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e= —0.1912,

P= 0.212.

Even though g&, '/g„, '—10 ', the gq, term is not whereupon we obtain the numerical values
entirely negligible here, because of the interference
term, and because ~P~/n~

~
is somewhat less than 1 for

favored values of the mixing angles.

(84)

(85)

(86)

//1 P q I/M, ' 0 ~D'(s) = sI-

kP 1+a/ E 0 M(Pl
(82)

APPENDIX B: POLE-DOMINANCE LIMIT

Coleman and Schnitzer' write

D(s) =s(1—e)—M(P

for the inverse propagator of V„',and

where

Zp

aN={2LM2 (1+E)~ 27/3+}1/2

~Y L4(M2 yg 2)/3+71/2

P~= {2L(1+&)m '—M'7/3A}'/'

Pr = L4(m —M')/367'/'

(8&)

(BSa)

(BSb)

(BSc)

(8Sd)

The parameters of interest in Secs. III and IV are
then given by

for the inverse 2X2 matrix propagator of U„'and V„'.
Our version of U3 symmetry requires

(83)

6= (1+e—p') (mq' —m„').

mp4 3f'—m„'
tan~ay =

m 4M'' —M'

(89)

(810)
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Two procedures for unitarizing current-algebra results are studied and applied to the elastic E+p scatter-
ing amplitude. We note that if the current-algebra amplitude in the off-mass-shell limit is used as input,
the unitarity correction leads to good agreement with experiments on phase shifts and other low-energy
parameters.

I. INTRODUCTION

'T is well known that the usual current-algebra calcu-
- ' lations of low-energy parameters for scattering
processes performed either in the soft-meson limit
(g„~0) or in the off-shell limit (g„'~ 0) need extrap-
olation in the masses of external mesons together with
unitarity corrections. The unitarity corrections (correc-
tions arising because of the extrapolation in the s
variable) to current-algebra results have been studied
by several authors. Akiba and Kang' extrapolated the
m-x amplitude using elastic unitarity. They used the
dispersion-relation technique and assumed that ab-
sorptive parts in a 6xed-t dispersion relation are given
by the Chew-Mandelstam or by the nonrelativistic
eGective-range approximation, and estimated the cor-
rections due to unitarity from the symmetry point to
the physical threshold. Bhargava, Biswas, Gupta, and
Datta' (hereafter referred to as BBGD) unitarized the

K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).
~ S. C. Bhargava, S. N. Biswas, K. C. Gupta, and K. Datta,

Phys. Rev. Letters 20, 558 (1968).

results of soft-pion current-algebra calculations for low-
energy s-wave 7r-/V scattering, using the E/D formalism.
They replaced the /V function in the 1V/D formalism by
a single pole on the negative real axis, and determined
the strength of the pole by current algebra in the soft-
pion limit. Later, Datta, Gupta, and Varma' used off-
shell (q,'~ 0) current algebra to obtain am. -m amplitude
which is explicitly crossing-symmetric, and unitarized
this amplitude to obtain s-wave scattering lengths and
phase shifts. They also used the 1V/D formalism.

Elastic E+p scattering has been studied within the
framework of current algebra by several authors. 4 Roy'
obtained reasonably good results by including the con-
tribution from the weak-amplitude term. The purpose
of this note is to obtain s-wave E+p phase shifts and
other low-energy parameters by applying unitarity

' K. Datta, K. C. Gupta, and V. S. Varma, Phys. Rev. 173, 1549
(1968).' Y. Tomozawa, Nuovo Cimento 46A, 707 (1967); A. P.
Balachandran, G. M. Gundzik, and F. Nicodemi, ibid. . 44A,
1257 (1966); P. Roy, Phys. Rev. 162, 1644 (1967); 172, 1849(E)
(1968).
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corrections to the results obtained from current algebra.
We will use two methods to study these unitarity cor-
rections in the context of the J)//D formalism. First, we
use the method proposed by SBGD, where the E func-
tion is replaced by a single pole, and determine the
strength of the pole from current algebra in the soft-
kaon limit; and secondly, the method of Datta et al. '
will be used. Here the input will be the amplitude ob-
tained from current algebra by using PDDAC' (pole
dominance of the divergence of the axial-vector current)
and by including first-order corrections in kaon four-
momenta q~. The magnitudes of the corrections arising
from extrapolation in the masses of the external kaons
are not clearly known. The problem may be studied
using the method of Fubini and Furlan'; however, we
assume smooth extrapolation in the kaon mass and
study corrections arising from unitarity alone to move
the threshold to s= (m~+mx)'.

Our numerical results allow us to conclude that the
unitarizing process in which the E function is replaced
by the amplitude from current algebra in the oft-shell
limit gives significantly better results for low-energy
parameters and phase shifts in the low-energy region for
E+p scattering. We note that the good agreement for
phase shifts farther away from the threshold gives us a
better test of various procedures for unitarizing the
results of current algebra, rather than a comparison of
low-energy parameters only.

II. s-WAVE K+p SCATTERING PROCESS

Wc assume that the OG-mass-shell amplitude is an
analytic function of s in the complex s plane~ for each
fixed value of q~', and that it has cuts analogous to
those imposed on the physical amplitude by unitarity

and crossing. Thus for s-wave scattering in the I=i
channel, wc de6nc

go(e) =fo(e)/~(e),

fo(s) =e@«' sinbo(s)/q,

(2 &)

(2.2)

where p(s) is the appropriate phase-space factor, taken
as 1/Qs. We then write the amplitude go(s) in the form

g (e)=&(e)/D(e), (2.3)

ImD(s')
ds' !, (2.4)

g~h (S —$) (S —$0)J

where so is the subtraction point and s'h= (@&~+sex)' is
the point at which the unitarity cut begins. From clastic
unitarity we have

g
Ima(s) = — E(s), (2.5)

where q is the c.m. momentum in thc direct channel,
given by

Thus, from (2.4)—(2.6),

where E(s) has the cuts arising from cross-channel ex-
changes and D(s) has the unitarity cut. Assuming once-
subtracted dispersion relations for the D function, we
can ~rite

(s—so)
go(e) =&(e) I &+

(s—so)
g, (s) = ))'(s) (1—

2Ã

S(s') (Ls'—

(m~+esx)'jets'

—(t)1~ mx)' j}—'~')
ds

x+~z) ' s'(s' —s) (s'—so)
(2.7)

To estimate the magnitude of the unitarity corrections, we approximate the g function in two ways:
(j) We follow BBGD and approximate the cuts in the E function by a single pole on the negative real e axis:

R(qz')
$(s)=-

(s+no')
(2.8)

To 6nd g, wc use culI'cnt RlgcbI'R ln thc soft-kRon llnllt. Fllst, oui' assumption of sInooth contlnuRtlon ln g~
glvcs us

E(pre') =E(0).

Thus, if we choose so= m~ as our subtraction point, then the current-algebra amplitude which is evaluated at the

5 e assume a smooth extrapolation in the mass variable; in that case the o8-mass-shell invariant amplitude becomes the
physical scattering amplitude, and thus represents the usual Born terms that are fed in as the complete 5 function in the determi-
nantal approximation (Ref. 9) for the partial-wave amplitude.

' S. Fubini and G. Furlan, MIT Report, 1968 (unpublished).
~e are aware of the presence of kinematic singularities in this plane. However, the present calculations are done in the spirit of

our earlier work, Bhargava et cl., Ref. 1; see also V. Singh and B. M. Udgaonkar, Phys. Rev. 128, 182Q (1962); S. K, Bose and
S. N. Biswas, ibNE. 134, B635 (1964); D. P. Roy, ibid. 136, B804 (1964).



point s=m~' will give us
oc= Ref 0(&) I

s=~~'. etc'-0

go(~)=R"
~=~M e CK =O

E/(mN'+mop)

(m~')"'

R=R(0)=a,m~(mx'+mo'),

where a, is the current-algebra scattering length. We follow Roy4 and take

(2 9)

Finally,

fo(~) =co(~)/v'~

= a,me[(mN'+mo')/(gs) (s+mo')7

2s (mal+ma)mrs fa'
(2 10)

(s m~—')a,m~(m~'+m02)

l 2Ã (rn

(I &' (m—~+ m~)'5[s' (m—„—m )27}'12)
ds (2.11)

s' s'—m~' s' —s s' neo'

The pole position @so' is a parameter which we will vary between m~' and j.5m~'.
(ii) Following Roy, 4 we evaluate the off-shell current-algebra amp]itude by taking into account the erst-order

corrections in the kaon four-momenta. Thus, we include the contribution from the so-called "weak-amplitude"
term. s This amplitude has the characteristics of the input forces which wouM arise in the dynamical theory from
crossed-channel exchanges. In the determinantal approximation9 this input gives the Born term for the X function
in a unitarized S/D formalism. Hence we replace the X function by

E(s)=go(s) I cx
=(v')f ()I (2.12)

fo(s) is found from current algebra (CA), and is the partial-wave projection of the full amplitude from current
algebra using on the Inass-sheLL kinematics. Thus we assume smooth extrapolation in the kaon masses for the
invariant amplitudes. Again following Roy, we obtain

1 E+mpp p~ p„q'(E—m~)
(~)= '(-~+-.'q)-(W- -)(2+..) I

—"
4s fz'ma' 2W m~ 12Wm~

g.(~)' g.(~)' g.(I.*) ~+m~ q'(E —m~))+ ![2coE

—2m(W —m~)7—
Mg —m~ Mz —m~ Mr, .+m~ 2W 3W )

gg (Fg~)' 8+m~ ( 2(oE 2q' q2

q'! 1+ — !+-',(aE—-', (W—m~) 2m~-
Mr, e—m~ 2W l 3Mr, e' 3Mr, "i 3fy, *

q'(E —m~) (W+m~ 2 1~+ (q' —M~) ——
! . (2.13)

6W l 3Mr, e 3Mr, ~' 3)

The notation is the same as Roy's. ' In obtaining (2.13)
we have taken into account the contributions of the

8%e do not include a cr-term contribution. We follow P. Roy
(Ref. 4) and ignore the contribution from this term by invoking
Adler's consistency condition.

9 M. Baker, Ann. Phys. (N. Y.) 4, 27k (1958).

&, &', &0*(14OS), and I'y*(1385) intermediate states
only, neglecting their widths.

The integral for the D function diverges on account
of high-spin exchanges included in the E function; we
use a straight cutoff A„which we vary from 225m ' to
300m„'.In this unitarizing procedure the cutoff A, may
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"35" I"-1, 5

A

TAsLE I. s-wave, I= 1 E+p scattering length and effective range.

-30-

"25" Parameters

Sfunction replaced
by a single pole

mp2=m+ mp~=7mpP

S function
replaced by
oG-shell cur-
rent-algebra

amplitude
Experi-
mental'

Scattering
length a (F}

EBective
range rp (F)

—0.13 —0.17

—0.84 —0.61 0.57 0.5 ~0.15

—0.28 —0.29~0.02

Reference 11.

0
0 100 200 300 400 500 600

be regarded as replacing the pole position which ap-
peared in case (i).

III. RESULTS AND DISCUSSIONS

The scattering length a for the s wave in the I=1
channel and the effective range (rs) are given by

(gs(s)) '-
Refs '(s)=Re

~

=q cotb

LABORATORY KAON MOMENTUM 1N MeV/c

Fn. 1. s-wave E+p phase shifts in the I= 1 channel are p1otted
against the laboratory kaon momenta. The continuous line is our
result, and the +'s are the experimental points.

For numerical evaluation, the values of the various
coupling constants are taken from Roy (Ref. 4)."The
values of a and r0 are given in Table I, and those of the
phase shifts in Fig. i.

From the values of the scattering length and effective
range as quoted in Table I, it can be seen that replacing
the lV function with a single pole is quite unsatisfactory
in the present case. It results in a low value for the
scattering length and a wrong sign for the eGective
range, the pole position being taken at me' ——mg. The
value of the scattering length may be improved by
changing the Pole Position to mss=7mst', but the
effective range again has the wrong sign. The phase
shifts obtained also disagree with experiments. How-
ever, the numerical results are in good agreement with
experiments" if we approximate the E function with the
full off-mass-shell current-a1gebra amplitude. The phase
shifts thus obtained are also in good agreement with
experiments (Fig. 1). The best results are obtained for
A,=260m '. Variation of A, between 225m ' and
300m ' will change our results by 15%.

We have obtained the phase shifts up to kaon mo-
menta of 500 MeV/c. For larger kaon momenta, a
considerable discrepancy with experimental results ap-
pears, as in earlier N/D calculations of EN scattering. ~

Hence,

and

1
= -+-,'rsvp'.

6

gs(s)
a= R-

V's s p, (~sr+~x=),

(3 1)
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8 (gs(s)) '

aq' kgs)

8 (gs(s))-'-
t

Bs
= —Re

I - ~ ~g (sr+ z)', s'=s =(3 2)

' %'e take: f~=0.327; gg(A)=0. 68; gg(ZP)=0. 23; gg(I p*)
=0.42, and gg(F1*)=0.67. The values of gg(A) and gg(ZP) follow
from Cabibbo theory. For gz(Fp*) and gz(F&*) we use the widths
of the decays Fp* ~ Z'm' and F&*~ h.+, the Goldberger-Treiman
relation, and SU(3). For further details see Roy (Ref. 4)."S. Goldhaber, %. Chinowsky, G. Goldhaber, W. Lee, T.
Halloran, T. F. Stubbs, G. M. Pjerrou, D. H. Stork, and H. K.
Ticho, Phys. Rev. Letters 9, 135 (1962)."S.C. Agsrwal, Phys. Rev. 145, 1196 (1966).


