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Continuum Contributions to Vector-Meson Decays. II. Broken U, Symmetry

MICHAEL T. VAUGHN*

Physics DeparArient, Northeastern University, j3oston, Massachgsetts 021J5

KAMEsnwaa C. WALit

Argonne ¹tiona/ Laboratory, Argonne, I//inois 60439
(Received 29 August 1968)

We have constructed a model for estimating the continuum contributions to the propagators of the
vector mesons p, co, and @.With this model, we compute vector-meson decay rates predicted by a model of
octet-broken U3 symmetry based on spectral-function sum rules for the propagators. The model is con-
sistent with experiment, but present experimental accuracy is not sufhcient to distinguish clearly between
the pole-dominance form of the model and the model with continuum included.

I. INTRODUCTION

~ 'N most calculations involving single-particle states,
~ ~ it has been customary to make the narrow-resonance
(or pole-dominance) approximation to the particle
propagator, including in the inverse propagator a
simple imaginary part when required to take into
account the finite width of the particle. In the present
work, we construct a more detailed model of the con-
tinuum contributions to the propagators of the I"=0
members of the vector-meson nonet. In this model the
continuum (in the inverse propagator) is represented
by a dispersion integral, with absorptive part given by
the product of a known kinematical factor and. a smooth
cuto8 function. In addition, we make a simplifying
assumption about the contribution of the three-pion
continuum to the 2&2 matrix inverse propagator which
describes ~ and Q; this assumption is motivated by the
observed suppression of the decay p —+ p+s.

With this model, we compute corrections to the pole-
dominance approximation for the decays

(1) neutral vector meson-+ lepton pairs,

(2) P -+ X+K,
(3) a),y -+ n'+y,
(4) s'~ V+V.

As it turns out, the eftect of the continuum are not
dramatic (of order 25% at most), but large enough that
pole dominance can give a distorted view. Especially in
view of the colliding-beam experiments and the possi-
bility of the precise measurements of some of the above-
mentioned decay rates, we think that these effects are
important to know.

We are concerned particularly with the predictions of
broken U3 and SU3 symmetry, which are obtained from
our model by imposing two conditions: (i) The spectral
functions of the propagators are required. to satisfy
octet-broken U3 sum rules of the type discussed recently
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by Das, Mathur, and Okubo' and by Oakes and
Sakurai, ' and (ii) vertex functions which appear are
taken to have minimal dependence on momentum, and
the associated coupling constants are required to
satisfy exact SUS symmetry.

We find that the symmetry model thus constructed
leads to predictions consistent with experiment, pro-
vided that (i) we choose the symmetry-breaking condi-
tion which corresponds to a Gell-Mann —Okubo-type
relation between the inverse masses (squared) of the
vector nonet, rather than between the masses (squared),
and (ii) the p-meson width is between 110and 130 MeV.
We also find that the continuum effects are not large
enough to alter the conclusions of Sakurai' that Wein-
berg's second sum rule' (with no symmetry breaking)
for the SU3 spectral functions cannot bemaintained.

In Sec. II, we discuss the spectral-function sum
rules for the propagators of a set of vector fields V„
(@=0,1, , 8) which are assumed to be proportional
(with constant of proportionality independent of u)
either to a set of currents which satisfy the U3 algebra
of currents or to a set of fields which satisfy the U3
algebra of fields. We characterize broken U3 symmetry
in terms of these sum rules.

We then introduce our model for the vector-meson
propagators; in Sec. III, we give our p-meson propa-
gator, and in Sec. IV, we give the 2+2 matrix propa-
gator which describes ~ and qb. In Sec. V, the numerical
results of the model are presented. In Appendix A, we
collect together the formulas for the decay rates
predicted by our model; in Appendix 8, we discuss the
pole-dominance limit.

II. PROPAGATIONS AND SPECTRAL-FUNCTION
SUM RULES

Consider the propagators

(2.1)

'T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
4Ã (1967l.

~ J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967); R. J. Oakes
and J. J. Sakurai, ibid. 19, 1266 (1967).' S. Weinberg, Phys. Rev. Letters 1&, 507 (1967).
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1 1 (o tos(x)
o"(s)=-

l +,"(.))sz,
s—x&

(2.3)

wllei'e the spin-zero specti'al function o's (K) is riot
present for.the 6elds which are coupled to the conserved
currents'

Weinberg's first sum rule' requires

(at'{a)
+~s (.) Id.—Cb. .

In the present context, the propagators that wc con-
struct are normalized according to Eq. (2.4) to ensure
thRt thcsc pxopRgRtols lndccd dcscIlbc 6cMS which Rlc
proportional to currents (or fields) satisfying the Us
algebra. In particular, we define the normalization of the
field V„s by the condition (2.4) and a baryon current

for a set of vector fields: V„(o=0 1 ' 8) which are
supposed to be proportional (with constant of propor-
tionality independent of a) either to a set of currents
which satisfy the U~ current algebra or to a set of 6elds
which satisfy the U3 algebra of 6elds.

F s(s) and G~'(s) have the standard spectral repre-
sentations

1 or"(x)
F'(s) = —dx,

DI. y-MESON PROPAGATOR

For th inverse a or f V 'we writee pl opRg t 0 p,

t Fss(s) j-'=—D(s) =s[1+sr(s)]—M', (3.1)
with

p(s'}
sr(s) =-. -ds',

s„.m s"(s'—s)
(3 2)

(b) Octet breaking for g' —+ 0:The spectral functions
satisfy the sum rules

p"(x)
d«= A b"+A'c"+B(b"3"+3 '8") . (2./b)

K

An octet-singlet mixing term, proportional to
(Ps3"+ii"b"), is not present in (2.7a) due to the
assumption (2.6).

That the underlying symmetry is supposed to be U3
rather than SUB is indicated by the absence of a term
proportional to b '8" in the sum rules. We do not always
insist that the octet-broken U3 sum rules be satis6ed,
but we find that (2.'/b), in particular, is not inconsistent
with experiment. Octet breaking of SU3 alone we do not
check, since we do not consider here the Z* (moreover,
the sum rules for nonconserved currents have addi-
tional, unknown contributions from spin-zero states).

In the narrow-resonance approximation, (2.7b)
corresponds to octet breaking of U3 in the currcnt-
mixing model of Coleinan and Schnitzer. ' Note, how-

ever, that (2.6} cannot be satisaed in this approxima-
tion, since it would lead to no mixing at all.

U3 symmetry is implemented by imposing relations
between the coupling constants of V„' thus normalized
and those of the V„' (@=1, , 8).

We assume that SUg is exact for s—+~, in particular,
that'

and choose the phenomenological form~

(s—4m ')"'( n' )'p(s) =)i
sl/2 (v+rrs

(3.3)

limsF"(s) =0. (2.6)

We should also like to require that the breaking of U3

be pure octet. This requirement can be imposed in one of
two (inequivalent) forms'.

{a) Octet breaking for g'~oo: The spectral func-
tions satisfy the sum rules

p '(x)dx= Sb"+S'c's, (2./a)

wherec~ =d' '(a b=i '8) and 0 otherwise.

'It can, of course, always be arranged for the 2&2 matrix
lim, „sF~~(s) (u, b =0, 8) to be diagonal along with F'ib'(0); denote
the fields for which this is the case by V„0 and V™„'.The physical
content of the assumption is that (i) V„0 and V„8 are the singlet
and octet 6elds {proportional to the baryon and hypercharge
currents, respectively) in the physic@/ Ue algebra, or (ii) V„
couples directly to the isoscalar electromagnetic current and V„o
does not. We 6nd below that this assumption is consistent with
experiment; an alternative, in which dLF's{s)g/ds is diagonal at
s= 0 and a mixing term is allowed in Eq. (2.7a), is not

where v=s/4sm s—1. In 5-matrix language, D(s) is a
phenomenological D function for p-wave sr-sr scattering,
in which the left-hand cut of the paxtial-wave amplitude
has been approximated by a double pole, and the
inQuence on D of inelastic cuts has been approximated

by a linear function of s.s
For 6xed cuto6 parameter o.', the constants ) and M'

are adjusted to 6t the mass and width of the p, de6ned

ReD(sss, s)=0, (3.4)

ImD(sss, s)
I',= . (3.5)

sss, ReD'(srs, s)

' S. Coleman and H. Schnitzer, Phys. Rev. 134, 3863 (1964);
N. Kroll, T. D. Lee, and S. Zumino, ibid. 157, 1376 (1967).The
U8 version is described in Appendix B.' Thus our model can be regarded as an attempt to understand
co-p mixing entirely in terms of low-mass intermediate states.

~For a'-+~, this reduces to the propagator considered by
S. %'. Lee and M. T. Vaughan, Phys. Rev. Letters 4, 578 (1960);
see also W. R. Frazer and J. Fulco, i'. 2, 365 (1959); 117, 1603
(1960); 117, 1609 (1960).' The E-E cut in particular is small, and its inhuence is weB
approximated in this way for the energies under consideration.
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TABLE I. Computed values of dimensionless coupling constants and branching ratios for several values of cx and &p.
Here I'(co —+ 3~) is taken to be 10 MeV, I'(p ~ 3~) to be 0.4 MeV.

Fp
(MeV)

100

120

CX Zp

5.0 1.220
10.0 1.176
20.0 1.142
50.0 1.106

100.0 1.086
200.0 1.073
500.0 1.062

(Pole model) 1.0
5.0 1.264

10.0 1.212
20.0 1.170
50.0 1.127

100.0 1.104
200.0 1.088
5oo.o i.o75

(Pole model) 1.0

3f
(MeV)

702.7
722.4
735.5
746.3
751.3
754.6
757.1
765.0
692.3
715.2
730.3
742.9
748.8
752.6
755.6
765.0

0.1338
0.0665
0.0422
0.0306
0.0272
0.0257
0.0247
0.0248
0.1611
0.0795
0.0503
0.0365
0.0325
0.0306
0.0295
0.0297

gcopm /4r

0.3363
0.3528
0.3644
0.3710
0.3723
0.3725
0.3723

0.2780
0.2935
0.3045
0.3108
0.3120
0.3121
0.3119

0.1217
0.1285
0.1333
0.1361
0.1366
0.1367
0.1366

0.00039 0.0099

I'(cu ~ w's)/1'(cy ~ 3w) gyp '/47r 1'(y —& w'y)/r (@-+ 3~)

0.1767 0.00042 0.0126
0.1854
0.1915
0.1949
0.1956
0.1957
0.1956

The renormalized inverse propagator D,(s) of the p is
characterized by the requirement

Evidently,

where

ReD'(m ') =1.

D, (s) =Z,D(s),

Zp ' ——ReD'(mp').

(3 6)

(3.7)

(3.8)

The p-wave vr-m. scattering phase shift is given by

tan8(s) = —ImD(s)/ReD(s), (3.9)

from which we can compute the p-wave scattering
length

4m 's'12

where V=&o,g. Then the decay rate for V-+ 3s is given

by

F(V-+ 3m.) = (f,'/4~) (gyp. '/4m. )p3 (mv')
/24m. my'm, (3 13)

where p3 (s) is the 3n. phase-space integral computed
using the inverse p-meson propagator Z, D(s) and
including interference between p bands, and f,'/4m is
determined from the p width (we neglect momentum

dependence at the p-x-m vertex beyond that contained
in the propagator). The decay rate for V—&or'+y is

given by

Gyp = llm tanh(s)
s-+4m (s 4m 2)s/2

(3.10) F(V-+ ~op) =rs(f 2/4~) —
&(gv ~/4s)(my2 —m 2)~

/16m my, (3.14)
We give in Table I the p-wave scattering length

computed for various values of n' and 1„together with
the scattering length

4m''m~'I'p
~11

(m '—4m. ')'"
(3.11)

deduced by extrapolating a p-wave Breit-Wigner
formula to threshold. We remark that hard-pion
current-algebra calculations' (which are based on pole
dominance) give au 0.030—0.035 for I', 115—120
MeV. We also give the values of M and Z, computed
for these values of n'.

We use the modiied p-meson propagator to extract
numerical values for the co-p-m and p-p-m coupling con-
stants, and predict the branching ratios for co~ n.o+y
and p-+~'+y according to the model of Gell-Mann,

Sharp, and Wagner. "We write the V-p-x' vertex as

(gv,./m. )e„g„„p„ypp, (3.12)

9 R. Arnowitt, M. I'riedman, P. Nath, and R. Suitor, Phys. Rev.
Letters 20, 475 (1968); Phys. Rev. 175, 1802 (1968); 175, 1820
(1968); this work contains references to earlier calculations.

' M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

where a= 1/137.
Numerical results for the dimensionless coupling

constants gy, '/4n. and for the branching ratios
F(V~ n. y)/F(V-+ 3~) are given in Table I for several

values of u' and I;; in this table, F(&o —+ 3~) is taken to
be 10 MeV and I"(P —+ 3s) is taken to be 0.4 MeV. It is
evident that, within the framework of the Gell-Mann-

Sharp —Wagner model and the current experimental
value (10.5& 1.0)%" for the ratio of ~-+ F07 to
~—+3m, a p width somewhat greater than 120 MeV is

preferred.
The modified p propagator given here is also relevant

to the pion electromagnetic form factor and the p decay
into lepton pairs; we have discussed this elsewhere. "

IV. aa-P PROPAGATOR

For the inverse propagator of fields proportional to
the hypercharge and baryon currents F„and X„,

' A. Rosenfeld et al. , Rev. Mod. Phys. 40, 77 (1968).
"M. T. Vaughn and K. C. Wali, Phys. Rev. Letters 21, 938

(1968); see also G. J. Gounaris and J. J. Sakurai, i'. 21, 244
(1968).
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respectively, we write

D(s) =SDo(s)Sr

I"""(s) ~"'($)

p Fw($) p r F($)
(4.1)

generally choose n=3, which makes the integral 0(s ')
for s—+~, and allow the cutofI' parameter so to vary. l3

The renormalization matrix S is to be chosen so that
the propagators satisfy steinberg's irst sum rule,
Eq. (2.4). If

(4.6a)

where S is a renormalization matrix to be discussed
below. D, (s) has the form

Do(s) = s[l+oo(s)]—Mo',

//Mo/o' 0

E O M,„oi

and oo(s) is given by a dispersion integral

(4.2)

(43)

I& o—(o)1/ogl/' p 0 (o)l/og+

(a= const); it is thus appropriate to take

0

(;)»oM, -/M)

(4.6b)

(4 7)

1 y(s')
oo(s) =— ds'.

s'(s'- s)
(4.4)

f s '0

p~~($) = l ~'p,.(s)l
Es $0

(4.5a)

/' so 5"
pr//($)=&r~~po-($)~

~

=p~r($),
($+so)

(4.5b)

so

Es+so)

(s—4nox')o/' nx'
(4.5c)s'" vx+nx'

with 8 functions vanishing below the appropriate
threshold implied,

In the E Kterm in prr(s)-,

vtr = s/4/n/to —1,

In this dispersion integral, we wish to include
phenomenologically the 3~ cut (which is dominated by
p+s for the I=o states under consideration) and the
E Kcut (wh-ich, according to SUo, enters only in the
F-I' element of Do). Hence we write

with M from Eq. (3.1).
For fixed cutoff parameters s3 and o.', the parameters

Mor, Mom, Xr, X~, and $ are determined from the mass
and width of the ~ and the mass and partial widths, for
decay to E+K and p+vr, of the p. The relevant
equations ale

det[ReD(no„')]= 0=det[ReD(mo')], (4.8)

Im[detD(no„')]
I'"=, (4.9a)

m„det'[ReD(/n ')]

Imx[detD(mo')]
I"/rgb=, (4.9b)

neo det'[ReD(noo')]

Imo. [detD(/no')]
I'o &=, (4.9c)

mo det'[Re D(noo') ]
where det' means derivative of the determinant, and
Ima and Im~ refer to the imaginary parts due to the
3s and E Ecuts, respect-ively.

To express the physical au and @ 6elds in terms of the
hypercharge and baryon currents, we write'4

(4.10a)

(4.10b)

[u is from Eq. (4.6)], and introduce the "residue
matrices" R" and R& of the propagator according to

R-= hm (q' —m„')[ReD(q )]-, (4.11a)
q&—+m, „&

Ro= lim (q' —neo')[ReD(q')]-'. (4.11b)
Q2 vfSQ2

R" and R& are expressed in terms of the coefBcients

"That the cutoff parameter is the same in all the matrix
elements is a simplifying assumption; it leads to a simple qualita-
tive understanding of the absence of the decay p —+p+~.

'4 As in Kroll, Lee, and Zumino (Ref. 5).

and we choose n/t'=no 'n'/m/r', where n' is the cutoff
parameter in the x-x integral of Sec. III. This choice
of n~' corresponds to choosing the same location for the
approximate left-hand singularity in s-s and EEscat--
tering; since $ and X are varied independently, our
results should not be very sensitive to this choice.

po (s) is the phase space for the decay of an I=o
vector meson of mass s'" to three pions via the p+m
intermediate state, computed according to the model of
Gell-Mann, Sharp, and Wagner, " using the p propa-
gator of Eq. (3.1). The cutoff is now mandatory, since
po, (s)~s'/o for s-+oo; for numerical convenience, we
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TAnLa II. Computed values oi decay rates of cu and y, branching ratios (B,Bs) and mixing angles (er, s&)
in various broken-symmetry models.

Model

Pole dominance;
octet-broken SU3
(Coleman-Schnitzer)

Pole dominance;
octet-broken Ue

Octet-broken Ug,
a~=50, sp=0.230

Octet-broken Ul',
n~=100, sp=0.224

Octet-broken Ul ',
a~=100, sp=0.253

4.98 0.40 3.3 1.15 2.31

4.36 0.56 4.65 1.03 2.36

3.17 0.31 2.55 0.83 2.61

2.91 0.34 2.87 0.75 2.58

0.47 1.74 14.4 0.12 2.55

r (y ZK) r ( e+e-) a„r(y e+e-) a,
(MeV) (keV) (X10') (keV) (X104)

Hy

(deg)

34.0

40.2

34.9

37.7

76.8

21.7

26.4

15.2

15.8

67.6

6.28

4.77

5.47

28.2

6.70
5.66
5.52
4.08
6.28
4.70

28.7
27.8

0 F( ' 25) F( ' 28)
(deg) (eV) (eV)

7.18
6.5 5.82

' Neglecting f-+ p+~.
With F(f ~ p+~) —0 4 MeV' two values al'e included due to the sign ambiguitp In fop / f~p

6 Using sum rule (2.7a); the two preceding rows use the sum rule (2.7b).

appearing in (4.10) as

R-=I
knrnN nr )

Rs=/
( p~' prp~)

kprpN pr J

(4.12a)

(4.12b)

whence we can compute nr, n~, pr, and pN from the
residue matrices.

We can also determine the mixing angles t y and t ~
introduced by Kroll, Lee, and Zumino'; we have

m4g
4

tan'8y =
~rr~

(4.13a)

- tan'8~=
~NN

(4.13b)

V. NUMERICAL RESULTS AND DISCUSSION

With the aid of the formulas developed in Appendix

A, we can compute rates for various vector-meson
decays and, following the model due to Gell-Mann,

Sharp, and Wagner, " the decay x' —+ 2p. In this com-

putation, we take all vertex functions to have minimal
momentum dependence, and assume SU3 relations
between the V'-x-m and V'-E-K coupling constants.

When we adjust the cuto8 parameter in the three-

pion integral to satisfy one or the other of the octet-
broken Us sum rules, Eq. (2.7), we obtain typical

Even in our model, tan'Oy is determined from the ratio
of decay rates of ~ and Q into lepton pairs (we assume
that the coupling of V„' to the photon does not change
from m ' to mss); however, the relation

tan8r= (ms'/m„') tan8N (4.14)

is not valid, since the inverse propagator is not well

approximated by a linear function of s on es '&s&m~'.

results as shown in Table II, along with the correspond-
ing results in the pole-dominance approximation. We
remark that the sensitivity of the predictions of our
version of octet-broken U3 to the cuto6' parameter 0" in
the p propagator is not large, provided that we require
a reasonable p-wave ~-m scattering length. The sensi-
tivity of the over-all eAects of the continuum to n' is
even less, if we hold fixed the mixing angle 8r (abandon-
ing the octet-broken Us sum rules).

The most striking result is that the predicted rate of
&—+E+K is substantially reduced from the pole-
dominance prediction to bring it into excellent agree-
ment with the experimental result"

F, ng(P-+EX) =3.0~0.8 MeV.

The predicted rate of P decay to lepton pairs is
20 25% lower than that predicted by pole domi-
nance"; experimental results available at present favor
larger values of the rate, " but are subject to large
uncertainties. The predicted rate of co decay to lepton
pairs is rather sensitive to the mixing angle Hy, but is
again ~20% lower than the rate predicted by pole
dominance. Experimental determination of the rate
will be complicated by p-co interference'7; we hope to
discuss this problem elsewhere.

The prediction of the rate of x' —+ 2y is complicated
by the presence of the decay through virtual P+p. Even
though, as indicated in Table I, (fs„/f, )'~10 ',
interference between &o+p and P+p states involves the
ratio (fs, cos8&)/(f„, sin8&), which is not entirely
negligible, as can be seen from Table II. If the sign of
this ratio could be determined independently, a more
accurate measurement of the x' lifetime would be a

"Kroll, Lee, and Zumino (Ref. 5) give 1(qb-+e+e ) =2.2 keV.
They used the experimental width of @—+EE rather than the
SU3 predicted rate, which explains the di6erence between their
number and the entry in Table II.

'6 R. G. Astvacurov et al. , Phys. Letters 278, 45 (1968); D. M.
Binnie et al. , ibid. 27B, 106 (1968);D. Bollini et al. , CERN Report,
1968 (unpublished)."R. G. Parsons and R. Weinstein, Phys, Rev. Letters 20, 1314
(1968).
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APPENDIX A: DECAY RATES

We introduce the coupling constants f2 and f2 of the
fields V„' and V„' to the corresponding conserved cur-
rents, and the coupling constants y3 and ys of the fields
to the photon. We assume the SU3 relations

f2= (l)'"f2
72= (2)'"V2,

(A1)

(A2)

and suppose that the vertices are independent of
momentum (the momentum dependence due to the
lowest-mass intermediate states is at least approxi-
mately taken into account by using the modified
propagators). We then obtain expressions for various
decay rates in terms of these constants and the param-
eters introduced in Secs. III and IV.

f ' (m '—4m 2)212

I'(p -+ 22r) =
48~ mp'

"This is an indication that the neglect of s-wave E-n- states
implicit in the SUI version is not quite justi6able.

useful test of our model, since it is quite sensitive to
the continuum contributions.

In these calculations, we have used a p width Fp= T20

MeV; the dependence of the computed quantities on
I"p and on 0Y is given roughly by

(i) I'(p~l+l ) I', ',
(ii) I'(le —+ 2r'j)/I'(le~ 32r) ~ I;-',

(iii) I'Q -+ JI".E) ~ I', cos28Y,

(iv) J3„~ I', ' sin'8Y,

(v) 8 I', ',
(vi) I'(lro~ 2y) 0: I; ' sin'8Y.

Qf these, (i) and (ii) depend only on the p propagator
(and, of course, the p-2r-lr vertex), and thus are predicted
more reliably than are (iii)—(vi).

As mentioned in Sec. III, the present experimental
value of I'(le —+n'y) does not permit I; to be much
smaller than 120 MeV. Within that constraint, it is a
success of our model to reduce the predicted rate of
p-+FK, and our model is consistent with other
experimental results Lalthough only marginally so with
I'(P-+e+e ); more precise measurements are clearly
needed here]. We must add, however, that the U2

version of the Coleman-Schnitzer models is already an
improvement over the SU3 version"; present experi-
mental evidence does not necessarily require continuum
contributions to maintain U3 symmetry.

where

f.=Zn'"f2 ~ (A4)

V~ I++I

For vector-meson decay into a lepton pair, we have

r(V I+I-)

f yv )'( 2m') 4m')'I'
=2&I

I I 1+
I

1—
/

mv, (As)
Emv2i '1 mv'i mv'i

where my is the vector-meson mass, m is the lepton
mass, and

(A6)Z 112e~2/f Z 1/2~

Pay &Y(&J +8 2&~8 p

/3 %1/2 1

yy=PY(f)'"Vs= 2PY72

y~ J'+K

(A7a)

(A7b)

f ' ((my' —4m+')'" (m$' —4mII2)'I')
+ '

l, (Ag)
r4S I

where m+ is the E+ mass, mo is the E mass, and

fy= 4PYf2= 4PYZ ll2f-
GO)$ ~ 3Ã

In the model of Gell-Mann, Sharp, and Wagner, "the
decay V(=le or P) ~32r is supposed to proceed through
the intermediate state of p+lr. We write the V-p-2r

vertex as
~„=(g v,./m. )2„1„„(p )„(p-)„ (A10)

where g~p is a dimensionless coupling constant. Then
the decay rate for V —+ 3x is given by

f,' gv.-' p2-(mv')
(V~32r) =-

4m. 4m 24xmym ' (A11)

f 2)-l(f 2)—lg 2

I'(2r'~ 27) = 1'2o' —
) (

—
) m, (A12)

4~) &4~i 4~

where, we recall, f22= 42Z, 'f, ' according to SU2, and

PNgtapn &Nggpr
gYpn =

&YPN &NP Y

(A13)

Here p2 (s) denotes the phase-space integral used also
in Sec. IV; we do not give here an explicit formula, but
remark that it is computed using the renormalized p
propagator and including interference between the
three p bands on the Dalitz plot. Numerical results are
given in Table I.

~'~ 2y



VECTOR —MESON DECAYS. I I 2205

e= —0.1912,

P= 0.212.

Even though g&, '/g„, '—10 ', the gq, term is not whereupon we obtain the numerical values
entirely negligible here, because of the interference
term, and because ~P~/n~

~
is somewhat less than 1 for

favored values of the mixing angles.

(84)

(85)

(86)

//1 P q I/M, ' 0 ~D'(s) = sI-

kP 1+a/ E 0 M(Pl
(82)

APPENDIX B: POLE-DOMINANCE LIMIT

Coleman and Schnitzer' write

D(s) =s(1—e)—M(P

for the inverse propagator of V„', and

where

Zp

aN={2LM2 (1+E)~ 27/3+}1/2

~Y L4(M2 yg 2)/3+71/2

P~= {2L(1+&)m '—M'7/3A}'/'

Pr = L4(m —M')/367'/'

(8&)

(BSa)

(BSb)

(BSc)

(8Sd)

The parameters of interest in Secs. III and IV are
then given by

for the inverse 2X2 matrix propagator of U„' and V„'.
Our version of U3 symmetry requires

(83)

6= (1+e—p') (mq' —m„') .

mp4 3f'—m„'
tan~ay =

m 4M'' —M'

(89)

(810)
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Unitarity', Current Algebra, and s-Wave X'+p Scattering
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Two procedures for unitarizing current-algebra results are studied and applied to the elastic E+p scatter-
ing amplitude. We note that if the current-algebra amplitude in the off-mass-shell limit is used as input,
the unitarity correction leads to good agreement with experiments on phase shifts and other low-energy
parameters.

I. INTRODUCTION

'T is well known that the usual current-algebra calcu-
- ' lations of low-energy parameters for scattering
processes performed either in the soft-meson limit
(g„~0) or in the off-shell limit (g„'~ 0) need extrap-
olation in the masses of external mesons together with
unitarity corrections. The unitarity corrections (correc-
tions arising because of the extrapolation in the s
variable) to current-algebra results have been studied
by several authors. Akiba and Kang' extrapolated the
m-x amplitude using elastic unitarity. They used the
dispersion-relation technique and assumed that ab-
sorptive parts in a 6xed-t dispersion relation are given
by the Chew-Mandelstam or by the nonrelativistic
eGective-range approximation, and estimated the cor-
rections due to unitarity from the symmetry point to
the physical threshold. Bhargava, Biswas, Gupta, and
Datta' (hereafter referred to as BBGD) unitarized the

K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).
~ S. C. Bhargava, S. N. Biswas, K. C. Gupta, and K. Datta,

Phys. Rev. Letters 20, 558 (1968).

results of soft-pion current-algebra calculations for low-
energy s-wave 7r-/V scattering, using the E/D formalism.
They replaced the /V function in the 1V/D formalism by
a single pole on the negative real axis, and determined
the strength of the pole by current algebra in the soft-
pion limit. Later, Datta, Gupta, and Varma' used off-
shell (q,'~ 0) current algebra to obtain am. -m amplitude
which is explicitly crossing-symmetric, and unitarized
this amplitude to obtain s-wave scattering lengths and
phase shifts. They also used the 1V/D formalism.

Elastic E+p scattering has been studied within the
framework of current algebra by several authors. 4 Roy'
obtained reasonably good results by including the con-
tribution from the weak-amplitude term. The purpose
of this note is to obtain s-wave E+p phase shifts and
other low-energy parameters by applying unitarity

' K. Datta, K. C. Gupta, and V. S. Varma, Phys. Rev. 173, 1549
(1968).' Y. Tomozawa, Nuovo Cimento 46A, 707 (1967); A. P.
Balachandran, G. M. Gundzik, and F. Nicodemi, ibid. . 44A,
1257 (1966); P. Roy, Phys. Rev. 162, 1644 (1967); 172, 1849(E)
(1968).


