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We have constructed a model for estimating the continuum contributions to the propagators of the
vector mesons p, w, and ¢. With this model, we compute vector-meson decay rates predicted by a model of
octet-broken Uz symmetry based on spectral-function sum rules for the propagators. The model is con-
sistent with experiment, but present experimental accuracy is not sufficient to distinguish clearly between
the pole-dominance form of the model and the model with continuum included.

I. INTRODUCTION

N most calculations involving single-particle states,
it has been customary to make the narrow-resonance
(or pole-dominance) approximation to the particle
propagator, including in the inverse propagator a
simple imaginary part when required to take into
account the finite width of the particle. In the present
work, we construct a more detailed model of the con-
tinuum contributions to the propagators of the ¥=0
members of the vector-meson nonet. In this model the
continuum (in the inverse propagator) is represented
by a dispersion integral, with absorptive part given by
the product of a known kinematical factor and a smooth
cutoff function. In addition, we make a simplifying
assumption about the contribution of the three-pion
continuum to the 2)X 2 matrix inverse propagator which
describes w and ¢; this assumption is motivated by the
observed suppression of the decay ¢ — p+-.
With this model, we compute corrections to the pole-
dominance approximation for the decays

(1) neutral vector meson — lepton pairs,

(2) ¢— K+K,
(3) W, — 1I'°+’Y,
@ oty

As it turns out, the effect of the continuum are not
dramatic (of order 259, at most), but large enough that
pole dominance can give a distorted view. Especially in
view of the colliding-beam experiments and the possi-
bility of the precise measurements of some of the above-
mentioned decay rates, we think that these effects are
important to know.

We are concerned particularly with the predictions of
broken Us and SUs symmetry, which are obtained from
our model by imposing two conditions: (i) The spectral
functions of the propagators are required to satisfy
octet-broken Us sum rules of the type discussed recently

* Supported in part by the National Science Foundation.
T Work performed under the auspices of the U. S. Atomic
Energy Commission.
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by Das, Mathur, and Okubo! and by Oakes and
Sakurai,> and (ii) vertex functions which appear are
taken to have minimal dependence on momentum, and
the associated coupling constants are required to
satisfy exact SUs symmetry.

We find that the symmetry model thus constructed
leads to predictions consistent with experiment, pro-
vided that (i) we choose the symmetry-breaking condi-
tion which corresponds to a Gell-Mann-Okubo-type
relation between the inverse masses (squared) of the
vector nonet, rather than between the masses (squared),
and (ii) the p-meson width is between 110 and 130 MeV.
We also find that the continuum effects are not large
enough to alter the conclusions of Sakurai? that Wein-
berg’s second sum rule® (with no symmetry breaking)
for the SU; spectral functions cannot bemaintained.

In Sec. II, we discuss the spectral-function sum
rules for the propagators of a set of vector fields V@
(e=0,1, ---,8) which are assumed to be proportional
(with constant of proportionality independent of a)
either to a set of currents which satisfy the Uj; algebra
of currents or to a set of fields which satisfy the U,
algebra of fields. We characterize broken U; symmetry
in terms of these sum rules.

We then introduce our model for the vector-meson
propagators; in Sec. III, we give our p-meson propa-
gator, and in Sec. IV, we give the 2)X2 matrix propa-
gator which describes w and ¢. In Sec. V, the numerical
results of the model are presented. In Appendix A, we
collect together the formulas for the decay rates
predicted by our model; in Appendix B, we discuss the
pole-dominance limit.

II. PROPAGATIONS AND SPECTRAL-FUNCTION
SUM RULES

Consider the propagators

Aw¥(q) = F¥(g*)gw—G**(¢*)qug> (2.1)

!T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).

2J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967); R. J. Oakes
and J. J. Sakurai, sbid. 19, 1266 (1967).

#S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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for a set of vector fields V,2 (¢=0, 1, -- -, 8) which are
supposed to be proportional (with constant of propor-
tionality independent of a) either to a set of currents
which satisfy the Uj current algebra or to a set of fields
which satisfy the U; algebra of fields.

Feb(s) and G*¥(s) have the standard spectral repre-
sentations

Fab(s)=;r / ai(:)dx, (2.2)
Gab<s>=;r / ;ij(ﬁa:(x)-Jr“o“”(“))d“’ (23)

where the spin-zero spectral function o(**(x) is not
present for the fields which are coupled to the conserved
currents.

Weinberg’s first sum rule?® requires

f (alab(x)-;-aoab(x))ozp Cae.

K

(2.4)

In the present context, the propagators that we con-
struct are normalized according to Eq. (2.4) to ensure
that these propagators indeed describe fields which are
proportional to currents (or fields) satisfying the Us
algebra. In particular, we define the normalization of the
field V., by the condition (2.4) and a baryon current

2.5)

U; symmetry is implemented by imposing relations
between the coupling constants of V,° thus normalized
and those of the V¢ (e=1, - -, 8).

We assume that SU; is exact for s— oo, in particular,
that?

Ny~ @MV ,0.

lim sF%(s)=0. (2.6)
800

We should also like to require that the breaking of Us
be pure octet. This requirement can be imposed in one of
two (inequivalent) forms*:

(a) Octet breaking for g2—: The spectral func-
tions satisfy the sum rules

fp“"(x)dx=56“”+5'c“”, (2.7a)

where c2?=¢d4 (a,b=1, - - -, 8) and 0 otherwise.

4Tt can, of course, always be arranged for the 2XX2 matrix
lim,... sFo(s) (a, =0, 8) to be diagonal along with F¢?(0); denote
the fields for which this is the case by _V,° and_V,8. The physical
content of the assumption is that (i) V,° and V38 are the singlet
and octet fields (proportional to the baryon and hypercharge
currents, respectively) in the physical U, algebra, or (i) V.2
couples directly to the isoscalar electromagnetic current and V,°
does not. We find below that this assumption is consistent with
experiment; an alternative, in which d[F(s)]/ds is diagonal at
s=0 and a mixing term is allowed in Eq. (2.7a), is not.
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(b) Octet breaking for g>— 0: The spectral functions
satisfy the sum rules

p®%(x)
dxk= A 8% A'ceb4- B(§905%84-§98530) . (2.7b)

K2
An octet-singlet mixing term, proportional to
(890628 §85%0) is not present in (2.7a) due to the
assumption (2.6).

That the underlying symmetry is supposed to be Us
rather than SUj is indicated by the absence of a term
proportional to §9°6%0 in the sum rules. We do not always
insist that the octet-broken Uj; sum rules be satisfied,
but we find that (2.7b), in particular, is not inconsistent
with experiment. Octet breaking of SUs alone we do not
check, since we do not consider here the K* (moreover,
the sum rules for nonconserved currents have addi-
tional, unknown contributions from spin-zero states).

In the narrow-resonance approximation, (2.7b)
corresponds to octet breaking of U; in the current-
mixing model of Coleman and Schnitzer.® Note, how-
evet, that (2.6) cannot be satisfied in this approxima-
tion, since it would lead to no mixing at all.®

III. ¢-MESON PROPAGATOR

For the inverse propagator of V,? we write

[F() T '=D(s)=s[1+=(s)]—M*,  (3.1)
with ")
s pls
r(s)=— f ELARENY (3.2)
T J amg2 S5’ —5)
and choose the phenomenological form’
(S'"4m12)3/2/ a2 2
=X , 3.3
(=) (53)

where v=s/4m,2—1. In S-matrix language, D(s) is a
phenomenological D function for p-wave = scattering,
in which the left-hand cut of the partial-wave amplitude
has been approximated by a double pole, and the
influence on D of inelastic cuts has been approximated
by a linear function of 5.

For fixed cutoff parameter o2, the constants A and M?
are adjusted to fit the mass and width of the p, defined

by ReD(m,?)=0, (3.4)
ImD(m,?)

" m, ReD'(m,?)

8S. Coleman and H. Schnitzer, Phys. Rev. 134, B863 (1964);
N. Kroll, T. D. Lee, and B. Zumino, 4bid. 157, 1376 (1967). The
U version is described in Appendix B.

6 Thus our model can be regarded as an attempt to understand
w-¢ mixing entirely in terms of low-mass intermediate states.

"For a?—w, this reduces to the propagator considered by
B. W. Lee and M. T. Vaughn, Phys. Rev. Letters 4, 578 (1960);
see also W. R. Frazer and J. Fulco, sbid. 2, 365 (1959); 117, 1603
(1960); 117, 1609 (1960).

8 The K-K cut in particular is small, and its influence is well
approximated in this way for the energies under consideration.

(3.5)
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Taste I. Computed values of dimensionless coupling constants and branching ratios for several values of a? and T).

Here I'(w— 3x) is taken to be 10 MeV, T'(¢— 37) to be 0.4 MeV.

T, M
MeV) o? Z, (MeV) an Zupr?/4r T(w— 7968)/T(w— 37) gopr?/dn T(p— w'y)/T'(¢p— 3r)
100 5.0 1.220 702.7 0.1338 0.3363 0.1767 0.00042 0.0126
10.0 1.176 722.4 0.0665 0.3528 0.1854
20.0 1.142 735.5 0.0422 0.3644 0.1915
50.0 1.106 746.3 0.0306 0.3710 0.1949
100.0 1.086 751.3 0.0272 0.3723 0.1956
200.0 1.073 754.6 0.0257 0.3725 0.1957
500.0 1.062 757.1 0.0247 0.3723 0.1956
(Pole model) 1.0 765.0 0.0248
120 5.0 1.264 692.3 0.1611 0.2780 0.1217 0.00039 0.0099
10.0 1.212 715.2 0.0795 0.2935 0.1285
20.0 1.170 730.3 0.0503 0.3045 0.1333
50.0 1.127 742.9 0.0365 0.3108 0.1361
100.0 1.104 748.8 0.0325 0.3120 0.1366
200.0 1.088 752.6 0.0306 0.3121 0.1367
500.0 1.075 755.6 0.0295 0.3119 0.1366
(Pole model) 1.0 765.0 0.0297

The renormalized inverse propagator D,(s) of the p is
characterized by the requirement

ReD'(m,2)=1. (3.6)
Evidently,
D,($)=2,D(s), 3.7
where
Z,*=ReD'(m,?). (3.8)
The p-wave 7w scattering phase shift is given by
tand(s) = —ImD(s)/ReD(s), 3.9

from which we can compute the p-wave scattering

length
Ay 25112
an= lim [————————
8—>dmy2

tan&(s)] . (3.10)
( s_4m"2)3/ 2
We give in Table I the p-wave scattering length
computed for various values of o? and T',, together with
the scattering length
dmy*m.*T,

_—(m,2—4m,2)5 p (3.11)

an=

deduced by extrapolating a p-wave Breit-Wigner
formula to threshold. We remark that hard-pion
current-algebra calculations® (which are based on pole
dominance) give a¢11~0.030—0.035 for I',~115-120
MeV. We also give the values of M and Z, computed
for these values of 2.

We use the modified p-meson propagator to extract
numerical values for the w-p-r and ¢-p-m coupling con-
stants, and predict the branching ratios for w— %y
and ¢— 7%+~ according to the model of Gell-Mann,
Sharp, and Wagner.'® We write the V-p-m vertex as

(g pr/m‘lr) e«)\uvvap)\r , (3 12)

9 R. Arnowitt, M. Friedman, P. Nath, and R. Suitor, Phys. Rev.
Letters 20, 475 (1968); Phys. Rev. 175, 1802 (1968); 175, 1820
(1968); this work contains references to earlier calculations.

10 M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

where V=w,¢. Then the decay rate for V — 3 is given
by

(V= 3m) = (f,2/47) (gvpx?/4m) psc(mv?)
/24amyim., (3.13)

where ps.(s) is the 3w phase-space integral computed
using the inverse p-meson propagator Z,D(s) and
including interference between p bands, and f,*/4r is
determined from the p width (we neglect momentum
dependence at the p-r-r vertex beyond that contained
in the propagator). The decay rate for V— 7%+v is
given by

(V- x%)=a(f,*/47)" (g vor?/4m) (my?— M)
/16m2my®, (3.14)
where a=21/137.

Numerical results for the dimensionless coupling
constants gy,.2/4r and for the branching ratios
I'(V — n%)/T'(V — 3x) are given in Table I for several
values of o? and T',; in this table, I'(w—> 3m) is taken to
be 10 MeV and I'(¢ — 3r) is taken to be 0.4 MeV. It is
evident that, within the framework of the Gell-Mann-
Sharp-Wagner model and the current experimental
value (10.5£1.0)% for the ratio of w— =% to
w— 3w, a p width somewhat greater than 120 MeV is
preferred.

The modified p propagator given here is also relevant
to the pion electromagnetic form factor and the p decay
into lepton pairs; we have discussed this elsewhere.**

IV. o-¢ PROPAGATOR

For the inverse propagator of fields proportional to
the hypercharge and baryon currents ¥, and N,

11 A, Rosenfeld ef al., Rev. Mod. Phys. 40, 77 (1968).

2 M. T. Vaughn and K. C. Wali, Phys. Rev. Letters 21,938
(1968); see also G. J. Gounaris and J. J. Sakurai, ibid. 21, 244
(1968).
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respectively, we write
D(s)=SD(5)ST

o )

(4.1)

where S is a renormalization matrix to be discussed
below. Do(s) has the form

Do(s)=s[1+=(s) ]— M2, 4.2)
where
Mu? 0
M02= ( ) (43)
0 My
and =(s) is given by a dispersion integral
1 (s
m(s)=— f e ds’. (4.4)
wJ §'(s’—s)

In this dispersion integral, we wish to include
phenomenologically the 3= cut (which is dominated by
p+m for the I=0 states under consideration) and the
K-K cut (which, according to SUs, enters only in the
Y-Y element of Dg). Hence we write

s n
PNN(S)=>\N2psr(S)< - ) ) (4.5a)
s+ so
So \"
PYN(S)=)‘Y)\NP3‘A-(S)( ) =pnv(s), (4.5b)
STSo
so \"
pry() =25 )
S+So
._..4 2\3/2 2 2
iy ) (4.50)
sz \VK+0(K2

with 6 functions vanishing below the appropriate
threshold implied.
In the K-K term in pyr(s),

VK=S/4mK2— 1 y

and we choose ax®=m,%a?/mx?, where o? is the cutoff
parameter in the = integral of Sec. III. This choice
of ag? corresponds to choosing the same location for the
approximate left-hand singularity in -7 and K-K scat-
tering; since £ and N are varied independently, our
results should not be very sensitive to this choice.
psx(s) is the phase space for the decay of an I=0
vector meson of mass s*/2 to three pions via the p+
intermediate state, computed according to the model of
Gell-Mann, Sharp, and Wagner,'® using the p propa-
gator of Eq. (3.1). The cutoff is now mandatory, since
psr(s)~s/2 for s— oo ; for numerical convenience, we

M. T. VAUGHN AND K. C. WALI

177

generally choose #=3, which makes the integral O(s~*)
for s—o, and allow the cutoff parameter s, to vary.?®

The renormalization matrix S is to be chosen so that
the propagators satisfy Weinberg’s first sum rule,
Eq. (2.4). If

Vi=aT,?, (4.6a)
then we wish to have
Vid=(@a¥,, V.L'=@3)"aN,  (4.6b)
(a=const); it is thus appropriate to take
So ((%)”2M0N/M 0 ) @
0 DV Mor/M

with M from Eq. (3.1).

For fixed cutoff parameters s; and o?, the parameters
My, Mon, Ay, An, and £ are determined from the mass
and width of the w and the mass and partial widths, for
decay to K+K and p+m, of the ¢. The relevant
equations are

det[ReD(m,2)]=0=det[ReD(m,s2)], (4.8)
Lo Im[detD(m.?)]  49%)
m,, det’[ ReD(m,2)]
— Img[detD(m4?)]  (aob)
mgy det’[ ReD(m42)]
. Img [detD(m42)] (49

mg det’'[ReD(m42)] ’

where det’ means derivative of the determinant, and
Im;, and Img refer to the imaginary parts due to the
37 and K-K cuts, respectively.

To express the physical w and ¢ fields in terms of the
hypercharge and baryon currents, we write!4

a¥=ayw,+Byd,, (4.10a)

aN,=onw,+Bnd, (4.10b)

[a is from Eq. (4.6)], and introduce the ‘residue
matrices” R¢ and R¢ of the propagator according to

Re= 2lim z((]2—m(.,z)[ReD(q2)]‘1, (4.11a)
gérmy

Reé= 2lim z(qz—mqﬁ)[ReD(qz)]“. (4.11b)
q2—mg

R¢ and R¢ are expressed in terms of the coefficients

13 That the cutoff parameter is the same in all the matrix
elements is a simplifying assumption; it leads to a simple qualita-
tive understanding of the absence of the decay ¢ — p-+.

14 As in Kroll, Lee, and Zumino (Ref. 5).
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TasLE II. Computed values of decay rates of w and ¢, branching ratios (B.,Bs), and mixing angles (9y,0x)
in various broken-symmetry models.

T'(¢p— KK) T(w—e'e) B, T(p—ete?) By oy Oy T(r0—28)a T(x*—28)®
Model (MeV) (keV) (X108%) (keV) (X10%) (deg) (deg) (eV) (e
Pole dominance; 7.18
octet-broken SU; 4.98 0.40 3.3 1.15 2.31 34.0 21.7 6.5 5.82
(Coleman-Schnitzer)
Pole dominance; 4.36 0.56 4.65 1.03 2.36 40.2 26.4 6.28 6.70
octet-broken Us 5.66
Octet-broken Us; 3.17 0.31 2.55 0.83 2.61 349 15.2 4.77 5.52
a?=50, 50=0.230 4.08
Octet-broken Us; 291 0.34 2.87 0.75 2.58 37.7 15.8 5.47 6.28
a?=100, 50=0.224 4.70
Octet-broken Us;°; 0.47 1.74 144 0.12 2.55 76.8 67.6 28.2 28.7
=100, 5,=0.253 278

a Neglecting ¢ — p+.

b With I'(¢ — p+x) =0.4 MeV; two values are included due to the sign ambiguity in fepr/fypr-

¢ Using sum rule (2.7a); the two preceding rows use the sum rule (2.7b).

appearing in (4.10) as

2
Re= ( w am”) , (4.12a)
AYyOoN ay2
2
Rée ( By ﬁYﬁN) ’ (4.12b)
ByBy  Pr?

whence we can compute ay, an, By, and By from the
residue matrices.

We can also determine the mixing angles 0y and 6y
introduced by Kroll, Lee, and Zumino®; we have

mw‘ -RYYN
— tan2y= , (4.13a)
m.;,‘ ry?
Myt RNN¢ !

® tan®y= (4.13b)
Mt Ryne

Even in our model, tan%fy is determined from the ratio
of decay rates of w and ¢ into lepton pairs (we assume
that the coupling of V8 to the photon does not change
from m.? to my?); however, the relation

(4.14)

is not valid, since the inverse propagator is not well
approximated by a linear function of s on m.? <s<my®.

tanfy= (m42/m.?) tanfy

V. NUMERICAL RESULTS AND DISCUSSION

With the aid of the formulas developed in Appendix
A, we can compute rates for various vector-meson
decays and, following the model due to Gell-Mann,
Sharp, and Wagner,!® the decay 7°— 2y. In this com-
putation, we take all vertex functions to have minimal
momentum dependence, and assume SU; relations
between the V3-r-r and V-K-K coupling constants.

When we adjust the cutoff parameter in the three-
pion integral to satisfy one or the other of the octet-
broken U; sum rules, Eq. (2.7), we obtain typical

results as shown in Table II, along with the correspond-
ing results in the pole-dominance approximation. We
remark that the sensitivity of the predictions of our
version of octet-broken Us to the cutoff parameter o? in
the p propagator is not large, provided that we require
a reasonable p-wave w-m scattering length. The sensi-
tivity of the over-all effects of the continuum to o? is
even less, if we hold fixed the mixing angle 8y (abandon-
ing the octet-broken Uj; sum rules).

The most striking result is that the predicted rate of
¢— K+K is substantially reduced from the pole-
dominance prediction to bring it into excellent agree-
ment with the experimental result!*

Texpt(¢ — KK)=3.0-£0.8 MeV.

The predicted rate of ¢ decay to lepton pairs is
20~25%, lower than that predicted by pole domi-
nance'®; experimental results available at present favor
larger values of the rate,'® but are subject to large
uncertainties. The predicted rate of w decay to lepton
pairs is rather sensitive to the mixing angle 6y, but is
again ~209% lower than the rate predicted by pole
dominance. Experimental determination of the rate
will be complicated by p-w interference'’; we hope to
discuss this problem elsewhere.

The prediction of the rate of #°— 2y is complicated
by the presence of the decay through virtual ¢+ p. Even
though, as indicated in Table I, (fspr/ fupr)?~1073,
interference between w+p and ¢+ p states involves the
ratio (fspr C080y)/(fupr sinfy), which is not entirely
negligible, as can be seen from Table II. If the sign of
this ratio could be determined independently, a more
accurate measurement of the #° lifetime would be a

15 Kroll, Lee, and Zumino (Ref. 5) give I'(¢p — e*e™) =2.2 keV.
They used the experimental width of ¢ — KK rather than the
SU; predicted rate, which explains the difference between their
number and the entry in Table IT.

16 R. G. Astvacurov et al., Phys. Letters 27B, 45 (1968); D. M.
Binnie et al., ibid. 27B, 106 (1968); D. Bollini ¢t al., CERN Report,
1968 (unpublished).

(1;;};{). G. Parsons and R. Weinstein, Phys. Rev. Letters 20, 1314
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useful test of our model, since it is quite sensitive to
the continuum contributions.

In these calculations, we have used a p width I',=120
MeV; the dependence of the computed quantities on
T, and on @y is given roughly by

() Tlp—i)«=T,™,
(i) T(w—7%)/T(w— 37r)=T,?,
(i) I'(¢— KK) =T, cos’dy,
(iv) Bo,o«T,!sin?fy,
(v) By=T,2,
(vi) T(x®—> 2y) < T, sin%fy.

Of these, (i) and (ii) depend only on the p propagator
(and, of course, the p-7-7 vertex), and thus are predicted
more reliably than are (iii)—(vi).

As mentioned in Sec. ITI, the present experimental
value of I'(w— m%) does not permit I, to be much
smaller than 120 MeV. Within that constraint, it is a
success of our model to reduce the predicted rate of
¢— KK, and our model is consistent with other
experimental results [although only marginally so with
T'(p—ete™); more precise measurements are clearly
needed here]. We must add, however, that the U;
version of the Coleman-Schnitzer model® is already an
improvement over the SUj; version'®; present experi-
mental evidence does not necessarily require continuum
contributions to maintain Us symmetry.
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APPENDIX A: DECAY RATES

We introduce the coupling constants f; and fs of the
fields V,3 and V2 to the corresponding conserved cur-
rents, and the coupling constants v; and s of the fields
to the photon. We assume the SUj relations

fo=@D)fs, (A1)
vs=(3)"%ys, (A2)

and suppose that the vertices are independent of
momentum (the momentum dependence due to the
lowest-mass intermediate states is at least approxi-
mately taken into account by using the modified
propagators). We then obtain expressions for various
decay rates in terms of these constants and the param-
eters introduced in Secs. ITI and IV.

p—> T

2 (m,2— dom,2)3/2
Do 2= T
48w M2

(A3)

18 This is an indication that the neglect of s-wave K-m states
implicit in the SU; version is not quite justifiable.
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where
fp= Zpll2f3 .

V=it

(A4)

For vector-meson decay into a lepton pair, we have

r(V—-Kri)

v \?

sz
where my is the vector-meson mass, m is the lepton
mass, and

Im? A\ 112
+——)<1———-—2> myv, (AS)

my? my

Vo= —Z,M2eM?/ fa=Z, 2yg, (A6)
'Yw=aY(%)”2’Ys=%al;"Ya ) (A7a)
vo=Br(D) vs=3Brvs. (A7b)
¢—K+K
(p— KK)
2 2 2)3/2 2 /
(it ity
48 Mg’ mg?

where m, is the K+ mass, m, is the K mass, and

f¢=%BYf3=%ﬂYZp—1/2fp-

w,0— 3w

(A9)

In the model of Gell-Mann, Sharp, and Wagner,? the
decay V(=w or ¢) — 3 is supposed to proceed through
the intermediate state of p+m. We write the V-p-m
vertex as

M y= (gvon/ M) ecis(p7 )P I, (A10)
where gy, is a dimensionless coupling constant. Then
the decay rate for V— 3r is given by

fot gvor® paa(my®)
(s 3y 22 B )
47 47 24mmym,:

(A11)

Here ps.(s) denotes the phase-space integral used also
in Sec. IV; we do not give here an explicit formula, but
remark that it is computed using the renormalized p
propagator and including interference between the
three p bands on the Dalitz plot. Numerical results are
given in Table L.

w0 — 2y
2\ —1 2\ —1 2
8ypr
I‘(1r°——>2‘y)=—llga2(£i> (?—) 4" me, (A12)
i vy ™

where, we recall, fe?=3%Z,7'f,2 according to SUj, and

B wpr Q! T
NEwp NE¢p . (A13)

ypr=
ayfBy—anfy



177

Even though g4,r2/gum=21073, the g4,r term is not
entirely negligible here, because of the interference
term, and because |By/ax| is somewhat less than 1 for
favored values of the mixing angles.

APPENDIX B: POLE-DOMINANCE LIMIT

Coleman and Schnitzer® write
D(s)=s(1—e)—M¢ (B1)

for the inverse propagator of V,3, and

B M2 0
(o w0
1+ 0 Mg
for the inverse 2X2 matrix propagator of V,8 and V0.
Our version of Us symmetry requires

1r1<s>=s(;

Mi=Mi=M?, (B3)
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2205
whereupon we obtain the numerical values
M=0.8351 BeV, (B4)
=—0.1912, (B5)
B=0.212. (B6)

The parameters of interest in Secs. IIT and IV are
then given by

Zl=1—¢, (B7)
on={2[M>— (1+e&)m,2]/3A}112, (B8a)
ay=—[4(M2—m,2)/3A0]"2, (B8b)
By={2[(1+e)my*—M*]/3A}2,  (B8c)
By=[4(ms*—M*) /30T, (B8d)

where
A= (14e—p) (ms?—ma?). (B9)
Also,
my* M2—m,?
tan?fy=— ——, (B10)
met M 42— M?
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Two procedures for unitarizing current-algebra results are studied and applied to the elastic K+p scatter-
ing amplitude. We note that if the current-algebra amplitude in the off-mass-shell limit is used as input,
the unitarity correction leads to good agreement with experiments on phase shifts and other low-energy

parameters.

I. INTRODUCTION

T is well known that the usual current-algebra calcu-
lations of low-energy parameters for scattering
processes performed either in the soft-meson limit
(¢.— 0) or in the off-shell limit (g,2— 0) need extrap-
olation in the masses of external mesons together with
unitarity corrections. The unitarity corrections (correc-
tions arising because of the extrapolation in the s
variable) to current-algebra results have been studied
by several authors. Akiba and Kang! extrapolated the
m-r amplitude using elastic unitarity. They used the
dispersion-relation technique and assumed that ab-
sorptive parts in a fixed-¢ dispersion relation are given
by the Chew-Mandelstam or by the nonrelativistic
effective-range approximation, and estimated the cor-
rections due to unitarity from the symmetry point to
the physical threshold. Bhargava, Biswas, Gupta, and
Datta? (hereafter referred to as BBGD) unitarized the

1K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).
2S. C. Bhargava, S. N. Biswas, K. C. Gupta, and K. Datta,
Phys. Rev. Letters 20, 558 (1968).

results of soft-pion current-algebra calculations for low-
energy s-wave 7-V scattering, using the V/D formalism.
They replaced the NV function in the N/D formalism by
a single pole on the negative real axis, and determined
the strength of the pole by current algebra in the soft-
pion limit. Later, Datta, Gupta, and Varma? used off-
shell (¢, — 0) current algebra to obtain a - amplitude
which is explicitly crossing-symmetric, and unitarized
this amplitude to obtain s-wave scattering lengths and
phase shifts. They also used the N/D formalism.
Elastic K*p scattering has been studied within the
framework of current algebra by several authors.* Roy*
obtained reasonably good results by including the con-
tribution from the weak-amplitude term. The purpose
of this note is to obtain s-wave K+p phase shifts and
other low-energy parameters by applying unitarity

(lz’é%.) Datta, K. C. Gupta, and V. S. Varma, Phys. Rev. 173, 1549

‘Y.‘Tomoza.wa, Nuovo Cimento 46A, 707 (1967); A. P.
Balachandran, G. M. Gundzik, and F. Nicodemi, sbid. 44A,
gggs§1966); P. Roy, Phys. Rev. 162, 1644 (1967); 172, 1849(E)



