this approach can be found in
R. Brandt and J. Sucher, Phys. Rev. Letters 20, 1131 (1968).
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function ImG(q ) eeeessari ly oscillates, i.e., changes sign
in6nitely often in any neighborhood of q~=+ . One
would expect similar behavior for the form factors of
other hadrons and hence, as we show in Sec. VI, for the
quantity F( q—', I )=M»(q; p) and the associated
spectral function 0. Such behavior for F certainly
implies 6nite hadronic mass shifts, but seems to be in
conQict with the usual models of current algebra, which
appear to give

F( q', I )—-I/s. q'o, o= q p/m, (1.2)

wltll I proportional to R (nonvan1shlng) dIffcrcncc of
matrix elements of the ETC LZ„,J„j.However, if o is
oscillatory, then it is unlikely that I exists, so that (1.2)
mill be incorrect. Furthermore, as we show in Sec. V, an
ambiguous I corresponds precisely to an ambiguous
commutator P»J„j in the sense that the ET limit
depends on how this limit is taken. In particular, a non-
vanishing commutator can result from a suitable KT
limit. Since, as we show in Sec. V, such ambiguous
commutators are expected in the usual models, we can
resolve the apparent convict of these models with the
requirement of 6nltc mass shifts.

Ke now outline the contents of the following sections.
In Sec. II we review the Bjorken analysis relating the
high-qo behavior of the amplitude T(q; p)= I'jdx-
Xe-'& *(plT(J(x)J'(0))lp) to the ETC's

I ao J,J'j
and its implication that the pion electromagnetic mass
shift bm' is infinite in theories for which

& +If~oJ J jl +)—&+I" I
')

does not vanish. This is the case for all of the usual
models. We review the arguments that only T(q; 0)
need be considered and introduce the spectral repre-
sentation T(q; 0)=F(—q') =s 'jda o (a) (q'+a)-' and
the moment I= fda o(u) corresponding to P„,J„1.

In Sec. III we show, by explicitly considering a pion
held in perturbation theory, that T(q; p) 1/qo' «r
qo

—+ ~ only if LJ„,J„]is well dehned (free-field case).
Otherwise (interacting-fIeld case), the high-qo behavior
of T is different.

By considering the abstract definitions of beP and I
when p=0 and no Schwinger terms are present, we
prove in Sec. IV some theorems relating 5m' and I.Our
main result is that bm' can be finite only if I is either
zero or does not exist; in the latter case o(a) must
change sign infinitely often in any neighborhood of
u=+ ~.This result is shown to remain true even if the
above spectral representation is modified by subtrac-
tions and an additive polynomial. We illustrate these
remarks with some examples, an especially simple one
bclIlg +I(—q ) ~ cxpL —(q ) I j, wlllcll glvcs bm (&e

and I unde6ned.
In addition, Sec. IV contains a variety of mathe-

matical results concerning the existence of spectral
representations when no explicit assumption is made
about the asymptotic behavior of o(u), as well as a

number of related results which may be useful in other
contexts.

In Sec. V we show that an ambiguous I corresponds
precisely to an ambiguous ETC I Z,JJ in the sense that
the ET limit depends on how this limit is taken. We
show for the examples of Sec. IV that a nonvanishing
ETC can result from a suitable KT limit even though
8m & oo. Since the original ambiguity in the ET limit
corresponds to ambiguities in local-6eld products, and
since the usual models involve such ambiguous 6eld
products, we conclude that these models do noI, imply a
dlvcrgcnt 852.

In Sec. VI, we show that if the nucleon electro-
magnetic form factor decreases more rapidly than an
inverse power —a possibility which is not inconsistent
with experiment and consistent with a variety of
tllcol'ctICR1 ideas then lt Is vcly llkcly tlIat o'(q 'o) tllc
spectral function associated with F(—q', I), oscillates.
Indirect support for such oscillation is found from an
examination of high-energy amplitudes describing
hadron-hadron collisions.

In Sec. VII we show how a finite bm2 can be obtained
even if operator Schwinger terms are present. This is
illustrated in a simple model. We also show that such
Schwinger terms need not invalidate previous results
based on the usual current algebra, soft-pion theory,
and the Weinberg sum rules.

A summary and concluding discussion is given in
Sec. VIII. The Appendices A—D contain some purely
mathematical results needed in Secs. IV and V.

IL BJORKEN LIMIT AND PION ELECTRO-
MAGNETIC MASS SHIFT

A. Bjorken Analysis

In an important paper, ' 8jorken has analyzed
a possible connection between the covariant forward
pion-photon scattering amplitudes

3f„.&'&(q; p) (b=+, 0, —),
the time-ordered product

Tp."'(q' P) = ~d*e "&P—bl T(Jp(x)J.(0)) I pb),
(2.1)

and the "Schwinger term"

S„„'(q; p)=M„„' (q; p)-T„„' (q; p). (2.2)

Here
I p,b) refers to a s' state of momentum p, and

J„(x) Is the electromagnetIc current operator. Blorken
advanced the following three specific proposals:

(i) M and T have the same absorptive parts'

dx e " (Pl J.(*)J.(0)l P) (2 3)

' Bjorken's analysis can be made for any hadronic states and
current operators. %e emphasize the pion-photon case for con-
venience and concreteness.

6 %e suppress the charge index 0 whenever this does not lead to
confusion.
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I "(q; p) = d*~"' &pl~. (0)~.(*) I p) (24)

(ii) T can be written in the unsubtracted form

gpgp
D„„(q)=

q'+is q'
(2.10)

T"(q; p) = p (qo'rl' p) p. (qo' —0' p)

0 2s' — qo qo qo+ qadi

(2.5) q)M„,(q; p)=0, (2.12)

The quantity (2.9) is ind. ependent of the gauge constant
a since 3f~„satisfies the gauge-invariance condition

(iii) The leading high-qo behavior of T is obtained by
expanding (2.5) in powers of 1jqo..

T"(q p)-(pl —P'„(0,x),~„(0)j
gp

—,L'&.(O.*).~.(o)j+0(&/~")) -' * I)) (& 6)
gp

3jorken observes that (2.6) will be valid in any approxi-
mation in which thc intermediate-state sums implicit in
(2.3) and (2.4) are truncated.

In the above circumstances, the role of 8 (a poly-
nomial in qo) is to make up for the noncovariance of T
so that the sum M= T+5 is covariant. Since, by (2.6),
T vanishes for qo

—+ ~, 5 can be identi6ed as the part
of M which survives in this limit.

Let us record the fact that proposal (i) will in fact be
valid in any Geld theory in which the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formulas hold
and. the T product (2.1) is well defined. The scattering
amplitude is then given by~

M..(q; p) =-' d"-".
&pl TV.(*)~,(0»

+&(~)P.(~),~.(0)jl p&, (2 &)

so that one has

~"(q; p) = i dx ~ "*(p—
l P.(0,x),~.(0)jl p), (2 g)

which is ildependent of qo. If the individual terms in
(2.7) are not well defined D.e., subtractions are required
in (2.5)], then S will only differ from (2.8) by a poly-
nomial in go.

valid because P'= —nz s.
Now one expects from (2.6) that bean will be at least

logarithmically divergent in any theory with a current
algcbla 1n wh1ch thc diGercncc

~~(x)—=&~'ILJ.(0 x) ~.(0)ll~+)—&~'I " I~') (2 13)

does not vanish. A nonvanishing contribution from the
first commutator in (2.6) or from the Schwinger term
(2.2) (a polynomial in qo) would only make the diver-
gence worse. Since, in fact, E~WO in the known theories
such as the quark model, '9 the algebra of 6elds, ~ the
U(2)S U(2) 0 model, ' or the U(3)8 U(3) 0 model, ' it
has bein concluded'' that 6m~ is divergent in this
approach. The same conclusion. has been reached within
the phenomenological Lagrangian framework. " Dis-
persion-theoretic techniques, on the other hand, appear
to give a finite (and numerically accurate) value for
beP."

If (2.6) is maintained, then the above difficulty is
apparently only avoided in a world with vanishing pion
mass. For the above models, ' in fact, (2.13) vanishes in
the soft-pion limit p —+ 0 (m =0), as does the contri-
bution of the first conimutator in (2.6), so that the
integral in (2.9) becomes convergent. A direct calcu-
lation~ of 8m' in a world with m =0 indeed leads to a
6nitc and accurate result. The usual commutation
relations of current algebra" together with soft-pion
theory lead to

d qt' qpqv
(8nP),.i ——const —

I 8„„— Lh„„(q)—6„„"(q)$,

(2 14)
h

h„„v(q)= dec '~'&Ol TV„'(x)V.a(0) I0) (2.15)

B. Pion Electromagnetic Mass Shift

To second order in e, the electromagnetic contribution
to the di6erencc of the squared masses of m+ and xo is
given by' —'N

beP= d'q D„,(q)AM„.(q; p), (2.9)
2(2x)'

~ We assume, in accordance with all known models, that the
other KTC's which might occur in (2.7) are c numbers and hence
irrelevant for our purposes.

Riazuddin, Phys. Rev. 114, 1184 (1959);M. Cini, K. Ferrari,
and R. Gatto, Phys. Rev. Letters 2, 7 (1959); V. Barger and K.
Eases, Nuovo Cimento 28, 385 (1963).

and A~ is given by a similar expression with the axial-
vector current A„' replacing the vector current V„'.The
assumption that the corresponding two-point functions
of the vector and the axial-vector currents have spectral

9 In Bjorken's quark model, (2.13) actually does vanish, since
the KTC has AI =1.The corresponding quantity does not vanish
for AI=I mass differences such as that between Z+ and E or
p and e.

"See, for example, G. C. Kick and B. Zumino (Ref. 3); I. S.
Gerstein ef u/. , Phys. Rev. Letters 19, 1064 (196'l).

"See, for example, H. Harari, Phys. Rev. Letters 17, 1303
(1966},and references cited therein.

» T. Das et a/. , Phys. Rev. Letters 18, 759 (1967).
» M. Gell-Mann, Physics 1, 63 (1964).
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functions py(a) and p~(a) obeying (when m =0) the
Weinberg" sum rules

Then the divergent part of hm~ becomes (after a trivial
angular integration)"

(2.16)
0,'

(8m')g;»= — dq'F( —q' 0)
Sm. p

(2.22)

(2.17)

C. Dependence on Pion Momentum

In order to discuss further the role of the pion
momentum p in the above considerations, let us con-
sider the amplitude

F(—q', v)—=AM»(q; p) (2.18)

as an analytic function of q' and a=q p/m„. As em-
phasized by Cottingham, " the analytic structure of P
in qo, which follows from (2.5) together with (2.10),
allows one to rotate the qo integration contour in (2.9)
to imp and obtain

5m' = d4q —F (q', v),
Sm' q'

q'= q'+qp, T
= ( iqopo+rf p—)/ns . (2.19)

Next, following Cottingham" and Bjorken, ' we ex-
press Ii in terms of a dispersion integral over ~, assumed
to be unsubtracted:

2 "dr '~' ImF(q', v')
F(—q', v) =-

VP p 2~ p2
(2.20)

Bjorken. has argued that, since vo~ ~ like q'/m„ it
follows" from (2.20) that

F(—q', v) ~ F(—q', 0) as q'-+ ~. (2.21)

' S. Weinberg, Phys. Rev. Letters 18, 507 (1967)."See Ref. 10 and references therein.
'6 W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).
'7 This argument has been sharpened by A. Mueller (private

communication), who has shown that (2.21) holds, in the absence
of delicate cancellations, even if (for b,I=1 mass shifts) the dis-
persion relation for MI (see Ref. 18) requires a subtraction, as is
suggested by Regge theory.

then leads to a convergent expression for bm'. The value
8m~5.0 MeV is obtained'~ if the spectral functions are
approximated by retaining only the p and A~ poles. A
similar result is obtained in the phenomenological
Lagrangian framework. "

The above methods break down, however, as soon as
they are extended to the realistic case in which m ~0.
This is in accordance with the expansion (2.6) and the
nonvanishing of (2.13) in these theories. Whereas the
phenomenological Lagrangian approach is not expected
to be valid in the high-gp region of the integration in
(2.9), the current commutator (2.13) is supposed to be
speci6cally describing the small-xo behavior of J(x)J(0)
and hence the large-qo properties of T(q; p). Thus the
implication of a divergent 8m~ from the current commu-
tators of the usual models is definitely disturbing.

The expression (2.22) puts very sharply the implica-
tion that bm'= ~ whenever E(x)%0, since then,
according to (2.6),"F(—q', 0) 1/q' (by covariance).
We note that this does not contradict the result of Das
et al. ,'~ since it has not been assumed here that m„=0.
The simplicity of Eq. (2.22), and also of the limit of
Kq. (2.5) for v —& 0 (to be discussed in Sec. II D), makes
it highly desirable to work at v= 0. This is justified in
part by Bjorken's arguments leading to Eq. (2.22) and
in part by the fact that our considerations can be ex-
tended to the case v~0. Thus in the following sections
we shall largely ignore the p dependence of AM. We
shall 6nd functions F(—q') corresponding to E(x)NO,
but nevertheless giving bnz~&~. On adding to such
functions arbitrary functions G(q', ~,p') which give
finite contributions to 8m~ and vanishing contributions
to E(x), one obtains functions with essentially the same
properties as F( q') but —with nontrivial p dependence.
All this can be done consistently with the soft-pion
calculation if, for example, one puts

hM ~ m F( qs)+G(q', v—,P'),

with G(q', 0,0) (q') ~. Then for p=0, m, =0, one has
2M~ G(q', 0,0), which reproduces the soft-pion result,
and for general p and m, WO one 6nds E(x)&0, in
accordance with the above models, but 8m~ will be
finite, in accordance with experiment.

Another way of looking at our p=0 analysis is to
suppose that we also put m =0. Then (2.22) gives the
correct complete mass shift, and the necessary condi-
tions for a finite mass shift, given in Sec. IV, are valid
in a world with ns =0. Our assumption is, then, that
these conditions continue to hold when m NO. This
approach avoids possible gauge-invariance ambiguities
at p=0, m 40, and also allows a unification of the
m, =0 and m /0 treatments.

We should emphasize that, although in Secs. IV and
V we neglect p dependence, the arguments of Secs. VI
and VIII are valid on the physical pion mass shell.

D. Spectral Representation

When p=0, it is easy to exhibit explicitly the co-
variance of the representation (2.5) for T». The
definition (2.1) of 2"»(q; 0)—=F(—q') leads in the usual
way to the manifestly covariant (assumed to be un-

'88y (2.22) we mean the following: Write d3I»=MIP „(I&

+M2P„,('), where P(» and P(2) are the usual gauge-invariant
polynomials in p and q, and M;=M;(q2, v, p'). We analytically
continue the 3f; to p =0 and calculate (2.9) there, thus obtaining
(2.22), which defines a particular "mass shift at p=0.""We first extrapolate (2.6) to p=0.
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Alternatively, Eq. (2.23) follows from a Jost-Lehmann-
Dyson"" (JLD)-type representation for T»(q; p).
Equation (2.23) can easily be written in the form (2.5)
with

1-(qo',«; o) =P-(q ', —«; o) ~(q."—«').

Expansion of (2.23) in powers of 1/q~ formally gives

where
F(—q')-I/ q'+0(1/q'), (2.24)

I= da' e (~') . (2.25)

The moment I represents the matrix element

(pI dxI Jp(O, x),JR(0)]Ip)

continued to p=0 (m WO). LThe first commutator in
(2.6) cannot contribute to T„„atp=O.]

Let us now assume that AS» ——0. (The existence of
Schwinger terms will be considered in Sec. VII and will
not change our results. ) Then the difficulty referred to
above can be neatly expressed in terms of Eqs. (2.22)—
(2.25) if we let

F(—q') =—F(—q' 0) = AM (q; 0). (2.26)

The usual models give I/O, so that substitution of
(2.24) into (2.22) apparently gives 5m'= ~.

In the remainder of this paper we shall explore a way
of avoiding this difhculty. In Sec. IV A we show that if
IWO and 8m~(, then I cannot exist. In Sec. V we
show that the nonexistence of I does not preclude the
existence of a nonvanishing ETC E(x) defined by a
suitable ET limit.

In the above discussion we have assumed that the
representations (2.5) and (2.23) are unsubtracted. In
general, however, subtractions are required. In fact, if
(p~ J„(x)J„(0)

~ p) behaves like (xo) " for xo 0, then
(2.5) and (2.23) must be replaced with an n-times sub-
tracted representation plus an additive polynomial of
degree n —1.'~ This case will be fully discussed in Sec.
IV 3 and will be shown not to change our results.

III. BEHAVIOR OF SOME TIME-ORDERED
PRODUCTS IN PERTURBATION THEORY

A. General Considerations

In this section we shall use some perturbation-
theoretic examples to examine the relationship between
the nature of the ETC's occurring in (2.6) and the

20 R. Jost and H. I ehmann, Nuovo Cimento 5, 1598 (1957)."F. J. Dyson, Phys. Rev. 110, 1460 (1958}."O. Steinmann, Helv. Phys. Acta 36, 90 (1963).

subtracted) spectral representation

1
F( q2) — dK2 0'(K2) (q2+ K2)

—1 (2.23)

B. Free Pion Field

To illustrate this effect, we first consider a free pion
field P (x).The corresponding electric current operator is

Ju= «(~A 4 4~8) 2e—Ã4~— (3.2)

where g=-,'%2(&i+i&2) and A„ is the free electro-
magnetic field operator (we work to order e'). The
general form of M„„is Lsee (2.7) and related remarks]

M„,(q; p) = i dxe —"'(p~ T(J„(x)J.(0))

+~(&)l:J.(x),~ (0)]lp), (33)
"In any case, c-number contributions to (3.1) only affect the

vacuum electromagnetic self-energy.
"This is the case, for example, for low-order propagators in

perturbation theory, where c(A ) Z '.

actual high-qo behavior of the time-ordered product
(2.1). This analysis is primarily intended to motivate
the more general and more rigorous discussion in Sec.
IV. It is also of interest in itself, however, since it shows
that the usual assumptions concerning time-ordered
products are not supported by perturbation theory. In
Sec. V we shall present a more thorough discussion of
the ETC's in terms of ET limits of ordinary com-
mutators.

Throughout this paper we shall assume that the lrst
ETC in (2.6) gives a vanishing contribution. This is in
accordance with the models of Sec. II and the present
section. Then, if (2.6) is correct, the high-qo behavior
of T will be determined by the ETC LJ„,J„].By locality
and temperedness we can write, formally,

P„(0,x),J„(0)]=0„„(0)8(x)+O„„i&'&(0)Bid(x)+ (3.1)

in terms of a finite number of field operators 0(x),
0&'&(x), . For simplicity we shall now assume that
our large-qo limits are taken for q=O. Then only the
first term in (3.1) contributes to (2.6). This restriction
is made only to simplify our discussion and inclusion of
the other terms in (3.1) would not alter our conclusions.
Furthermore, we need only consider the q-number part
of 0„. (i.e., the difference of 0„, and its vacuum ex-
pectation value), since we are ultimately interested in
the difference (2.13)."

Now if 0„„(x)is a well-defined operator, one expects
from (2.6) that T„„will behave as (p ~

0„„(0)
~
p)/qo' for

large qo. In renormalized perturbation theory, however,
the ETC (3.1) is rarely well defined and the operator
0(x) involves divergent or ambiguous quantities, such
as products of local field operators. In this case one
would no longer expect that T const/qo'. Rather, if

(p I 0l p&
—(A'),

where h. represents a cutoff with dimension of mass and
c(~)= ~, then one might expect T c(qP)/qo2. 24 Thus,
if 0(x) were sufficiently divergent, one would not even
expect T to vanish for large qo.
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FIG. 1. Diagrams con-
tributing to the photo-
pion scattering ampli-
tude in order e')P.

and for the case at hand one has (using the canonical
commutation relations)

8(t)LJ„(x),A„(0)7 = 2i—eopt (x)g(x) b„ohio„b (x), (3.4)

so that I cf. Eq. (2.2)7

~"(q P) = 2'(P —I4'4
I P)4 ~ ' (3 5)

The relevant current commutator is

S (t)[J,(x),J,(0)7 = 4te—o[a,yt (x)a,y( x)

+H.c.78(x)+, (3.6)

where the omitted terms do not contribute to (2.6) for
ol= 0, because they are either of the form 0(0)Bb(x) or of
the form ol0(x) 8(x), which satisfies (pI rlO(x) I p) =0.

Since g(x) is a free field, the q-number part of (3.6) is
finite and well defined, so that (2.6) implies that
T~1/qos. This behavior of T can easily be explicitly
verified. The diagrams contributing to M„„are shown in
Fig. 1; one finds

M„,(qo, 0; P) = —2eob„obo,+ (8eo/qos)LP„P.

+(&„4p,+6.4p.)po+&, 4&4,po 7+O(1/qo ) (3 7)

Thus, in view of (3.5), we see that T„,=M„„S„„is of-
order 1/qo', in agreement with (2.6). The coefficient of
1/qo' is also seen to agree with that predicted. by (2.6)
and (3.6).

C. Interacting Pion Field

Now let us suppose that a X(P')' interaction is intro-
duced. Then, to all orders of li, the expression (3.2) for
J„remains unchanged (and finite") and the relations
(3.3)—(3.6) remain formally valid. The q-number part
of (3.6) now, however, becomes divergent, so that (2.6)
is no longer meaningful. For example, in order ) only
the diagram in Fig. 2 contributes to (3.6) (between one-
pion states) and it gives a quadratic divergence. In this
case, in fact, T„„does rot vanish for qo~ ~. To see
this, it is sufficient to work to first order in ). The
diagrams contributing to j/I„„ in this order are shown in
Fig. 3. Denoting the contribution of the final (seagull)

diagram by Eb„„and observing that the contribution of
the ETC term (3.5) is 5„„=Rb„ooo„, we can write

T„,=F„,+R8„454„

where F„„is the (covariant) contribution of the first
four diagrams in Fig. 3 (plus their crossed counterparts).
More explicitly, we have"

T"=A4+&LP.q q' (P.q+—q.P ) (P q)7
+Cq„q„+R8„484,. (3.8)

In order to show that T„„(q;p) does not vanish for
qo~ ~, it is sufhcient to consider the case p=q=0,
lo= v= 1.Then only the first term in (3.8) is nonvanish-
ing, so that we need only show that A (q; p) does not
vanish for qo

—+ ~ in this case. Only the first diagram in
Fig. 3 contributes to A and this gives, after renor-
maliz ation, '7

qo'g (1—g)+oa'
A (qo,0; ooo, 0) ~ dry(1 ri) ln—

0 m'

which indeed does not vanish for qo
—+ ~. Correspond-

ingly, T„„no longer satisfies an unsubtracted spectral
representation.

D. Implications

It might be thought that the above analysis is not
useful for understanding how a finite mass shift can be
obtained, since it may appear that a bad high-qo
behavior for T can only worsen the divergence of bm'.

FIG. 2. Diagram contributing to the matrix
element ip~so&ts~&~pl in order X. It gives
rise to the divergent integral J'd'q (q'+eP} ~

XqI qi.

&' Recall that we are working only to second order in e.

FxG. 3. Diagrams contributing to the photopion scattering
amplitude in order e9.. The remaining diagrams which contribute
in this order are obtained from those shown by crossing the
photon lines.

"Gauge invariance of M„„=F~„+Rb„„requires that A+R=B(p q}'—Cq', but we shall not need this relation. .

"In this order A is actually independent of p. We have re-
normalized this diagram by subtracting at q=0. Subtraction at
any other point would only change A by a constant.
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The first point to be made is, however, that this bad
behavior of T can be cancelled by a corresponding
behavior of S in (2.2), so that the resulting 3Ihas a good
behavior. We shall investigate this possibility in Sec.
VII and there show that it actually occurs in a per-
turbation-theoretic example. The second, more im-
portant point is that these examples show that an ill-
defined ETC can alter the behavior of T (example in
Sec. III C) and even can lead to a 6nite 8m' (exainple
in Sec. VII). The changed behavior of T is related to the
divergent character of the ETC (3.1). However, we
observe that if this ETC fails to exist in a more subtle
way, it might be possible to obtain a 6nite bm' even
without Schwinger terms and a bad behavior of T. This
possibility will occupy us in Secs. IV and V.

IV. MOMENTS AND "MASS SHIFTS":
MATHEMATICAL ASPECTS

Motivated by the expressions (2.22)—(2.25), we now
study the connection between the existence of the
moment of the spectral function associated with an
analytic function f(z) which has a right-hand cut and
the convergence of the integral of f(x) in the neighbor-
hood of x= —~. We first introduce some notation.

Let n (xp) denote the complex z plane with the interval
[xo, +~7 excluded, and let f(z) be analytic for zEx(xo).
The spectral function 0 (x), defined. by

0 (x) = (2i) '[f(x+i0)—f(x—iO)7, x)xo (4.1)

is assumed to be integrable in any Gnite interval
[xo,xi7."We define a "moment function" I(x) via

If, for example, the limit (4.4). does not exist, we shall
say that I(~) does not exist.

We restrict ourselves (at erst) to functions j(z),
which are simply related to their spectral functions,
i.e., satisfy

1 "a(x')
f(z) = — dx',

CQ x 8
(4.6)

with no subtraction required in the integral and no
additive entire function appearing on the right-hand
side of (4.6). If f(z) satisfies (4.6), we say that f(z)
admits a simp/e unsublracted spectral representation

(USR). A simple criterion for (4.6) to hold is the
following, which for ease of reference we state as a
theorem (for proof, see Appendix A):

Theorem I. A suflicient condition for f(z) to admit a
simple USR is that f(z) —+ 0 as

~
z~ ~ ~, for 0(argz

(.2z., and that f(x+i0) is bounded in the interval

(xo, ~).
Note that this condition is not necessary, since, for

example, f(z) =z&e'+' satis6es (4.6) for 0(p(-,', but
f(x+i0) is not bounded as x —+ +~.

f(x) = —(z
—'/x)I(~)+ (4.&)

A. Case of a Simp1e USR

I. IIeurisfics, Examp/es, and Some Theorems

The connection between the behavior of I(x) for
large x and the existence of I,( ~) is most eas—ily seen
as follows. We assume at first that for large negative x
one can expand the denominator in (4.6) in inverse
powers of x, to obtain

I(x)= 0(x')dx', x)xo
SQ

and a "mass-shift function" L(x) via

(4.2) more precisely, on multiplying (4.6) by x, we assume
that one may pass to the limit x= —~ inside the inte-
gral, to get

B= lim xf(x) = ——n—'I(~). (4.8)

L(x)= f(x')dx', x(0. (4 3)

We assume, for ease of writing, that xp&0; if not, the
upper limit in (4.3) should be changed to any convenient
value less than xp. The moment of 0. and the "mass
shift" are defined by

I=I(~)=lim I(x) (4.4)

and

L=L( ~)= lim L(x), — (4.5)

respectively, provided, of course, that the limits exist.

"We shall also assume that f(s) is real analytic so that o (x)
=Imf(x) is real; this is the case in the applications and we also
thereby simplify the wording in many places. However, from the
mathematical point of view there is no actual restriction involved,
since we may write a(x) =0,(x)+ia;(x) and consider a„and o;.
separately.

"x'0 (x')
zf(z) =n ' dx'.

/
QQ x

(4.9)

This is a simple USR for zf(z), since xo (x) is the associ-
ated spectral function. Conversely, if (4.9) holds, then

If B exists, we may write f(x) =[B+y(x)7/x, with

y (x) —+ 0 as x —+—~, so that if BWO, the integral (4.5)
for L(—m) is logarithmically divergent. It follows that
if both B and I(~) exist and (4.8) holds, then L( ~)—
can exist only if I(~)=0. [As shown in Appendix 3, if
I(~ ) exists, a sufficient condition that (4.8) hold is that
(x lnx)0 (x) is bounded as x-++ ~.7 A useful criterion
for determining whether or not I(0D) =0 is given by

Theorem Z. If f(z) admits a simple USR, then
I(ao )=0 if and only if zf(z) also admits a simple USR.

The proof is immediate: If I(~)=0, we find from
(4.6), using (x'—z) '=z '[—1+x'(x'—z)-'7 that
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and state some lemmas, whose proof is deferred to Sec.
IVA3

Lemma 1. (i) If C(~) exists, its value is zero. E(~)
exists if and only if C(~) exists. (ii) If I(x) is asymp-
totically non-negative or non-positive, then X(pp)
exists.

Lemma Z. If K(pp) exists, the integral

z " I (x')
gp(s) —=— dx', zg pr (xp) (4.19)

„x'(x'—z)

exists and defines an analytic function of s with deriva-
tive gp'(s) = f(z)

Lemma 3. If I(x) is asymptotically bounded away
from zero, then" gp( —~)=+~.

Proof of theorem 3. Define"

To proceed further, we write

I(x)= o (x')dx'+ o (x')dx',
0 A

(4.24)

and note that if o (x) is asymptotically non-negative (or
non-positive), we may choose A so large that the second
term in (4.24) is nondecreasing (or nonincreasing). Then
either I(op) exists or I(~)=& pp. The latter violates
the hypothesis on I(x), so that if I(~) does not exist, o

cannot be asymptotically non-negative or non-positive;
o (x) can also not be identically zero in some neighbor-
hood of x=+ pp, for then I certainly exists. Thus o (x)
must change sign infinitely often, as asserted.

That I(~)=0 is not sufficient for the existence of
L( pp) is sh—own by the following counterexample.
Take

g (z) = f(pi)dpp, zQ pr (xp) (4.20)

o(x) =x—a, 0&x&b
o (x) = o (b) (b/x) (lnb/lnx)' b& x (4.25)

&0

with the contour from xo to 2' not cutting the real axis
above xp. Then g(s) is analytic for sEpr(xp) and, as
follows readily from (4.20), the discontinuity of g(s)
across the cut is 2iI(x). Now assuage that I(x) is
asymptotically bounded away from zero. LThis includes
the cases I(pp)=real number&0 and I(pp) =+ pp.j
Then lemma 1 implies that X(~) exists and lemma 2

implies that gp(s) exists, with

From (4.20),
go'(z) = f(z)

g'(z) = f(z),

(4.21a)

(4.21b)

g(z) =gp(s)+const.

Now, from (4.3) and (4.20),

(4.22)

L (x)= —
g (x)— f(x')dx', (4.23)

so that, from (4.22) and (4.23), L( pp) exists if and-
only if gp( —pp) exists. But lemma 3 implies that
gp( —~ ) =+~ . Thus, if L( ~) exists, I(x) cannot —be
asymptotically bounded away from zero, and if I(pp)
exists, it must be zero, as claimed.

"The hypothesis cannot be weakened to include I(x), which are
simply asymptotically non-negative or nonpositive, which is
sufBcient for the existence of g0(z), by lemmas 1(ii) and 2. For
example, by taking for I(x) the positive distribution P &" n
&(b (x—n), one gets g0( —~ ) = —x ' g~ 1"n ', which is finite. An
I(s) which is an ordinary function and gives g0(—~) finite may
now be obtained by replacing b(x—n) with a smooth function
which is sharply peaked about x=e (n= 1, 2, ~ ~ ~ ) and is rapidly
decreasing as x ~ ~.

"We thank Dr. A. Martin for showing us the usefulness of the
function g(z) in problems of the kind that we are studying here.

and from (4.19), the discontinuity of gp(s) across the
cut is 2iI(x), as for g(s). Thus E(z) =g(s) —gp(z) is
entire and E'(s) =0 by (4.21a) and (4.21b), so that

dg'
p x'lnx'x'+maxi

which is readily seen to behave as ln ln~ x~ for large
~
x~.

It follows that gp( —pp) = pp, and hence that L(—pp)
= ~ . The fact that oscillations in o (x) are not suflicient
to ensure a finite L( pp) is apparent —from examples
(4.13a) and (4.13d). This completes the proof.

Note that the criterion for the existence of L(—pp)

based on the convergence or divergence of (4.16) is
quite consistent with theorem 3. On the one hand, if
I(x) is asymptotically bounded away from zero, e.g.,
if I(pp)=+ pp or I(pp) exists but is not zero, then
clearly (4.16) is at least logarithmically divergent. On
the other hand, the insufficiency of oscillations in o (x)
or of I(pp) =0 for getting L( pp) finite is also imm—edi-
ately apparent from (4.16):The I(x) corresponding to
(4.13a) and to (4.25) evidently lead to a divergent
right-hand side of (4.16).

3. Proof of the Lemmas

To prove lemma 1, consider the function

' a. (x')
Jg(x) = dx', A) xp.

A
Since

(4.26)

Jg(~)=pr f(0)—
"o.(x')

dg'
&0

we see that Jz(pp) exists. On integration by parts,
(4.26) becomes, using I'(x) = o (x),

Jg (x) =Eg(x)+ C(x) C(A), —(4.27)

With a= b(1+2 lnb)/(2+2 lnb) one finds

1(x)=I(b) (Inb/lnx), x) b.

For x&0, gp(x) LEq. (4.19)j is then proportional to the
sum of a bounded function of x and the function
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If h„(s) exists for some e)0, we may write

f(s) =Z(s)+ h„(s), (4.36)

we must have
I (oo )=~ oo . (4.39)

where E(s) is entire, and px the representation (4.36)
by requiring that all the subtractions in h (s) are
needed We shall only consider the case where E(s) is a
polynomial~ P (s) of degree m:

Then I(x) is, a fortiori, asymptotically non-negative or
non-positive and it follows as in the proof of lemma 1,
on integration by parts of (4.38a), that both Ez"(~)
and C"(~) exist, with C"(~)=0. By the same argu-
ments used in the proof of lemma 2, the function

f(s)=P (s)+Ii (s). (4.37)

Ke are now ready to state generalizitions of theorem 3,
for the case m/0 and for the case n=0, P„~O. For the
erst, more interesting case, we have

Theorem 6. If f(s) admits a spectral representation
with n ()1) needed subtractions, including an additive
polynomial (which may be zero), and I.( ~) is fin—ite,
then 0 (x) must oscillate at infinity.

A similar theorem for v =0 is
Theorem 7. If f(s) admits a spectral representation

with no subtractions and a nonzero additive polynomial
and o(x) does not oscillate at infinity, then I.( ~) is-
in6nite.

The shift in emphasis in the wording of theorem 7 as
compared to theorem 6 is related to the fact that, rather
unaesthetically, we have not excluded the possibility
that, if n= 0 and P AO, I.( ~) may be in—finite regard-
less of the properties of 0.(x). The same may be true if
e/0 and P AO; however, ifNWO and P =0, I.( ~)—
can definitely be finite if 0 (x) oscillates. "We note here
also that Martin has shown that, if x=0 in (4.36) and

~
f(s)

~

is bounded by A exp) s~
'" ', and if I(~) exists,

then I.( ~) cannot be —finite if I(~)&0." If e)1,
I(~) caeno/ exist in any case, since, by theorem 5,
I(x)=I„'(x) cannot even be bounded. After these
remarks, we consider the proofs of theorems 6 and /, for
the remainder of this subsection.

Proof of theorem 6. From theorem 4 we infer that

g.(s)—=~ ' Q-(k, s)I(k)dk (4.40)

exists and is analytic for spy (xo); here

Differentiating (4.40) with respect to s, using the
relation

(4.42)

It follows from (4.20), (4.37), and (4.42) that

g(s) =P-+i(s)+g-(s)
where P„~i(s) is a polynomial of degree m+1.

We may write g„(s) t Kq. (4.40)j in the form

g.(s) =g-'" (s)+g.'"'(s)
where

(4.43)

(4.44)

and

g-"'(s) =~ ' Q-(f, s)I(k)dl (4.45)

and integrating by parts, we obtain, using I(xp) =0 and
C"(~)=0 to drop the surface term,

(4.38a)
g &'&(s)=s. Q (k )I(5)dk (446)

has a limit as x + ~; we define, analogously to (4.17)
and (4.18) or (4.28),

Since Q„(g,s) may be rewritten as

and
C"(x)=x " 'I(x) (4.38b)

n (x) ~
—1Cn, (g)d~ (4.38c) we see that, correspondingly,

g„&'~(s)=R (s)+b(s), (4.47)
Now, if 0(x) does not oscillate, I(x) is monotonic for
large x and since, as just mentioned, I(~) cannot exist,

~ We do not consider the more general possibility of an entire
function as an additive term, since T-products are unique up to a
polynomial; i.e., if the T-product is not immediately well defined
as an element of S', it requires a subtracted spectral representation
and is ambiguous to within a polynomial. See Ref. 22; W. Giit-
tinger, Fortschr. Physik 14, 483 (1966), and references therein.

35 A simple example is f(s) =re'+', for which n=1, I' =0, and
o (x) =x sin(gx).

36 A. Martin (private communication). The proof is based on
use of a Phragmen-Lindelof theorem.

where R„(s) is a polynomial of degree e and b(x) is
bounded as x —+—~. From (4.43), (4.44), and (4.47)
we have

g(s) =&.(s)+&(s)+g-"'(s), (4 48)

where R„(s) is a polynomial of degree p=max(m+1, I).
We now prove that (4.39) implies that g(x) Land

hence, via (4.23), I.(x)j diverges as x —+—~; it suffices
to show that there can be no cancellation between the
divergent behavior of B„(x) and g„&"(x) in (4.48) as
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or

g„~'& (x) = (—1)"+'n(g)g"

g-"'(x) = (—1)""P(n)n"",

(4.49)

(4.50)

where g—= )x(, and

x ~—~. We note that we may choose A so large that
I($)&I(A))0 for t)A, if, say, (4.39) holds with the
plus sign. Then, for x&0, (4.46) may be written in the
alternative forms

Proof of theorem 7. If a.(x) does not oscillate, either (i)
I(pp)= &~, so that, a fortiori, I(x) is asymptotically
non-negative or non-positive, or (ii) I(po) exists, so

that, a fortiori, I(x) is bounded. In case (i), lemma 2

assures the existence of gp(s) LEq. (4.19)].In case (ii),
the boundedness of I(x) implies that gp(s) certainly
exists. As in the proof of theorem 6, for x&0, up to an
additive function of x, L(x) is a linear combination of a
polynomial P +q(x) and, in this case, a term Pp(q)g,
where g= ~x) and

n(g)=s. ' "IB) ~
d$,

]n+I (+r
(4.51)

-I(~) ~
df

p+p $+~
(4.52)

it follows that

n(rl) ~ po, g~ po. (4.53)

Similarly, since the integrands in (4.52) decrease
monotonically to zero,

P(n)~0, n~". (4.54)

From (4.48), (4.49), and (4.53) we see that, if p&n,
g(x) diverges like n(g)g" as x~—~, whereas, if
p&I+1, using (4.48), (4.50), and (4.54), we see that
g(x) diverges like g& as x —+—pp. An entirely similar
argument holds if I(pp)= —~. It follows, as in the
proof of theorem 3, that o (x) must change sign in6nitely
often, if L( pp) is to be 6nite. —

To prove the assertion that E~"-'(pp ) is infinite when
o does not oscillate, we replace e by e—1 in Eqs. (4.38)
and integrate (4.38a) by parts to get

Now the integrands in (4.51), with q regarded as an
index, constitute a family of positive functions which
increase monotonically to I(g)/P+' as q ~ pp, so that
by a standard theorem one may pass to the limit g= ~
under the integral sign. Since, as we shall show below,

Now, if (i) holds, Pp(g) —& 0 as g —& ~, as in theorem 6.
If (ii) holds, with ~I(x)

~
&~, then ~Pp(g) ~

&llIa '
&(in[(A+g)/A], so that again Pp(p)~0 as g~ ~.
Hence the Pp(q)g term cannot cancel the (at least
linear) divergence coming from P„+&(x) as x~ pp, and

L( pp) is infin—ite, as asserted.

V. CONNECTION WITH EQUAL-TIME LIMITS

In this section we shall explore the relation between I
being undefined and the existence and uniqueness of the
ETC (2.13). We shall show that an ambiguous I cor-
responds exactly to an ambiguous ETC in the sense that
the ET limit depends on how this limit is taken. Ke
speciGcally show for the examples discussed in Sec. IV
that one can have bm'& ~ with a nonvanishing ETC
defined by a suitable ET limit. The original ambiguity
in the ET limit corresponds to the ambiguities in prod-
ucts of Geld operators at the same point. Since the
models discussed in Sec. II all have the ETC equal to
such ambiguous Geld products, we shall conclude that
they do not in fact imply a divergent Bm'. This is just
the result that we have been after.

Let us de6ne the commutator function (for general

xp, x)

~(x)=—&~+ILJ.(*)I.(0)jl~+&—&~'I " lx'& (51)

It follows from Eqs. (2.1) and (2.23) that'r

jap(x) =g& &(x) C—& &(g—)gag—E/p &(x). (4—.55) E(x)= da n(a)A(x; a),
0

(5.2)

Now assume that (4.39) holds, say, with the plus sign.
Then, for sufficiently large A, both Ez" '(x) and
Jg"(x) are monotonic increasing. Since, by theorem 5,
J~"(pp) cannot exist (otherwise n subtractions would
not be necessary), then J~(~)=+ pp, so that, if
E~" '(pp) exists, we must have C" '(~)=+~, from
Eq. (4.55). But thenby t,he mean-value theorem,

Eg" '(x) =C"—'(f') ln(x/A)

for some fg(A, ), sxo that Eg" '(~)=+~ and the
assumption that E~" '(~) exists is contradictory.
Thus E~" '(pp) does not exist and, since E~" '(x) is
monotonic, E~" '(~)=+pp; this completes the proof.

where A(x; a) is the usual mass gu free-6eld commu-
tator function. The ETC E(x) corresponding to (5.1) is
obtained by smearing E(x) with a smooth function

f„(t) and taking the limit I -+ ~ in which f (t) +8(t). —
This procedure has been discussed in detail for arbitrary
spectral functions o (a).pp The result is that

(5.3)

'~ As before, we imagine that (5.1) is hrst continued to p=0.
The T-product (2.23) and the commutator (5.1) then have the
same spectral function.

88 R. A. Brandt, Phys. Rev. 166, 1795 (1968).



2230

where

with"

E, =

AND J ~ SVC«RBRAND TR. A

E =liim E~,»
n

(—1)"
( ) i

f'„(a'i)dg (7 9
)

(s.10)

xistsear that fpr any
n g converging „

real num er
to y in

It is cie . . )}of functions i
~

h osef„(i(, c)
sequence(fs( i,

f (59) isc, $1mp4h ch thelimit o

=0,
~ such that(5 4) with &("i c(.)

n +'

t) so thattransform of f") () .
the Fourier ra

y(~ ~ c) cosK

with

g is polyg is tempered,
pf

e

„tri ute» (5 )
h' h just thete™

terms w'
d the case ingi'e need one' .

5 3) so that
] consi er

'th ~=0 is prese t

(s.s)~(x)= —IA(x) i

„;,„,(s.1o)

it migh pp
h that ga(i() . .

h equence
unctions ga

therefpre exhi
&) suc . ;t suc a scpntinuous y.sl . Let us t er

(g (((; c)} for which
E„= da o (a)j„(a'").E=lim E„, E„= a o. (5.6)

i(; c)=c.2 llm dK cpsK g~

cpsK

onding momentV the correspon ingAs observe in Sec. I
00

r each sequen ce and is

0,'~00

(5.6) exists for ea
tof th c h

er hand, (5.6)
ET

—«/a

dent' thenuence-depe

—«a(((;c)=e "~
cos ((+(r

gu'u'
th

roved inro erties is pr

limi
rt

1

ew hi u ntandan
fined with (a)H

We can de neo«ach seq«ce
r any sequence

yI ftheETC 6 t g y
0

u

y p
'(") ""h

Thus we see
'

e
~ ~

or the exam 0 '"""' '"""'hwill not, o

q
ho thtt task is to s

this case one

'
e asize the insensi-

the I's are i e
'

e a ove
1 th f tio

It is per aps

si e,

to define the(5.11) used to e
ETC's are always use in
the form

"=2 d„...da u '/'cosa
00

moment isist. The regularize mdoes not exist. e m

IC„= a a '~' a'")=2 da cosi( f„((( .IC„= da a '" cosa'" f'„(a'~' =

(5.9)
t e -' (a)+J' (—ii)j of f whichll itis t ethe even part -', [f„~39Actua y,

' ' t e
the expressionoccurs in

dg ~
—ifc xk dxe *"'TA(x)B(0)=i dxe—

x A (x,0),B(0)]}. (5.12{TA (x)B(0)+5(xp) L x, , 5.12X

n side of (5.12) is we

mmun. M@th. Phys.40 K. Hepp, Commun. g.



177 ELECTROMAGNETIC MASS DIFFERENCES 223i

not, however, be the case for the individual terms on the
right-hand side. The ETC term can be de6ned by my
sequence f„(t)—+ b(t), provided that the T-product term
is defined by the corresponding sequence e„(t)=f „'dr
Xf (r). It might be that some sequences are more con-
venient to use than are others, say, for purposes of
saturation. But these considerations are independent of
the high-s behavior of F, for which only the existence of
sequence dependence is relevant.

We would now like to argue that the models of Sec. II
do, in fact, formally give ambiguous expressions for the
ETC (2.13), thus invalidating the implication that they
give Bm'=ao, according to our analysis above. The
point is that the ETC's are given in terms of local
products of field operators, such as p(x)p(x). Such
expressions are always ambiguous, as follows from the
Kallen-Lehmann representation, or ET commutation
relations, or perturbation theory. For our present
purposes, this ambiguity can best be thought of as a
dependence of the quantity lime s p(x)p(x+$) on the
way in which the j-+ 0 limit is taken. More precisely,
if r„($)—+„„„bt4&(t)in g', then

( I~( )~(*)le&=1 dr( I4(*)~(*+&)lp& -(&)

(5.13)

will depend on the sequence used. Even for free scalar
fields, a sequence fr„) can be chosen to give arsy value
to aly (diagonal) matrix element (5.13).

The intimate connection between the above $ —+0
limit and the previous ET t —+ 0 limit has been exten-
sively discussed in Ref. 38, where it was shown that
ETC's LJ(x),J'(x')]„=„.can be calculated as limits of
LJ(x; $),J'(x'; $')]„=„ for $, $'~ 0, where J(x; $) is
a nonlocal expression which converges to J(x) for t~ 0.
Such calculations give expressions of the form limy 0

XZ(P) rb(x)re(x+ $) for the ETC. For the t J,J]commu-
tators considered in Ref. 38, these expressions were
rather well behaved, but this need not be the case in
general, especially for

l J,J] commutators.
In summary, then, we have seen that the models of

Sec. II give ambiguous field products for the ETC
(2.13), that this corresponds to ambiguities in the
corresponding ET limit, and that this in turn cor-
responds to a nonexisting moment I. But this latter
circumstance is precisely the necessary condition for the
mass shift to be finit when the ETC does not vanish.
Ke therefore conclude that these models do rot imply
that bm'= &o, even if the ETC's (2.13) that they
involve are taken to be nonvanishing. We do not claim
to have shown that 5m' is finite in these models, but
only that its divergence cannot be concluded from Eq.
(2.6) and the nonvanishing of (2.13).

Finally, we note, on the basis of the example (4.25),
that the vanishing of the ETC [J,J] in a given model
seems, by itself, eo] to be sufficient to guarantee a
6nite &n'.

VI. EVIDENCE FOR OSCILLATIONS

Having indicated why an oscillating spectral function
is necessary in order that bm'&cc when I/O, we
proceed to investigate the empirical evidence for this
behavior.

Let 11I denote the forward Compton amplitude for
y+tt ~ y+ti, where tr is a hadron, and let o denote the
associated spectral function, with 3f regarded as an
analytic function of qs, q p being fixed. The possibility
that 0- oscillates receives direct support from experi-
mental and theoretical work on high-energy electron-
proton scattering, which yields information on the
electromagnetic form factor of the proton. This is
considered in Sec. VI A. In Sec. VI B we And indirect
support for this possibility from properties of high-
energy hadron-hadron scattering and a possible con-
nection between the Bjorken and high-energy limits
suggested by the JLD representation.

A. Direct Evid. ence

Experiments on electron-proton scattering at high
energies indicate that the electromagnetic form factor
of the nucleon G(gs) decreases very rapidly as the
momentum transfer q' tends to —~. A good 6t to the
data can in fact be obtained with an expomerstiatty

falling form factor4t ~

G(0')" expl: —a(9')'"] g~+" .
Likewise, the form (6.1) fits the 1V*EF transition form-
factor data. 4' There is by now a variety of theoretical
work related to the understanding of this behavior:

(a) The form (6.1) arises naturally in a model which
correctly describes the rapid decrease of the high-
energy, large-angle differential cross section for p-p
scattering. 4'

(b) If G(q') is analytic in the cut q' plane and
bounded by exp(b l

q'l '" ') (with b and e positive), the
form (6.1) is the maximal rate of decrease possible. It is
then predicted by a principle of "minimal interaction. "~

(c) The maximal rate of decrease permitted for
G(qs) in strictly local field theory, a generalization of
field theory to include fields which may not be tempered,
is given by (6.1).4'

' For a review, see S. D. Drell, in I'roceed&zgs of the Thirteenth
Annual International Conference on High-Energy 5'hysics, Berkeley,
1W6 (University of California Press, Berkeley, 1967), p. 85.

"For a recent experimental result, see D. H. Coward et al. ,
Phys. Rev. Letters 20, 1292 (1968); these authors find a best 6t
with G~expt —a(q')'~4), which also requires an oscillating ImG.
We emphasize (6.1) for convenience only; see also J.Harte, Phys.
Rev. 171, 1825 (1968); 171, 1832 (1968). The well-known dipole
form G~(q') 2 also fits the EXy data very well. The recent
experimental results I D. Imrie, C. Mistretta, and R. Wilson,
Phys. Rev. Letters 20, 1074 (1968)g on neutral pion electro-
production are also consistent with an exponentially falling transi-
tion form factor F~*~~. The dipole form does not fit these data.
Thus the exponential form factors seem to be the only ones con-
sistent with the usual notions of universality.

4' T. T. Wu and C. N. Yang, Phys. Rev. 137, 8708 (1965).
"A. Martin, Nuovo Cimento 37, 671 (1965).
"A. M. Ja8e, Phys. Rev. Letters 17, 661 (1966).
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I'IG. 4. General (non-seagull) dia-
gram describing photohadron scatter-
ing in order e'. The external photons
are attached to arbitrary hadron lines
h, and h;.

(d) The form (6.1) is consistent with the expected
asymptotic behavior of the solutions of a nonlinear
Bethe-Salpeter equation, incorporating the bootstrap
idea, whereas a wide variety of other possible forms is
xxot.4s The form (6.1) has also been obtained as a con-
sequence of a (highly simplified) model of an "infinitely
composite" nucleon. 4'

The above survey suggests that (6.1) may indeed
correctly describe G(q') as q' ~+~. However, if (6.1)
holds and if G(q') is polynomially bounded m the com-
plex q' plane, then, as pointed out by Wu and Vang43

and emphasized by Martin, ~ the spectral function
p(qs)= f G(qs+i0) G(q—' i0)5—/2i Necessarily changes
sign infinitely often.

Thus, it seems fair to say that an oscillating spectral
function is a strong possibility for at least one function
of physicaI interest: the electromagnetic form factor of
the nucleon. Furthermore, this possibility is of direct
import for our problem. First, one would then expect
similar behavior for the spectral functions associated
with the electromagnetic form factors of other hadrons,
such as the pion. Second, and more to the point, if
oG-mass-shell e6'ects are not dominant, one then ex-
pects that the Compton amplitude for, say, y+xr ~
7+s., has a high-q' behavior which includes a term
precisely of the type envisaged by the example (4.11)
and, correspondingly, gives rise to an oscillating spectral
function.

Consider the contribution 3f„„"& to M„„(q;p) arising
from all Feynman diagrams in which the photon is
absorbed by a virtual hadron h; with momentum k; and
electromagnetic vertex function I'„&'&(—q, k;) and
emitted by a hadron h; with momentum 0 and a vertex
function 1'„O'(q,k ). (See Fig. 4.) If, for large q, it is
permissible to replace each F(" with its value on the
hadron mass shell, then, using (6.1),

~„„(~i) (q p)~e—(~i+~i)(s ) (6.2)

up to a multiplicative function S„„&'»(q,p) whose
dependence on q is unknown, but which is unIikely to
cancel the exponential exhibited on the right-hand side
of (6.2).

For i= j, there may also be "seagull" contributions,
e.g., if h; has spin zero. These terms are directly propor-
tional to g„„and so not immediately expressible as
integrals involving electromagnetic form factors. How-
ever, they are algebraically related to 3f„„('&) by gauge

4' J. Harte, Phys. Rev. 165, 1557 (1968), and references cited
therein."J.D. Stack, Phys. Rev. 164, 1904 (1967),

invariance. Alternatively, we note that if in the com-
putation of the mass shift we use the appropriate gauge
Ls=4 in Eq. (2.10)5, these terms do not contribute at
aB. Thus, we have, effectively, "transition" vertex
functions being implicitly included:

(6.3)
ss 2

From (6.2) and (6.3) we conclude, in hght of the pre-
ceding discussion, that the indications that the spectral
function 0. osci11ates are indeed quite strong. 4'

The reader may wonder whether constraints on the
oG-mass-shell vertex functions due to gauge invariance
can imply divergences in the mass-shift expression
independently of current algebra. To see that this is not
the case, note that the Cottingham" formula expresses
the mass shift exclusively in terms of on-shell form
factors concerning which gauge invariance says nothing.
All our arguments can, in fact, be presented in terms of
the Cottingham expression. Furthermore, note that we
do not require that M itself be exponentially decreas-
ing, 4' but on1y that an exponentially decreasing term
survive in (6.3) so that the spectral function continues
to oscillate. For example, if M=ae'""+b(s'I'+i) ',
then the spectral function cr corresponding to the 6rst
term oscillates, although Ob, the one corresponding to
the second term, does not. In this case the mass shift is
6nite and the moment I=I,+Is is undefined, since I,
is undefined and Ib is zero.

B. Indirect Evidence

More indirect evidence for the possibility of an
oscillating 0 comes from an examination of this possi-
bility for the spectral functions associated with the
strong-interaction amplitudes describing hadron-hadron
collisions. Again a number of items are suggestive here:
(a) high-energy, large-angle p-p scattering, (b) Regge
theory, (c) general features of dispersion theory, and
(d) a possible connection between the high-qs behavior
and the high-s (on-mass-shell) behavior of scattering
amplitudes.

(a) Large-angle, high-energy p-p scattering can be
6tted5O with a form

do/dQ e 'sx,

where b& 0 and k&
——k sine, with k and 8 referring to the

c.m. system.
As shown by Martin, 4' under a reasonable set of

assumptions this rate of decrease is the maximal
allowed. Analogous to the case of the electromagnetic

4 The experimentally observed (Ref. 42) rapidly falling be-
havior for F~*g„ is just what one would expect from a similar
behavior for I'~ill ~ if our assumption that oG-mass-shell effects do
not wipe out the exponential decrease of hadron form factors is
correct.

4'%e thank Dr. M. Halpern and Dr. J. Harte for discussions of
this point.

'0 G. Cocconi et al'. , Phys. Rev. 138, 8165 (1965);J. V. Allaby
sx e1., Phys. Lettexs 25, 389 (1966); 24$, 156 (196'I).
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form factor, (6.4) is then strongly suggestive of an
oscillating spectral function p&(s, t)=(24) fA(&, &+&&)
—A (s, t—ie)], where A (s,t) is the scattering amplitude.

(b) The contribution of a Regge trajectory n(/) to
2 ($)$) llas 'tile fol'111 $4 i. If, as ls llsllally assumed, 44(/)

is real analytic with a nearest branch point at /=to,
s"&'& is analytic with the discontinuity across the cut
given by Lexp Rea(t)g sinLIm44(t) lnsj, which oscillates
if Ima(i) ls llot 'too slowly varying.

More interestingly, the repeated exchange of the
"Pomeranchuckon" is expected to give an exponential
function of (l)'"lns" while still more complicated
aspects of Regge dynamics are suggestive of an ex-
ponential function of (t lns)'~'. 42 In either case we are
dealing with an exponential function of the square root
of an invariant variable, just as in the prototype
example (4.11) where s corresponds to —q', and, cor-
respondingly, with oscillating contributions to the
spectral function.

(c) Independent of the above, from the general
viewpoint of dispersion theory the spectral functions
associated with A {s,t) might be expected to oscillate, as
emphasized by Eden, ~' since the point at inGnity is an
accumulation point of the branch-point singularities
associated with the opening of inelastic channels.

(d) The above discussion is concerned with the
asymptotic behavior of the on-shell amplitude A(s, t;
q'= 444', p'= ——M')=—A (s,t) with respect to the vari-
aMes s and $. More relevant for our problem would be
knowledge of the asymptotic behavior of a forward
scattering amplitude M(q; p)=A(s, 0; q', p'= —M'),
with s= —(q+p)', as the components of q become large.
No theoretical work appears to have been done on this
question. However, it is possible that Z(r) B(r), where
A {s,t)—+ R(s) as s ~ 4C for fLxed t and M (q; p)—+ 8 (qo')
as qo

—+ . Such a relation would follow from the
JI.D2024 representation with a smooth spectral func-
tion. '4 Even if the relation is not valid, the above survey
still indicates that oscillations in s actually occur. It is
then not unlikely that they also occur in qo'.

VH. ADDITION OF SCHWINQER TERMS

A. Retention of Finite Mass Shift

We now turn to the interesting case in which the
Schwinger term difference

»(q p)=S'+'(q'P) S"'(q' p) —(7 &)

5~ D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,
896 (1962); D. Amati, M. Cini, and A. Stanghcllini, ibid. 30, 193
(1963};S. Mandelstam, i'. 30, 1127 (1963};30, 1148 (1963);
V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martirosian,
Phys. Rev. 139, 8184 (1965);J. C. Polkinghorne, J. Math. Phys.
6, 1960 (1965).

52A. A. Anselm and I. Y. Dyatlov, Phys. Letters 24$, 479
(196/); V. N. Gribov, in I'roceed~ngs of the International Conference
on Particles end Fields, Rochester, TWAS (Wiley-Interscience
Publishers, Inc., Neer York, 19@').

'3R. J. Eden, IIigh Energy CoNsqons of Elementary Pcrtides
(Cambridge University Press, Cambridge, England, 1967}, pp.
182-183.

'4 R. Brandt and J. Sucher (unpublished).

defined in Eq. (2.2), does not vanish. Then hT will not,
in general„be covariant —to the extent of an additive
polynomial" E(q; p) ill qo. A finite 8m' could still be
obtained, provided that

»(q; P)=I'(q; p)+I'(q; P) (7.2)

T p,4(kik2, 00)=C p,4=constNO

and (by gauge invariance) one has

S t4,4(ki, k2, 0,0)= —C p~4.

(7.4)

(7.5)

Thus, whereas the photon electromagnetic mass shift

8p'=const d4q(q') 'M, 4(q, —
q, k, —k)4, (k)44(k)

certainly vanishes, the contribution to bp' from the
time-ordered product (7.4) is divergent. In this case
T p~q is given by the sum of a subtracted dispersion
integral (which vanishes when k4 ——k4=0) and the
quantl ty Cc„p&g.

The above example and the one in Sec. III involve
ill-deGned local Geld products and, as mentioned
previously, so do all the models discussed in Sec. II.
Thus, in view of the possibility (7.3), the existence of
(canonical or noncanonicalM) Schwinger terms in these
models does not affect the arguments of Secs. V and VI
for a Gnite pion electromagnetic mass shift.

"Ke are, as usual, assuming temperedness. See also Ref. 34.
T-products cannot, in fact, be de6ned in general for nontempered
theories.

«By "noncarionical" Schvringer terms me mean those which
arise from the need to define current operators as suitable limits of
field products (see Ref. 38), as opposed to those, such as (3.4),
which follow simply from canonical commutation relations.

where Ii is a covariant function of the type discussed in
Sec. VI and

»(q; f)= I'(q—; p). (7 3)

In this case, the unsubtracted relation (2.5) is unlikely
to be correct" and the ETC's in (2.6) are even more
1ilMly to be ill defined. Nevertheless, the behavior (7.2),
(7.3) for» is not unreasonable; it requires AM, rather

an ~~~ to vanish fol gp

The bad high-qo behavior for T envisaged above is
expected to occur whenever the commutators in (2.6)
contain divergent q-number quantities, such as products
of local Geld operators. As indicated in Sec. III, this is
the usual case in perturbation theory. In the model
discussed in Sec. III, although T did not vanish for

q4
—+ 04, the cancellation implied by (7.3) did not take

place, so that one still had bm'= ~.
A simple case where the cancellation {7.3) does occur

can be found in fourth-order quantum electrodynamics,
where the time-ordered product 2' tt~4(ki, k2,k4,k4)
associated with the photon-photon scattering amplitude
M p~4(ki, k2,k4,k4) satisfies"
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B. Retention of Previous Results

Having shown that a nonvanishing AS need not alter
our conclusions, it seems interesting to ask at this point
how a nonvanishing AS can exist without invalidating
previous good results. Explicitly, let us assume the
validity of the following: (a) usual current algebra;
(b) Weinberg sum rules L(2.16) and (2.1/)]; (c) soft-
pion theory; and (d) AS„,(q; p) WO. In this subsection
we shall show, by explicit construction, that (a)—(d) are
not inconsistent.

By (a) we mean the commutation relations proposed
by Gell-Mann, up to possible Schwinger terms. The sum
rule (2.16) is equivalent to the equality

(OILV..(ox),V, '(0)]IO&= &Ol CA,.(o,x),A~'(0)]IO&

To see the implications of (c},let us consider again
the successful calculation of bm' in a world with m =0
by Das ct af.~ As indicated in Eq. (2.14), from (a) and.

(c) it was found that

AT„„(q;0)= constLA„, v(q) —A„.~(q)] (7 6)

actually, Das e$ gf. wrote (2.14) with ~= 4, since in this
gauge the contribution of (3.5) vanishes. The form
(3.5), however, is highly model-dependent. More
importantly, we note that, as a consequence of (2.16},
the quantity (7.6) is itself Lorentz-covariant and gauge-
invariant. It follows that AS„„(q;0) is also Lorentz-
covariant and gauge-invariant, "so that one can write

AS„,(q; 0)= (q„q„—q'8„„)W (q') . (7.7)

Since AS is a polynomial in qo, W(q') must be a poly-
nomial in q'.

Now, if the individual terms in (2.7) are well defined
without subtractions, then AS will be independent of
qo, so that p.7) must vanish. We can arrive at essen-
tially the same conclusion even if AS is a (nonconstant)
polynomial in qo. Thus, since (2.14) Lwith (2.17)]gives
an accurate value for bm', we require that the contri-
bution of AS„„(q;0) to 8nP vanish. In view of the form
p.7), however, this requires that AS„,(q; 0) itself
vanish. I Conversely, (2.16) is a corsscqlencc of the
vanishing of AS„„(q;0).]

We thus see that (a)—(c) imply that the commutator
(2.13) must vanish in the soft-pion limit p=0. But, as
a general consequence of gauge invariance, one has'8

B(t)LJ (z),A, (0)]=i(t)LJ (x),Jo(0)]+cnu ber. (7.8)

By expressing LJ„(0,x),A i(O,x')] as a (finite) sum of 8

functions and their derivatives, we conclude from (7.8)
that (2.13) will vanish in the soft-pion limit if and only
if the difference

& +ls(&)l:v '(*),v"(o)]l +)-
& 'I "

I
'& P 9)

does. To ensure (d), however, we do not want (7.9) to
vanish in general.

~7 This is because JI/I= 7+5 must be gauge-invariant at P=0,
S1QCe fÃw=D.

A simple example of a commutator satisfying the
above requirements is

I V '(o, ),V.'(0)]=I:A '(0, ) A '(0}]
= eonstL V„'(0)V„'(0)—A „'(0)A,'(0)]&i & (x)

+c number. P.10)

Given p.10), one can derive (2.16) and, with the aid of

(a), (2.1'/), and assumption (c) one can obtain a good
value for bm' in the soft-pion limit. Furthermore, one
cannot argue that 8m' is divergent for physical pions,
because of the possibilities (7.2) and (7.3).

Although (7.10) is not being presented as a serious

proposal (we know of no Lagrangian which gives this
commutation relation), we note that its bilinear form is
similar to that found in a number of held theories. We
also note that the leading singularity of the right-hand
side of (7.10) is absent, as a consequence of (2.16). A
g-number Schwlnger term v&th some such form sccals
necessary if one wants to maintain both E(x)WO, (7.2),
and bm2& ~. It would be interesting to see if a Lagran-
gian model with the requisite properties could be
constluctcd.

VIII. SUMMARY AND DISCUSSION

A. Summary

The contents of the preceding sections can be
divided into a number of somewhat distinct topics,
including (a) asymptotic behavior of T-products and
commutator ambiguities, (b) finiteness of mass shifts
and oscillating spectral functions with nonexistent
moments, (c) Schwinger terms and subtractions, and

(d) purely mathematical results concerning spectral
representations.

(a) In Secs. II A and II B the arguments for a diver-

gent bm' in the usual models were reviewed. It was

emphasized that even in the absence of Schwinger terms
in (2.7) and subtractions in (2.5), these arguments rest
on the assumption that the high-qo behavior of (2.5)
may be inferred from the expansion (2.6). Now, if this
expansion is to be meaningful, the expansion coefficients
must be well dered, so that the q-number part of
commutators of the form C„=I BpJ„(0,x),J„(0)]must
be well deiined, at least for low values of m (n =0, 1, ~ ~ ).
However, since in the formal computation of such
commutators by use of canonical commutation relations
one encounters products of 6eld operators evaluated at
the same point, ambiguities are to be expected in the
de6nition of C, especially for N&0. In Sec. III these
remarks were illustrated by study of the electromag-
netic current generated by a charged pion field

I Eq.
(3.2}].In the absence of strong interaction the behavior

T(q; p) qo
' found by direct computation was seen to

be in accord with what is expected from (2.6) and

(3.6). However, in the presence of a Xp' interaction,
explicit calculation to lowest order yielded a T(q; p)
which no longer vanished as go~ ~, corresponding to
the fact that the g-number part of the right-hand side
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of (3.6) is now ill de6ned, to the same order in per-
turbation theory. Thus we see that even under very
simple circumstances, assumption (2.5) with the ex-
pansion (2.6) is not a reliable guide to the high-qo
behavior of T(q; p). Now, for the example at hand this
behavior is in fRct Kots8 thRn that inferred fI'on1 a
formal use of (2.5), (2.6), and (3.6), so that no progress
appeared to have been made towards getting a finite
mass shift. However, it was noted that the high-qo
behavior of T may also be better than that found from a
formal use of (2.6) and (3.6). In the above example the
breakdown of (2.6) is related to the fact that the
integral

provided that P.9) vanishes in the soft-pion limit. An
example of a commutator satisfying this requirement
was given. It was noted, in passing, that the 6rst
Weinberg sum rule, (2.16), in a world with m =0, both
implies and is implied by the vanishing of AS(q; 0); in
other words, (2.16) is equivalent to the gauge invariance
of ET„„(q;0).

(d) In Sec. IV, the connection between the existence
of a finite "mass shift" 1.( ~) [Kq. (4.5)] and the
behavior of the spectral function 0 (x) [Eq. (4.1)] and
the moment function I(x) [Kq. (4.2)] was explored.
The main results were theorems 3, 6, and 7:These may
be summarized by the statement that, unless I(~ )=0
[possible only if no subtractions are necessary in a
spectral representation of f(s)], the condition that
I.( ~) be finite requires that o. (x) oscillate at z=+ ~.
For the case where f(s) admits a simple USR [Eq.
(4.60)7, rigorous criteria were obtained for having
I(~)=0 (theorem 2) and for f(x) x ' as x-+—~
(Appendix B), and a simple practical test for deter-
mining whether or not 1.( ~) is finite —was found [Eq.
(4.16)]. A variety of illustrative examples was given
[Kqs. (4.10), (4.12), and (4.13)].

In the course of deriving these results a number of
auxiliary ones were obtained, which may be useful in
other contexts: Thus, a sufficient condition for f(s) to
satisfy a simple USR was found, which is weaker than
that usually stated (theorem 1). Also obtained were
a necessary and suflicient condition that f(s) admit a
spectral representation with e subtractions (theorem 4)
and a necessary condition that I subtractions be needed
(theorem 5); these conditions are more general than
those usually given, in that no specific assumption is
made for the asymptotic behavior of 0 (x). Such general-
izations are essential if one deals with oscillating o (x)
and dispersion Integrals which do not converge ab-
solutely. A theorem of Abelian type, described in
Appendix C, plays an important role in many of the
pI'oofs.

Iy=-', dqo'qo'(p+p) =s dxe '& *E„( ')x, (8.1)

B. Dl scU8810G

A number of further investigations seem desirable in
connection with and in continuation of this work:

(i) Some of the links in our chain of argument are
rigorous only in the so-called p= 0 limit; one should try
to increase the rigor of the arguments for the p/0 case.
Furthermore, the signiticance of the p=0 limit itself is
not completely clear. As remarked in Sec. II, con-
sideration of (bm')0 [Kq. (2.22)] might su%ce for a
resolution of the divergence problem, since it may be
argued' that this is the potentially most divergent part
of bm'. Now, for m /0, a variety of definitions of
"mass shifts at p=0" is possible, apart from the one
used in Ref. 1 and adopted here, since OG the mass shell
(p'4 —m ') the expression (2.9) is gauge-dependent.
As mentioned in Sec. II, a possible point of view towards
this situation, which unifies the results obtained in this
paper and the successful calculation of Das et a/. , is the

with E„(x)given by (2.13), is infinite. As shown by the
examples in Sec. IV, if such integrals fail to converge
in a more subtle way, namely, if the limit does not exist
even when inhnity is admitted as a value, then the
asymptotic behavior of T(q; p) can indeed be better
than predicted by (2.6). In Sec. V, it was shown that
the nonexistence of the integral (8.1) in this sense
(considered at p=0 for simplicity), or, equivalently,
the integral (2.25), corresponds precisely to the am-
biguities expected in the definition of an ETC in field
theory. That is, a particular regularization of the
integral (2.25), followed by a passage to the limit giving
a de6nite value to (2.25), corresponds to a choice of a
sequence of "smearing" functions f„(t) approaching
5(t), giving a definite value to the limit of (5.2) as t +0. —
Such a choice can obviously not determine the high-qo
behavior of T.

(b) The connection of these ideas with the question
of tlie colivelgelice of 815 [Kq. (2.9)]was illustrated by
study of (bm')0 [=(BnP)g; ], the mass shift at p=0,"
in Secs. II C and II D. This allows the use of the ex-
plicitly covariant formulas (2.22) and (2.23) for (In')0
and T»(q; 0) and permits a direct study of the relation
between the moment I of the spectral function 0 [Eq.
(2.25)] and the convergence of (2.22). In Sec. IV, it was
shown that if (8m')o is 6nite, it is necessary either that
I=0 or that Inot exist in the sense indicated previously
and that this be so whether or not subtractions are
needed in (2.23); moreover, if I does not exist, then it
is necessary that 0. oscillate. The evidence for oscilla-
tions was discussed in Sec. VI.

(c) In Sec. VII, the generalization of the preceding
results to include Schwinger terms 5„„ in 3f„„and
subtractions in T„„was discussed. It was pointed out
that a T„,which has bad behavior at high qo might be
accompanied by an S„„such that M„„=T„„+S„„has
good behavior and an explicit example of this was given
from fourth-order quantum electrodynamics. It was
also shown that a nonvanishing AS(q; p) could be
consistent with previous good results, based on current
algebra, the Weinberg sum rules, and soft-pion theory,
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following. The general expressions for I, F, and 8m~ in
the "real world" W are given, respectively, by (8.1), by

"dqo' l (qo', q; p) p(qo', —e p)

2x' go
—

go qo+qo

and by

bm'= const d'q —F (—q' I )
g2

Let us refer to these expressions in a world TV with
m =0 as I, P, and bm'. We write the quantities evalu-
ated at p=0 RSIQ, PQ, and (8mo)o. Since, in W, p=O is on
the edge of the physical region, we have (5m')Q=8mo
the complete gauge-invariant mass shift in 8".Then the
analysis of Sec. IV A shows that bN' is 6nite only if I~
is either zero or undefined (calling an infinitc value a
defined value). Suppose that we now assume that the
same is true in 8', namely, that 8ns2& 00 is realized by
having either I=O or I unde6ned. Then consistency
with the soft-pion calculation and with the usual models
is achieved if (n)&8' is finite in W because Io——0 and if
(P)5mo is finite in W because I is undefined. Of course,
these remarks are only speculations and further in-
vestigation is needed.

(ii) If the electromagnetic form factor G(q') de-
creases more rapidly than an inverse power as q' —+ ~,
then the spectral function ImG(q') necessarily oscillates
if also G(q') is polynomially bounded for complex q'. It
would be interesting to know to what extent the
hypothesis of R polynomial bound CRI1 bc wcakcIlcd

(ill) I't would bc qill'tc slgllificR11't 1f 't11c sllggcstcd
oscillatory behavior of the spectral function associated
with M„„(q;p) could be found by summation of a
suitable infinite set of Feynman diagrams, generated by
some Lagrangian model, as is the case for Regge be-
havior. Since this seems to require consideration of
nonplanar graphs, '4 it may be quite dificult, but some
further eGort in this direction is warranted.

(iv) Another approach to finding the behavior in
question by summation of graphs can be based on
considerations involving the behavior of the spectral
function p(N, a; p) in a JLD-like representation for

M»(q; p). This leads to the problem of an analysis of
this type of representation and computation of the
spectral function in perturbation theory, again a
di6icult problem, which is, however, of interest in its
own right.

(v) In principle, the ideas invoked here to resolve the
difBculty with radiative corrections to the mass opera-
tors may be able to resolve similar divergences en-
countered in the calculation of such corrections to
vector weak-decay amplitudes. This appears to require
that the ETC LVQ, V;e] be ambiguous. "

(vi) As mentioned in Sec. VII, it would be interesting
to see if a Lagrangian model could be found in which a

'8 C. A. Onalesi and J. Sucher (unpublished).

Schwinger term of the form (7.10) is present. Such a
term may exist even if it is not formally predicted by the
canonical commutation relations. "

(vii) We have stressed that the usual models of
current algebra give ambiguous 6eld products for the
t ij I]ETC. Tllc 11Rtllrc of 'tllc relevant RIIlblgllltlcs llas
only been studied in perturbation theory and in a few
simple soluble models. It is important for many pur-
poses to obtain a better understanding of the behavior
of such 6eld products. This behavior should, in particu-
lar, be directly related to the high-energy properties of
the coll espondlng theory.

(viii) Finally, we mention the importance of con-
tinued experimental investigation of hadronic electro-
magnetic form factors. The present data" are consistent
with both a dipole 6t and the exponentially decreasing
6ts that we have stressed. Although our analysis can
accommodate either type of fit, our (inductive) argu-
ments are much stronger if the exponential 6t is correct.
Thus an experimental clari6cation of this point would
be very helpful. Likewise, it is important to obtain
further confirmation of exponentially damped high-
energy hadron-hadron scattering amplitudes.

Assuming that results of the investigations suggested
above do not weaken our arguments, our suggestion
that the moment I is ambiguous but not zero, in
accordance with the nonvanishing of the ETC t j,J] in
the usual models, seems well founded. Ke conclude that
a determination of whether a particular model of
current algebra gives rise to a divergent mass shift
cannot be made by simply seeing if E„„, computed
formally, does not vanish.
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APPENDIX A: PROOF OF THEOREM I
COnSider f(S) analytiC in Ir(XQ)=LS~SQ(XQ, QQ)] Rnd

such that (i) f{s)~0 as s~ ~, SF~{so), and (ii)
f(QQ&iO) is bounded for x&xo. From (i) we infer that for
any positive numbers 8 and Q (with 8&2Ir) we may
clioosc Ro RQ(b, o) so large that

~fye'Q) ~«, z&zo, &&0&2~-~.

From (i) and (ii) we infer that f(s) is bounded for all s,
i.e., there exists 8~0 such tliat

i f(Ee") j &8, 0&8&2or. (A2)

By Cauchy's theorem we may write

f(l ) 1 "n(QQ')
f(s)= df'+ — dx', (A3)

2Iri es 1
—s or „x'—s

where Cs denotes a circular path of radius R& ~s(,
starting at 1 =E+iO and ending at f=E iO„and—
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term ln+,0) f(g—io)j. T-Lf(
l t l by(A3) s boun. ded in abso u e v

(A4)—M—s (2',o),
2gR —

/sf

& (~)l&~-' zl R) lc.=~-'

IC MAS~ D I I., F E RE N CEFLFC TROMAGNET

b(t)
df.„In(

Ms (02,8i)=—
I
f(Re') I

d~. fI, (&) f
&M&-i

, .e. b &M,For b($) bounded, i.e., b

"d
=M -'(lip —hxo),

res ectively, that forand (A2) it follows, resp, forFrom (A1) an
' res, fo

M (2g —b b)&.(2g—2b)

(A6)Mii(2g, 2g-—b) &ab, M, (~,O) &8b. L +o( )j
we see that J&(q)—+ 0 as ~ —+ 00.

J ' On dc6nlng ".(~)

Since

—b) M (2g b, b)+—M (b,O,Mii(2g, o) =Ms(2m-, 2g —b

we have, from (AS) and (A6), for R)Ro

(M (2g,O)
~
&2g~+ab.

as R~~ and, b0 tends to zcI'0 RsHence Ms(2s-, o) as
(A4), so does the first term in

1 "0(x')
dx,f(s)= lim-

ncides with Eq. 4.6).

(86)
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ON ASYMPTOTICIX 3:THEOREM
BEHAVIOR
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'
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j and I(x) be given byTheorem. Let f(s an

1 "0(h')
(81f(s)= c—h', 87)

DIX C: SOOME THEOREMS OPAPPEN: 0

l (a t) with ~Let f(x) be integrable in any interva, ' &a
and such that

x

(C1)

0 (x')dx'. (82)I(x)=

A sufhcient conditio n that

I3= lim xf(x) M. (x)= f(x')ch'

Rnd

~(~2 ni) =I(n~) —I(vi),
we may write, using $(f+g

I (n) =A(,~) II(~).-
Integrating (86) by parts, we get

"~(~,~),
. (~+~)'

mean-value theorem,

II(~)= :~(K~), K-(~,
r cn lied tol CDCC ClltCI'ion RppSince~ bg thC f l CDauchy convergcn
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8— vr (
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+x x — ' ve since I(~) exists, for x&0,

xf(x) = —g 'I(")+Ii(n)+I2(n),
where q== hi and

"~.(~)& (&)()= «, I.(~)=Ii 'lj

1l

hat J~ and J~ vanish as y —+ ~.YVC now prove t at

and that b (x) =
i
0 (x) i

x lnxthat I(~) exists an a = x~lnxexists ls a
(x)ho) is a bollll e
holds, then

—11
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theorem, an ana og or
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&a withe x~decreasing for x a,

X.(x)= f(x')g (x')dx'

S (~)=lim X.(h)6
~00
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