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The high-energy behavior of scattering amplitudes is investigated by analyzing the contribution from a
certain class of Mandelstam branch points in the complex angular momentum plane. We denote symbolically,
for example, by #P the branch point generated by #n-Pomeranchon exchange. It is shown that the totality
of the contributions from the branch points of the type X+nP (n=1, 2, .- -) gives an oscillatory behavior
to scattering amplitudes at high energies, and that it results in a simple modification of the one-Regge-pole
(X) contribution in the impact-parameter formalism. For the branch points of the type nX (n=2,3, ---;
X #P), the concept of an effective trajectory is introduced. High-energy proton-proton scattering at 90° is
explained by the effective trajectory generated by the branch points of the type (n—m)P’'+mw (n=2, 3,

ceesm=0, + e, ).

1. INTRODUCTION AND SUMMARY

T has been shown by Mandelstam! that for a certain
class of Feynman diagrams, poles in the complex
angular momentum 5 plane generate branch points.?
Gribov, Pomeranchuk, and Ter-Martirosyan® have in-
vestigated the branch points assuming a definite struc-
ture of the many-particle unitarity condition for
complex j. They have obtained the discontinuities on
the branch cuts corresponding to the formation of
several Reggeons in the intermediate state in terms of
Reggeon production amplitudes. Essentially the same
discontinuity formula has been obtained by Gribov,*
who has investigated the asymptotic behavior of a large
class of Feynman diagrams containing exact two-
particle amplitudes. It is of great interest to note that
the entirely different methods (the Reggeon-unitarity
method?® and the Reggeon-diagram one?) lead to the dis-
continuity formula of the same form.

Recently, the Mandelstam cuts have been discussed
in connection with various high-energy phenomena:
fixed poles at the nonsense wrong-signature points®
where dip phenomena occur, the polarization® observed
in 7—p charge-exchange scattering and the break in the
differential cross section of high-energy 90° proton-
proton scattering.”

The purpose of the present article is to investigate
the contribution from a certain class of branch points
to scattering amplitudes at high energies. We denote
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symbolically, for example, by #P the branch point
generated by n-Pomeranchon exchange. We consider
the following three cases:

(1) the total contribution from the branch points of
the type nP (n=2,3, --+),

(2) that of the type P’ (or w)+#P (n=1,2,---),and

(3) that of the type (n—m)P'+mw (n=2, 3, ---;
m=0, : -, n).

We have chosen P’ and , for simplicity of the argu-
ment, to represent even- and odd-signature trajectories
other than the Pomeranchuk one, which is assumed,
throughout the present paper, to pass through j=1 at
zero energy. The discontinuity formula derived by
Gribov* is utilized in our analysis.

Our results are the following:

(a) For case (1), whose contribution dominates
elastic scattering amplitudes at very high energies
(Jt|Ins>>1, £<0), the amplitudes oscillate as

cos[m(ap’(0)]¢|Ins/In Ins)24-0(1/In Ins) ].

This confirms the conclusion of Anselm and Dyatlov?
who approached the problem in a rather general way.
This oscillation is characteristic of the Mandelstam
mechanism of generating branch points and there
appears no oscillation for the summation of the Amati-
Fubini-Stanghellini type of branch points.

(b) The whole contribution of the branch points of
the type X+nP (n=1,2, - - -) results in a simple modi-
fication of the one-Regge-pole (X) contribution in the
impact parameter formalism. Using this result, it is
shown that the Schmid mechanism® of generating cross-
channel Regge poles is not essentially changed in the
presence of branch points.

(c) For case (3), we are led to the concept of an
effective irajectory, which is the envelope of the branch-
point trajectories.

8 A. A. Anselm and I. T. Dyatlov, Yadern. Fiz. 6, 591 (1968);
6, 603 (1968) [English transls.: Soviet J. Nucl. Phys. )
(1968); 6, 439 (1968)7. J- Nucl. Phys. 6, 430
9 C. Schmid, Phys. Rev. Letters 20, 689 (1968).
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(d) The 90° proton-proton scattering at high energies
is explained by the effective trajectory of the branch
points of the type (m—m)P'+mw (n=2, 3, ---;
m=0, -, n).

Although the main point of the item (a) is essentially
contained in the work of Anselm and Dyatlov,® we
present our version in Sec. 2 in order to fix our notation
and in order to make clear some detailed points for the
sake of completeness. Point (b) is treated in Secs. 3
and 4. In Secs. 5 and 6 we develop points (c) and (d),
respectively. Some additional remarks and discussion
are given in Sec. 7.

2. TOTALITY OF THE CONTRIBUTIONS FROM
THE POMERANCHUK SINGULARITIES

The elastic scattering of two spinless, identical par-
ticles is considered for simplicity. Our amplitude is
normalized as

()= ImA (s, 1=0) (21)
oot (s) =——1ImA (s, {=0), .
PV's
and the ¢-channel partial-wave expansion is
AG)=2 2j+1)fi()P;(z), (2.2)
=0

where s and ¢ are the usual Mandelstam invariants. The
momentum and the cosine of the scattering angle 6§ in
the s-channel center-of-mass system are denoted by p
and z, respectively. The corresponding ¢-channel quan-
tities are specified by the suffix £.

The discontinuity formula on the branch cut in the
complex 7 plane generated by #-Pomeranchon exchange
is given by Gribov*:

Afjn (t) = (]—fn) "2 sin (%’H‘j)BnATa---az (g‘a)_” (&)—-n-H ’
(J~ja) (2.3)

where
Fa=na(t/n?)—n+1, (2.4)
Ba=4r""(n—1)/n!, (2.5)
Ca=sin[§ma(t/n*)], (2.6)

a={d (t/n*)[a (t/n®)+ 2" (t/n?)/n*]}'2,
[ (w)=da(u)/du, o (u)=de(u)/d?] (2.7)

and the n-Reggeon production amplitude Ng.... has #
a(t/n?)’s as suffixes, a(f) being the position of the
Pomeranchuk trajectory. The discontinuity divided by
24 is denoted by Af;*(¢) and ja is the position of the
branch point. The factor due to the identity of the
Reggeons in the intermediate state is considered to be
included in the Reggeon production amplitude Ng...q.
The amplitude N,..., is real below the production
threshold and in particular for ¢<0. The formula (2.3)
is derived by the Reggeon diagram techniquet for
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|| <<u?, where u is the mass of the particle. We assume
the formula to be valid also for [{| Zu? One reason is
that the formula is independent of u and depends on ¢
aJone. Another reason is that the form of the expression
(2.3) is the same as the one derived by the Reggeon
unitarity method® which applies also to the region
[t] 2

The expression (2.3) for #=2 does not satisfy the re-
quirement® of unitarity that Af;»=2(¢) be singular and
vanishing at j=ja(f). The correct formula may be of
the form?

Afm=t(t)~c/[In(j— j2) 2,

which was obtained by Gribov, Pomeranchuk, and
Ter-Martirosyan by taking into account the unitarity
relation. This form differs from the expression (2.3) in
the contribution to the full amplitude only by the factor
In Ins at high energies. As the main contribution to the
full amplitude at high energies turns out to come from
large n, we take the expression (2.3) also for =2 for
the simplicity of the presentation. The form (2.3) cor-
rectly reproduces the pole contribution for =1 when
we identify 2wN,(f) with the reduced residue (%),
which is the usual one multiplied by gamma functions.

Now, the total contribution to the full amplitude (at
large s for fixed f) from the Pomeranchuk singularities
is expressed by

o 1 Jn
[A(S,t)]P=§5 AfM(t)——

— sinwrj

(2.8)

e—-itj

sidj. (2.9)

Strictly speaking, the formula (2.3) loses its validity
far away from the branch point. The main contribution
to the scattering amplitude, however, comes around
J=2ja(t). Therefore we will make no bad estimation if
we use the formula (2.3) for the whole integration
range. After a straightforward calculation we get

0 1 T n
[4(s,0) ]~ Y (—1)"20%a@N...o2% Inx -( ) xotln,
(e Inx.

n=1 n
(2.10)
where we have set
x=¢""% (2.11)
inat/n+1, (2.12)
and
a=a'(0). (2.13)

In order to calculate the summation, we make the
following approximations:

arva, (2.14)
1, (2.15)

and
Na...aQNa(o)...a(o)EN,.. (2.16)

These simplifications are allowed a posteriori because

10 J, B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967).
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for fixed ¢ the high-energy behavior turns out to be
dominated by large n. More precisely, the dominant #
will be shown to be approximately

no (|t Ins)12, (2.17)

and therefore
t/n?<1/Ins. (2.18)

Thus the argument of «(¢/#?) is close to zero for large s
and the expressions (2.14), (2.15), and (2.16) result.
Next, the » dependence of N, must be specified. Here
we simply assume the form

4n2N iyl (2.19)

where
v=7(0) (2.20)

and p is a positive constant due to the reality of N,. As
will become clear below, the result does not depend on
p in an essential way. Then we have

2 © 17 =« n
[4 (S,t)]pﬁz—ax Inx Y (— 1)n_( i ) (xet)in
o n

2 n=1 alnx
2a
=—zxInx F(xt), (2.21)
2p
where
w 1
F(x,t)= % (—1)"—emevin, (2.22)
n=1 n
e=mp/alnx, (2.23)
and
w=—atInx. (2.24)

We estimate the function F(x,t) by the Sommerfeld-
Watson transform

Flal)=14i / dn%@, (2.25)
where
o=In[ (e Inx)/mp] (2.26)

and T is the usual hairpin contour in the clockwise
direction. We approximate sinmn by ¢*"/24 (— e~%7*/24)
in the lower (upper) half # plane. This approximation
is justified because the saddle points of the integrand
n>~[w/(o=£im) ]2, whose neighborhoods give the main
contribution to the integral, are located far from the
real axis. [ The quantity in (2.17) is the real part of the
saddle points.] Then

F(x,t)~

c1
upper

1
dn — exp (irn—no—w/n)

° 1
4+ | dn—exp(—irn—no—w/n),
c n
lowler

(2.27)
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where the integration path in the first (second) term is
on the upper (lower) half # plane and ¢; is somewhere
between 0 and 1. Next we displace both the paths to
the real axis. This procedure is allowed because there
appears no singularity during the displacement. Using
the integral representation formula for the modified
Bessel function (of the third kind) of zero order, K,, we
obtain

F(x,6)>3" 2K o (20" 2 (c£1m)12). (2.28)
+

The asymptotic expansion of Ky(z) for 1<|z| is given
by
Ko(a)~(n/25 2~ [14+0(1/2)].  (2.29)

Thus the asymptotic form of the amplitude [4 (s,t) ]p
has the following expression :

[4 (s,) ]p=~C1(s,t) exp[— C2(s,t)] cosCs(s,t)+D, (2.30)
with

Cis,t)y~— i(Vw)ﬁs Ins (—at Ins In Ins)"V4(14-Dy),
g (2.31)
Cs(s,t)~2(—at Ins In Ins)2(1+Dy) , (2.32)
Cs3(s,t)~mn(—at Ins/In Ins)2(1+D;) , (2.33)
Dy=0[(In Ins)~2], (2.34)
D,=0[(In Ins)~2], (2.35)
D;=0[(Ins In Ins)—/2], (2.36)

and D is smaller than the main term by a factor of the
order (In Ins)—2. These expressions are valid for |{|<s,
1<Ins, and 1< |¢|Ins.

The result shows two interesting features. One is the
oscillation and the other is the exponential decrease
with respect to (]¢|Ins)Y/2. This confirms the conclusion
of Anselm and Dyatlov.? First we discuss the oscillatory
behavior. The oscillation originates in the sign change
of Afi*(¢) (< j») with respect to # and in the fact that
the main contribution comes from %« (|¢|Ins)¥2. In
other words, the dominant # increases as s increases and
the discontinuity changes sign as » increases by one
unit. Thus the oscillation comes out. In this respect the
reality of the production amplitude N,..., and the posi-
tiveness of {, for a1 are important. [See Eq. (2.3).]
The branch points found by Amati, Fubini, and
Stanghellini (AFS),? which in reality are located in the
second sheet, do not lead to an oscillatory behavior.
This is due to the lack of the sign change of the dis-
continuity. On the other hand, the exponential decrease
with respect to (|¢|1ns)Y/2 appears also in the amplitude
of Amati, Cini, and Stanghellini* which takes into
account the whole contribution from the AFS branch
points.

1D, Amati, M. Cini, and A. Stanghellini, Nuovo Cimento 30,
193 (1963).
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Anselm and Dyatlov® state. that the oscillation due
to the sign change of the discontinuities on the branch
cuts of the type nP (n=2, 3, -+ ) will be observed at
presently available energies. It seems to the present
author that there may exist still other possibilities. We
present our interpretation of the pp large-angle scatter-
ing data at high energies in Sec. 6.

3. CONTRIBUTION OF BRANCH POINTS IN THE
IMPACT-PARAMETER FORMALISM

Our impact-parameter amplitude®? a(,s) is defined by

1
o)=2[ sy 1oCppa), G
0
where
y=(=0)"%/2p. (3.2)
At high energies
1 00
a(b,s)~— / vdv Jo(b9) A4 (s,t) 3.3)
20 Jo
and
a(b,s)~fi(s) for 2j+4+1=2pb, (3.4)
where
o= (—1)12, 3.5)

In the first place we show that the function F(x,f)
defined in Eq. (2.22) has asimple integral representation
containing the Bessel function of zero order Jy.

1
Flah=3 (- 1)e ~erga

n=l1

=(—-e)/w dzw. (3.6)

€

One can verify Eq. (3.6) by expanding the denominator
in a power series with respect to e. Using Eq. (3.6)
and changing the integration variable, we get from
Eq. (2.21)

ne ™%
[AG, ]Pg_éla Inx
00 JO —
X/ bdb v . (3.7
0 exp (b%/4a Inx)+ (mp/a Inx)
Therefore,
[a(b,5) Jrtim—[exp (5/4a Inx)+ (mp/a Ing) . (3.8)
2¢ Inx

At first sight the second term mp/@ Inx in the bracket
in (3.8) might seem to be negligibly small compared
with the first term exp(82/4a Inx). In reality this is not
the case. The first term oscillates because of the phase
of x. The expression (3.8) without the term mp/a Inx is

2T, Adachi and T. Kotani, Progr. Theoret. Phys. (Kyoto)

Suppl., Extra Number, 316 (1965); W. N. Cottingham and R. F.
Pe1erls, Phys. Rev. 137 B147 (1965)
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just the one-Pomeranchuk contribution when we ne-
glect a ¢ dependence of y2(£){«(»~ . When we take into
account the ¢ dependence of Y2(£)¢4(»™" in the form

V(O =72, (3.9)
we have, for the one-Pomeranchuk term,
™
[a(8,5) Jp-pote=14
2a Inx
X / b'db’ exp[— (0')2/4a Inx]F (b',0), (3.10)
with ’
F(',b) =2—; exp{—[ 0%+ (0")2]/4r2} 1o (80" /2+%), (3.11)
7

where I, is the modified Bessel function (of the first
kind) of zero order. For bb'/2¢2>1

F (8, b)~(4bb'r2)—2 exp[ — (b—b')2/4r2].  (3.12)

In any case, the applicability of (3.8) is limited by
conditions corresponding to those for the formula (3.7)
or, which are the same things, the ones for (2.21). They
are | 4] <s, 1<Ins, and 1< | ¢| Ins. The energies presently
available do not meet these conditions. At higher
energies, where the contribution from branch points of
the type #P with large # dominates, the formula (3.8)
will become valid.

4. MODIFICATION OF THE P’- OR THE o-
TRAJECTORY CONTRIBUTION BY THE
POMERANCHUK SINGULARITIES

In this section we examine the totality of the con-
tributions from the branch points of the type P’
(or w)+nP. We denote the trajectory function of
P’ (or w) by B(f). The discontinuity formula for the
present case is obtained by slightly modifying the one
given by Gribov*:

Afr()=(—jn)"w sin[3r (—3(P—1))]
XBMI,Nﬁa---azfﬁ_lfa_n(ﬁ)—l (&)—n+1 )
(G~j») 41)

where

Jn=B o)+ na(t)—n, (4.2)
B=(8'[8'+2(c/)8"1/ (o/+n) ]},  (4.3)
a={a'[o/+2(8""t/ (a'+nB ) ]}12,  (4.4)
¢g=sininB(ty), for P’ (4.5a)
=cosirB(t), for o (4.5b)
fe=sinira(l;), (4.6)

P=+1, for P’ (4.72)

=—1, for o (4.7b)

to=[a'/ (&'+nB") I, (4.8)
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and
L=[8"/(«'+nB")J%. (4.9)

The Reggeon production amplitude is denoted by
Nga...a. In the above formulas the suppressed argument
of e and o’ (8 and ') is ¢y (%). B,’ has a slightly compli-
cated expression, but it is nearly equal to B, of Eq. (2.5)
for large #.

By the same argument as that given in Sec. 2, we are

led to the expression
2

. ay
LA (s,8) Jpr oy p2ei™ P MA——gd Ing

20%a
i( 1)+ 1 ( i )n+1 ttne)  (4.10)
X — n JR— xac atnc .
n=0 n+1\a Inx ’
where
c=p'(0), (4.11)
d=g(0), (4.12)
and
ta=siniwd for P’ (4.132)
=cosird for w. (4.13b)
Approximating

ac/ (a+nc)~a/(n+1),

which is allowed because the main contributions come
from large #, we have

. ay?
L4 (5,9) 1pr oy pze™™ PDIA——yd Ing F (x,0)

(4.14)
2p8a

where the function F(x,t) is the same as the one in
Secs. 2 and 3. The asymptotic behavior of the amplitude
[4(5,8) 1p+ (wy+p is almost the same as that of the ampli-
tude [4 (s,t) 1p. Projecting the expression (4.14) on the
impact parameter amplitude, we have '

_l 1r72sd—-1
JZa{d Inx
X[exp(8?/4aInx)+ (rp/a Inx) 1.

Here we comment on the Schmid mechanism? of gen-
erating crossed-channel trajectories. Kugler® has made
the suggestion that a crossed-channel linear (:<0) tra-
jectory generates a direct-channel trajectory 7(s) be-
having j(s)~+/s for large s. We show that this mecha-
nism is not changed in the presence of branch points.
For large s we have

: P—1
[a(b,s)]P'(w>+P’¥—eXP[%’i7r< : d)

P—1
[a(b,s)]P'<w>+P’¥—eXP|:%iﬂ< : d)

(4.15)

—| ,”.,y?. .S‘d_l
.J2a§d Ins

ool )
4a Ins 4a In?s alIns
X | exp(8%/4a Inx)+ (mp/a Inx) |2, (4.16)
13 M. Kugle:r, Phys. Rev. Letters 21, 570 (19685.
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where :
¢=0(1/In%).

Taking into account the expression (3.4), we find that
the Argand diagram shows a circle for

b2
|t etinta-3 -y 4]

4q In%s

=ir+2ur,

@.17)

that is to say, for '
j~(@/s) Ins. (4.18)

We note that the presence of the term mp/a Ins does
not change the essential feature of the mechanism.

5. AN EFFECTIVE TRAJECTORY

In this section we investigate the contribution from
the branch points of the type (n—m)P’'+mw with
n=2,3,+++,and m=0,1, - - -, n. For simplicity we con-
sider the case of the exchange degeneracy. The dis-
continuity on the branch cut of the type (n—m) P'+muw
is given by

Afrm()=(§— jn)"*x sin[Fw (j+m)]

X BnNn,ng‘l—”-mef_m (B)—n+1 b} (5'1)
with
Jn=nB{t/n*)—n+1
~ct/n+n(d—1)+1, (5.2)
$1=sin[37B(t/n) ], (5.3)
and
Ca=cos[FmB(t/n?)]. (5.4)

The amplitude for (n—m)P’+mw production is denoted
by Npm=N,nn(t/n?), and B=B(/#?) is defined in the
same way as in (2.7). The contribution to the full
amplitude from the branch point of the type
(n—m)P'+mw is given by

e—irj_l_ (__ 1)m

1 pin
Anm(s)== / A m (sl
2J) % sinmj

(5.5)
Substituting the expression (5.1) into (5.5), we have

1 T n
An.m<s,t>z<—1>nz7rzBNn,mzx1nx_(____ )
n\Bx¢ Inx
X §‘1~n+m§-2~ﬁxct/ne—=iwml2 . (5 _6)

We rewrite Eq. (5.6) into the following form:

1
A ()~ (—1)"Cp iz Iz _<
n

) wetln . (5.7)

24 Inx
with
Cn ,m= Cu,m (t/n2)

=22 Nn.m2(B)l—n§-1—n+m§- e iTmI2 (5.8)
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We assume that the summation Y ,-o" Cp,m can be
written in the form

Y Cu.mxCp"e™  for 1Kn, (5.9)

me=0

where C and p are positive constants, and f(») is a real
function of #. The approximation that C, p and f(n)
are independent of ¢ is justified a posteriori, because the
main contribution to the full amplitude turns out to

come from
ne~ —ct/(1—d) ]2, (5.10)
and therefore ¢/#? has approximately a constant value

t/n~(1—d)/(—c)~—1/2. (5.11)
For (5.11)
§1~0

and this zero produces a ghost pole. However, this
ghost pole is cancelled by a zero of the production
amplitude and this situation is taken into account in
the expression (5.9). We note that the expression (5.10)
for the dominant # is different from the corresponding
one (2.17) of the case treated in Sec. 2. The condition
1<n, is translated into the one for ¢ that

1<t (5.12)

Now, we have

Au(s)= 3 Anm(s)

m=0

1
~C(—1)"x Inx —(

) xotingif () (5.13)
n

29 Inx

Rewriting the summation Y »—1® 4 4(s,?) into a Sommer-
feld-Watson integral we have, for 1<s, the expression

LA (5,0 Jpr—o= Z\;An(s,o

i 20 (W) +ih(n)

~Cx lnx—/ dn —————, (5.14)
2/)r n sinTn
where

gm)y=—d'n—u'/n, (5.15)
o'=(1—4d) Ins, (5.16)
w'=—ctlns, (5.17)
h(n)=f(n)+3ir(1—d)n—3n(ct/n), (5.18)

and T' is the usual hairpin contour in the clockwise
direction.

Maximizing the function g(#) we have the estimate
(5.10). Due to the unknown phase function %(n) in the
integrand we can draw no conclusion on the nature of
the oscillation of the amplitude [4 (s,f)]p:—w. Taking
the contribution around Ren>n, we have a rough esti-
mate for 1< |¢] :

[A4(5,) Jpr—a~C's exp{ —2[—c(1—d)t]*2Ins}, (5.19)
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Fi16. 1. Plot of pole and branch-point trajectories. The parame-
ters are chosen as ap(t) =%¢+41 and Bp (#) =¢+40.5. The w trajec-
tory is assumed to be exchange-degenerate with the P’ trajectory.
The effective trajectory jess(#) is shown.

where C’ is a slowing varying function of s and ¢ apart
from a possible oscillation. The expression (5.19) is
valid for 1<|¢| and |¢|<s. The first condition comes
from (5.12) and the second one from the condition of the
usual Regge expansion (5.5).

We rewrite (5.19) into the form

[A (5,8) Jpr—oC'stets®) | (5.20)
with

Jett()=1—2[ —c(1—d)t]". (5.21)

Thus it is found that the totality of the contributions
from the branch points of the type (#—m)P’+mw has
the same contribution as that of the pole whose tra-
jectory is given by (5.21), if a possible oscillation is
neglected. We call this trajectory the effective trajectory
generated by the branch points of the type (n—m)P’
+mw. (Figure 1.) As is easily seen, the effective trajectory
is the envelope of the pole and the branch-point
trajectories:

ja=ct/n+n(d—1)+1, n=1,2,--..

This result is intuitively very plausible, as the high-
energy behavior is dominated by the right-most singu-
larities. In this respect the twisting trajectory discussed
by Srivastaval4 in the case a(0)1 is similar to our
effective trajectory.

6. HIGH-ENERGY PROTON-PROTON
SCATTERING AT LARGE ANGLES

The authors of Refs. 7 and 8 made analyses of high-
energy large-angle pp scattering in terms of multiple
Pomeranchon exchanges. Here we want to present a
tentative alternative. For other approaches see Ref. 15.

1Y, Srivastava, Phys. Rev. Letters 19, 47 (1967).

15 See, for example, P. G. O. Freund, Nuovo Cimento 56A, 1087
(1968); T. Yoshida, Kyoto University Report, 1968 (unpub-
lished); I. A. Sakmar and J. H. Wojtaszek, Nuovo Cimento 56,
92d(;‘9§68); M. Greco, Phys. Letters 27B, 234 (1968); Refs. 24
and 25.



177

In the first place we briefly justify the complex angu-
lar momentum approach to large-angle scatterings. We
consider the Mandelstam-Sommerfeld-Watson trans-
form.’® Then the Regge term is represented by
Q—;j—1(—2;) multiplied by the residue and the signature
factor. The cosine of the crossed-channel scattering
angle 2, satisfies at high energies

—Zgzs.
From the estimate
I'(—j)
0-ja(—z)mit— e m20[140(1/2)], (6.1)
rg—j

it follows that the singularities located far to the left
make no appreciable contribution. The function
Q_;—1(—2,;) decreases nearly one order when j decreases
by one unit. Thus we may be allowed to do with a few
singularities located to the right. Incidentally, we note
that the correct analyticity is always achieved by sub-
tracting from Q_;1(%z,) the superfluous cuts
(—2<2<—1 and 1<2;<3,), whose contribution can
be made arbitrarily small.

Thus we have, for the pole contribution, the form
(—22,)7® multiplied by the residue, the signature
factor, and the known kinematical factor. As for the
contribution from the branch points of the type
(n—m)P'+mw discussed in the preceding section, we
have the form C’(—2z,)%t1)  because the analysis in
that section is unchanged for |¢|>>1 under the replace-
ment s — — 2z, the reduced residue — the residue, etc.
(The condition |¢|<<s does not apply in the present case
because we do not use the usual Regge expansion.) The
branch points of the types #.P and P’(or w)+nP will be
discussed below.

Next, we summarize the main features of the experi-
mental data'™® of large-angle pp scattering. In the
present paper we are mainly interested in the gross
feature of the data and the break!” recently observed in
the 90° scattering will be briefly discussed in the next
section. There are some empirical formulas which fit the
data rather well. They are, for example,

do/dt=As2 exp(—p./T1) (Orear®), 6.2)
3
do/dt=3" B;exp(—a;5%p,?) (Krisch?), 6.3)
=1
2
do/di=3_ C;exp[— (ssind)/g;] (Allaby et al.l),
=1
(6.4)

16 §. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
17.C. W. Akerlof et al., Phys. Rev. Letters 17, 1105 (1966) ; Phys.
%{ev.7}59, 1138 (1967); J. V. Allaby et al., Phys. Letters 25B, 156
1967).
18 G, Cocconi et al., Phys. Rev. 138, B165 (1965).
19 J. Orear, Phys. Letters 13, 190 (1964).
2 A. D. Krisch, Phys. Rev. Letters 19, 1149 (1967).
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F1c. 2. The differential cross section of elastic pp scattering
plotted against s, both in logarithmic scale. The experimental
points are labeled by the corresponding value of ¢. Equal-# con-
tours are shown by dashed lines. The data are taken from Refs. 17
and 18. Not all the data are shown. The full line results from a
smooth fit to the 90° data of Ref. 17 (Akerlof ef al. and Allaby
et al.). The data of Akerlof ef al. are dense on the curve between
|¢#] =4.3 and 11.2.

do/dt=Dps?sin'0 exp(— p./To) (Etim-Greco?), ©5)

and
do/dt=Es~? exp[—C,(6)s”Ins] (Chiu-Tan?),

where

(6.6)

P1=Sin0,

B is the center-of-mass velocity of the protons, and
C,(8) is a known function of §. The formula (6.6) is the
lower bound of Chiu and Tan, and y=4% corresponds to
that of Cerulus and Martin.?® In addition to these for-
mulas there are ones connecting do/dt with the fourth
power of the electromagnetic form factor.

In any case the angular distribution shows an expo-
nential decrease with respect to sind or sin?, and the
fixed-@ distribution decreases exponentially with respect
to p or s. As we want to analyze large-angle pp scatter-
ing in the framework of the theory of the complex angu-
lar momentum, the behavior with fixed ¢ is important.
In Fig. 2 the experimental data!™'® (logdo/d¢ versus

2 E. Etim and M. Greco, Phys. Letters 26B, 313 (1968).

2 C. B. Chiu and C. I. Tan, Phys. Rev. 162, 1701 (1967).

B F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).

#T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965);
H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.

Letters 20, 280 (1968); T. T. Chou and C. N. Yang, Phys. Rev.
170, 1591 (1968).
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logs) are plotted. The GeV will be used for the unit of
s, t, and p. Data due to Cocconi et al.!® at large s and
|¢] indicate that the decrease with respect to s at fixed ¢
slows down. More precisely, the data at || =6.0, for
example, indicate that

A o555 for s=~15-20,
Axs'—s1  for s=50-60.

In this respect the formula (6.4) is unsatisfactory,
because it behaves at fixed ¢ as .

2
do/di~3" C;exp[—2(—1)1%2/g,]
7=

and goes below the data for s240. Of course one may
reproduce the data by adding more and more terms in
the summation. In this connection we note that the for-
mula (6.6) with y=1 shows a power decrease with
respect to s at fixed ¢.25 While the formula (6.2) shows
some systematic errors, the improved one (6.5) fits the
data well for §~90° in the energy region both below and
above the break.

The indication of the data is, therefore, that the large-
angle scattering is not dominated by a single singu-
larity at fixed ¢ for the present energies. In other words,
we may be now observing, with increasing s, transition
between singularities. For fixed ¢ (0<6<90°) the 90°
scattering is realized for the smallest possible physical s.
Therefore, the 90° scattering may probe singularities
located more to the left than those which the smaller-
angle scattering may detect. As is indicated by the rate
of decrease of the differential cross section around
6~90° for fixed ¢, the 90° scattering (55 |#| $20) is
dominated, at present, by singularities located near
j=~(—3)—(—6). The residues (or the discontinuities) of
these singularities [ j~(—3)-(—6)]must be larger than
those of the singularities situated around —357< 1. In
order to treat the smaller-angle scattering we need in-
formations about singularities around —3<7S1. At
present energies, however, the asymptotic expressions
given in Secs. 2 and 4 are not applicable and the domi-
nant contributions come from #P and P’(or w)+nP
with #=1-3, which introduces a large number of un-
known parameters. In the present article, therefore,
only the 90° scattering is analyzed. (See Fig. 1.)

The most powerful candidates for singularities near
jo~—3-—6 (55 |#| £20) are the branch points of the
type (n—m)P’'+mw, whose contribution to the scat-
tering amplitude is discussed in the preceding section.
Other singularities, for example, the branch points gen-
erated by p and/or 4, are neglected for simplicity. We
will show below that the singularities represented simply
by jet:() can, in fact, explain the rate of decrease with
no ad koc parameter.

Now, we examine the expression C’(—22,)##® with

% C. B. Chiu, J. Harte, and C. I. Tan, Nuovo Cimento 53, 174
(1968).

HARUICHI YABUKI

177

Jetz(?) given in (5.21). We neglect a possible oscillation
of C’ in the following analysis. For the 90° scattering

—5=3—4/(p"+2)

~2.2-2.8, (6.7)
and
In(—2z;)~1.5-1.7 (6.8)
for
1555560.
Therefore, we get
[4 (s,) Jomooe 2C' (— 22,) fo15(®)
~ (e In(—221) [8c(1-d)]Y2p
= Cl’e——pl2T , (6.9)
where
T~{21In(—2z;) [8c(1—d) 2}
~[41In(—2z,) ]
~0.17-0.15, (6.10)

with c=~1 and d>0.5 as suggested by various analyses.2
The parameter T is experimentally [ (6.2) and (6.5)]

To~T~0.158. (6.11)

Thus the agreement is surprisingly good.

Next we discuss the behavior with respect to ¢ or
0, at fixed s, near 6~90°. The form C’(—2z;)%ti(®
with 7ese(f) as given in (5.21) does not fit the angular
distribution of the data so well. The behavior seems to
be sensitive to the detailed positions of the singularities.
For example, we will show that the form (— 2z;)%f(®
exhibits an exponential decrease with respect to sinf
when we take for jeu(f) a slightly different form from
that given in (5.21). Namely, we take the form

oty = = ax(~ P+, 6.12)
Then for 1<s
A (S,t)&c’ (—— Zzt) Jeff(2)
gC',(_—'Z.Z't) az@'—“"l’(Z) , (6.13)
where
@' = (2p%)%4a, In6 (6.14)
(1 —_— z) 3/4 3+Z
V(@)= ln(z——) , 6.15)
In6 1—32 (
and

¥ (2)/sinf| = |¢(2)/ (1—2%)*2[ <1.006  (6.16)

for 0<2<0.3. We can certainly approximate the en-
velope of the branch-point trajectories by the form
(6.12) in some finite interval of {. Thus the behavior
with respect to ¢ or 8 seems to be sensitive to the de-
tailed location of singularities. In addition, we must
take into account the crossing symmetry (¢<>#) in a
precise treatment. Here we do not go into such details.

26 See, for example, C. B. Chiu, S. Y. Chu, and L. L. Wang, Phys.
Rev. 161, 1563 (1967).
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7. DISCUSSION

In the above analysis we have not taken into account
the modification of the trajectory functions «a(f) and
B() due to the presence of branch points. Namely, we
have not considered the type of diagrams depicted in
Fig. 3. The wavy line represents a Reggeon. According
to Gribov and Migdal?” the contribution of the diagram
of Fig. 3 gives, for |¢|Ins>>1, the asymptotic behavior

A(s)f)=Kse¢' —t (i Ins) U4, (7.1)

It is interesting to note that this expression shows an
exponential decrease with respect to (—¢Ins)!/2 in the
same way as the expression (2.30) does. The diagram of
Fig. 3 may be regarded as that of the three-Reggeon ex-
change with a particular choice for Reggeon production
amplitudes. Therefore, the inclusion of the type of dia-
grams of Fig. 3 into our analysis may lead to double
counting. (In this respect we mention the case where
the Pomeranchuk pole does not exist, but some other
singularity passes through j=1 at zero energy. If this
primary singularity other than a pole produces a scat-
tering amplitude behaving effectively as s*®, then the
discontinuity formula for the multiple exchange of this
singularity is the same as that in the case of the
Pomeranchuk pole.)

In Sec. 2 and Sec. 4 it has been shown that the to-
tality of the contributions from the branch points of the
type nP (P’ or w+nP) gives an oscillatory behavior to
the amplitude of elastic scattering of two identical par-
ticles. In cases of elastic scatterings of nonidentical
particles and of inelastic scatterings the situation may
be different. In these cases the Reggeon production
amplitudes on both sides are different and their product
may change sign as » varies in contrast to the case of
the elastic scattering of two identical particles. There-
fore the nature of oscillation may be different for scat-
tering amplitudes of nonidentical particles. In the other
respects from above, our argument in the preceding sec-
tions applies without change also to scatterings of non-
identical particles.

Next we comment on the works of Gervais and
Yndurain.?® One of their theorems states that the total
contribution to the scattering amplitude from the
branch points of the type #P or P’(or w)+#P should

¥ V. N. Gribov, in Proceedings of the International Conference
on Particles and Fields, Rochester, 1966, edited by C. R. Hagen
et al. (Wiley-Interscience Publishers, Inc., New York, 1967).

28 J, L. Gervais and F. J. Yndurain, Phys. Rev. Letters 20, 27
(1968) ; Phys. Rev. 167, 1289 (1968); 169, 1187 (1968).
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F16. 3. An example of the diagrams that give rise to modifica-
tion of the trajectory function. The wavy line represents a
Reggeon.

satisfy the following condition:

Eﬂ sup[In| 4 (s,t)| /Ins]=a(0) or B(0). (7.2)

This condition is satisfied by our amplitudes (2.30) and
(4.14). However, our result shows that the expansion

$90 (Ins)*® (In Ins)!® . . -

may be inappropriate. Incidentally, their criterion for
nonoscillation may not be satisfied in general by the
Mandelstam cut contribution.

Finally we discuss on the break!? observed in the dif-
ferential cross section of the 90° pp scattering. In the
analysis of Sec. 6 we have been able to reproduce the
gross feature of the data (§=~90°), but the question con-
cerning the break has been left open. The break appears
as a sharp break in the parametrization (6.4). On the
other hand, the formula (6.5) fits the data (6>90°) in
the energy region both below and above the break point,
namely, there appears no break in the parametrization
(6.5). In our plot of the datal”!8 in Fig. 2 (logde/ds
versus logs) the break may also be viewed as the first
manifestation of a possible oscillation with a rather long
period. By closely examining the phase function f(1)
introduced in (5.9) and estimating the integral (5.14),
we might be able to reproduce this oscillatory behavior.
However, this program is beyond the scope of the
present article. In addition, it is not clear at present
whether, at higher energies, the 90° scattering continues
to be dominated by jes:(f) or gradually becomes domi-
nated by other singularities.



