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The current-algebra scheme, not including equal-time commutators of two space components, is formu-
lated entirely in terms of covariant dispersion relations (i.e., over the laboratory energy for 6xed mass)
where the number of subtractions is chosen according to the usual Regge picture. To do this, one expresses
the equal-time commutators and retarded commutators directly in terms of the covariant dispersion in-
tegrals, using an identity between covariant and noncovariant dispersion integrals of Lorentz-invariant
distributions which is proved here, by means of the Jost-Lehmann representation, from the locality of the
currents. This last result is a generalization of previous works of Schroer and Stichel and of Le Bellac and
the author. In the scheme discussed here, the equal-time commutators and retarded commutators are
rigorously defined as a consequence of the physical high-energy behavior, contrary to the usual approach
where they are only formally written as product of the commutator with b(xo) and 8(xo), respectively. In
fact, we show that the properties usually derived formally (as, e.g. , by partial integration) are rigorously
true in our scheme. The quantities which in the usual approach are not well defined, and/or are model-de-
pendent —such as the Schwinger term, the seagull term, and the equal-time commutator of the current and
the divergence —are given in this approach by the subtraction constants of the dispersion relations intro-
duced. They are shown to exhibit the properties which usually are more or less assumed, or only obtained
in models; e.g., we prove that the divergence of the seagull term is equal to the Schwinger term. Only matrix
elements averaged over spin and/or relative momenta, with the vacuum matrix element subtracted, are
considered. No explicit value of the equal-time commutator is assumed at the beginning, so as to clearly
show the respective roles of the internal symmetry group and of the analyticity and high-energy behavior.
This paper also completes a previous work of the author on the inanite-momentum limit based on the same
approach.

INTRODUCTION

T the present time, it is quite clear that the intro-
duction of current algebra is a very successful

idea. However, it is still true that a lot remains to be
done in order to put the scheme on a rigorous basis.
In fact one usually writes the equal-time commutators
(E.T.C.) and retarded commutators (R.C.) as ordinary
products of the commutator by e(xs) and 5(xs), respec-
tively. As a consequence, the computations are purely
formal. In fact, as products of distributions cannot be
given a general meaning, one deals with rather un-

defined objects. As an example, it is usually claimed that
current algebra first leads to low-energy theorems which,

making the extra assumption that certain dispersion
integrals converge, can be transformed into sum rule.
It seems to us that this point of view is misleading since

the very existence of the K.T.C. and R.C. considered to
derive the low-energy theorems already implies assump-

tions on the behavior at infinity in momentum space
of the commutator. The reason is that this behavior, by
Fourier transform, is connected to the regularity of the
commutator near the origin which, in turn, is the key
to define its product by 8(xs) or e(xp).

This appears, for instance, in a paper of Schoer and
Stichel' where it is shown that, essentially, if the E.T.C.
of the two charges can be defined, then the Adler-

Weisberger' sum rule holds and is convergent. An
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analogous result was obtained by Le Bellac and the
author' in the case of the Fubini~Dashen —Gell-Mann'
sum rule.

Another difFiculty which was pointed out recently by
the author' is in the infinite-momentum limit method
used by Dashen and Gell-Mann. ' It was shown that
taking the limit inside the noncovariant integral con-
sidered in (5) was certainly not permitted. Here also,
to reformulate the method, as done recently by the
author, ' one makes an essential use of the behavior at
infinity in momentum space.

The basic problem is that one would need to know
this behavior for, say qo —+ ~ in a given Lorentz frame
(g being the variable of the Fourier transform of the
commutator) for which nothing is known. In fact, the
main difhculty of current-algebra calculations is in going
from integrals of the type J'dgs, computed for fixed ti,
to integrals performed for fixed g'. This problem has
been studied in Ref. 2 for the particular case involved
in the Adler-Weisberger sum rule, using the vanishing
of the commutator for spacelike separations. The idea
is to introduce the Jost-Lehmann-Dyson representation
which is a consequence of this property and is well
suited for the problem since it explicitly exhibits the
dependence of the commutator in the four components
of q. In Ref. 3 the same method was also used in a
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particular case to obtain rigorously the Fubini —Dashen-
Gell-Mann sum rule.

In the present paper, we will first show that the
method of Refs. 2 and 3 is indeed general and gives a
connection between covariant and noncovariant dis-
dispersion relations for Lorentz-invariant amplitudes
if only a certain inequality holds among the invariants.

This will make it possible to relate the current algebra
scheme, which does not involve the E.T.C. of two space
components, to the behavior at infinity of the commu-
tator for fixed mass (i.e., g') which is what high-energy
physics actually predicts. Let us remark that, up to now,
the studies of current algebra based on the Jost-
Lehmann-Dyson representation, " were somewhat
unphysical, since they were based on assumptions like
the existence of E.T.C., or the behavior at infinity of
Jost-Lehmann-Dyson weight functions, for which one
has no physical insight. Our point of view will be es-
sentially opposite to the one used in Refs. 2, 3, and 8.
We will start from an assumed high-energy behavior of
the commutator for fixed q', which one knows more or
less physically, e.g. , from Regge theory, ' and then build
up completely the current-algebra scheme from this
hypothesis by computing the E.T.C. and R.C. as a sum
of covariant dispersion integrals and by showing that
they satisfy the properties usually derived by formal
computations. '

Recently, Mandelstam" has put forward the idea of
obtaining current-algebra results from analyticity and
Regge poles alone. Our work is in the same direction
and we will not, before the end, assume any particular
value of the E.T.C. so as to show clearly the role of the
internal symmetry group.

Preliminary results obtained by the same method on
the infinite-momentum limit and existence of the
antisymmetric part of the E.T.C. have already been
given by the author in a recent paper. ~ We will repro-
duce them brieQy here for the sake of completeness.

Our last remark will be that here, as in the infinite-
momentum limit discussed in Ref. 7, our method
actually works only in a certain continuous subset of
Lorentz frames which we will describe. However we
feel that the results are sufficiently general since the
physical results are ultimately Lorentz-covariant.

In Sec. I we express the covariant dispersion relations
in terms of the retarded Jost-Lehmann representation.
Section II is devoted to do the same for the noncovariant
dispersion integral and, comparing with the result of
Sec. I, derive the connection between covariant and
noncovariant integrals of invariant distributions. In
Sec. III we consider the matrix elements of the com-
mutator of two currents averaged over spin and relative
momenta, and discuss what relation between covariant
and noncovariant integrals one may expect to hold on

8 J. W. Meyer and H. Suura, Phys. Rev. 160, 1366 (1967).
9 I am indebted to S. L. Adler, who emphasized this point of

view to me.
' S. Mandelstam, Berkeley Report (unpublished).

the basis of Regge behavior, free-field models, and the
results of Sec. II. The purpose of Sec. IV is to compute
the E.T.C. involving at least one time component in
terms of covariant dispersion integrals, and to show that
they automatically have the form usually assumed~
the operator Schwinger terms and the E.T.C. of the
divergence with the time component of the current
being determined by the subtractions constants intro-
duced in the dispersion relations discussed in Sec. III.
The antisymmetric part of the E.T.C. is directly given
by the covariant integral of the Fubini —Dashen —Gell-
Mann sum rule. This integral is shown to be constant
for negative q', a result usually deduced only from the
current-algebra hypothesis. Taking the derivative with
respect to q' at g'=0, we then obtain the Cabibbo-
Radicati" sum rule which thus follows only from our
high-energy hypothesis and Sec. III. In Sec. V, we
express the retarded commutators also as a sum of
dispersion integrals, and determine the covariant ampli-
tudes. The corresponding "seagull term" is computed,
again in terms of the subtraction constants of Sec. III.
We prove that the formal partial integration formulas
obtained by taking the divergences are correct and that,
as is known in electrodynamics, the divergence of the
seagull term is equal to the Schwinger term. The aim of
Sec. VI is to show directly that the low-energy theorems
are satisfied for the symmetric and for the antisymmetric
part of the amplitude defined in Sec. V. In Sec. VII
we discuss the infinite-momentum limit of the R.C., and
show that it is given by the Bjorken limit" even for
finite qo. Our conclusion and general remarks are the
subject of Sec. VIII, while complementary results are
discussed in Appendices A—C.

The reader who is unwilling to spend time on the
Jost-Lehmann representation may very well begin
reading at Sec.III and convince himself that our method
is correct by looking at the free-field examples studied
in Appendix C.

I. CONNECTION BETWEEN COVARIANT DIS-
PERSION INTEGRAL AND RETARDED

JOST-LEHMANN REPRESENTATION

In this section we consider a distribution f of the form

f(rt, p, A) = "*(pil l:~Qx), &(—2x)] I
p~)d'x, (&.~)

where

p= 2(pi+ pi), &=pi pi. —
A and 8 are assumed to satisfy

l
A(-', x), 8(——',x)]=0 if x'(0,

and to be Lorentz-invariant. In this section, as in Sec.
II, we treat the case where pi4 p& to show the generality

"N. Cabibbo and L. A. Radicati, Phys, Letters 19, 697 (1966).
'2 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
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of the method, though we wi0 use only the result for grals of the type
6=0 in this paper.

We restrict ourselves to the case where
dp

f(" ~ 9 ~ 9' ~~ ' ' ')
P

(1.8)

it then foOows that
pls= pss=rls'

p 6=0.

(1.3)

(1.4)

For the discussion of Refs. 13 and 14 (see also Rcf. 3),
one needs to introduce the lowest intermediate states
appearing in (1.1), i.e., the lowest masses» and»
such that

to the retarded Jost-Lehmann representation. corre-
sponding to (1.6). In (1.8) one integrates for fixed values
of the other invariants g', g 6; it corresponds to a
standard dispersion relation in the laboratory energy.
For the moment we do not consider the problem of
subtraction; we mill discuss it later. In other to apply
(1.7), we replace (1.8) by

(PII~ IXI&&0 «II1llPs&&0 & P.'~&I I'

(Pll&l]rs&&0, (Xsl~lPs&&»f P.,'&»'; (1.5)

me will assume that where

py= @2=p.

I=hm iv (o))f(o) ' ' ')=llnl I, ,
Cd
—E @~0

qr, &$, lim iv, (&o)= 1,
a~0

This will be the case in current algebra if one uses the
Hermitian components of the currents. " Then, as
shown in Ref. 13, f is given by the Jost-Lehrnann
representation, mhich can be written in a covariant
form as

Xe(gs—N())I)L(g —I)'—sj, (1.6)

mhere the integration in the four-vector e is in the plane
Z orthogonal to p, s being a Lorentz scalar. The support
of C ' and C ' is given by the set of points {N,s} such that

{(p+I)g V+,

V'~& supLo, ~—d(P+I)', I V'(P —I)'j}—.
They are invariant distributions of the vectors I, p,
aIld LL 11111qllely dctcl'II11Ilcd by f. Tile pI'cclsc 111calllllg
of (1.6) is that, given a test function iv((t) Q S, one has,
applying the distribution f to it,

and where
v'= mes, v =@ATE.

Also we choose v so that I(v) is real, i.e., outside the
singularities. The general result can be obtained by
analytic continuation. According to (1.7) one has, in
the Breit frame (i.e., where y=0),

(8
Ig= PQ ds - O' Gy Nqs O' G32 Nqs i 1.9

- (8Ns ]

(.(~)
Gi(sz) fdgy e,(m)=ll[rg' —(g—u)' —s], o.lo)

fd E

s .(~)
Gs(N, s) = d»e(o))hto)'-(Il —u)' —sj

63 E

In (1.10), as explained above, one integrates for fixed
g', g h. We restrict ourselves to the case where

ps= —t's, dP = —4)is, I(( 6= —2c)i{', (1.11)
{' and It being real. We shall take in our calculation (((

and d to be real so that one has

( ci

)&~I +'(~s) f& q~(qo —N)&L(r'—s)'—s]~(r)
(8IIv

To compute (1.10), we choose, in the spatial part of
the Breit frame, 6 as third axis and g in the plane
orthogonal to the second axis. Accordingly, the coordi-
nates of q will be written

1.7
where

(fr=�(o)

+F)'" &=0~ (((s=ot'~ (1.12)

'gp

our purpose is now to relate covariant dispersion inte-

"R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (195T).
'4 F. J. Dyson, Phys. Rev. 110, j.960 (I958)."ln the more general case, one can still carry out the proof by

introducing the Dyson representation (Ref. 14l. However, in this
representation the vreight function is no longer unique.

P—{s(1 os)) 0
and one has

o)'—(Il—n)s-s=2LNI(o)s+P)'is —y7 (1.13)
where

3I=—(r+t's+ns) c{Qs-
The integrals (1.10) are evaluated from the general
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formula"
8(x—x~)

8(g(~))= Z
' lg'(*~)l

(1.14)

where (x;) is the set of points where g(x) vanishes.
Formula (1.14) holds if the equation g(x)=0 has no
double solution. One thus gets

(1.18), the two terms give the same contribution to I,.
On the other hand, one can write an equation similar
to (1.13), i.e.,

r,'—(r—u)' —s= 2(ei(E'+ P)'/' —y) (1.19)

if one introduces a new Lorentz vector r such that

r'= —p r p=v, r 6=—2''g. (1.20)

Expressing the result in a covariant manner, we have
Anally proved that

y /'~. (~.) v.(—~.))
2Ni EM —8 M+8 )

(1.15)

I,=2
do"ds f 8

!
—C '+r„C '

!y, (&or) . (1.21)
s (r—I)—' &8N~ i

were co„ is the positive solution of

ra~ —(q—11)~—s=0,
i.e., according to (1.13),

.=L(y/ ) -ej". (1.16)

If, e.g., the dispersion relation for f needs one subtrac-
tion, one will replace (1.21) by

(v—ro) —, , f(v')
V —

Vo V —P

q'= i/'+ r/P —/i'.
Accordingly, if

i'2) )/2+/g2 ~2

then ~„cannot vanish, and one has

y2) si&2)2

(1.17)

so that co„ is automatically real.
We will assume that (1.17) holds so that (1.15)

makes sense. Choosing q, to be a symmetric function,
one can then rewrite (1.15) as

If &o„/0, (1.14) will hold since there will be no double
roots. From (1.13), (1.16) one sees that a&, will vanish
in the domain of integration of (1.9) if and only if there
exists admissible hyperboloids going through the points
(go=0, q'=l'2). This is impossible if those points are
outside the region

!go! ~) ! ()/'+ tN') '» —(q'+/im) i»!

which is the support of f(g). The boundary of this
region intersects the plane go= 0 for

1 8
C'+r C'!

s—(r—m)' (BN)' )

/'8
I

—Ci+v„C2 I, (1.22)
s—(v—e)'&8e& J

where v is such that

v p=vo v'= —im, v 26= —ci/i'.

Finally, one can continue (1.21) for complex r and v,

keeping f, ~/, and c 6xed and real. It is easy to verify
that both members of (1.21) will automatically have the
same analyticity domain. Letting e —+0, one sees that
one will have

dr dods f 8
/( ') = 2

~

~'+.„~') n.23)
s—(r—I)' (8N)'

if one can replace r/), by 1 in (1.21) when taking the
limit. Choosing the test function

1
Gi=2v. (~.)l

&y—N, (@2+p)»2

G2= 2 Pe(~r)&r!
Ey I (F2+ $2)1/2

(1.18)

v), =1 if !~!&1/c)

&.-0 if !~!&1/.+8,
one sees that the only troublesome points of (1.21) are
those where M„becomes infinite. From (1.16), this
happens if Ni -+ 0 or if s —& ~. In fact, 8„&' and p' are
temperate distributions in e and s, so that we can write

/8 8)'= g /p/, '! —!P/, '(I s)
(8N)' 8s)

Now we use the fact that C' and C', being Lorentz-
invariant, must be even distributions of Nj, so that in

"See, e.g., I. M. Gel'fand and G. E. Shilov, Generalised PNnc-
ions (Academic Press Inc., Neer York, 1964), Vol. 1.

8 ( 8 8
O'=P 6)),'!,—F/, '(u, s),8u» &8N~' 8s

where the P's are continuous functions and the 6"s are
polynomials. A sufficient condition for (1.23) to hold is



GF RVA ~sJ

if g is d oned ln $ by

2j.86

m all the p~ tend «zeroQ$ p

~y (p2 f Qa&ID y P
for whlc

those polDts ~

except,
k functions nearbehave i e .

uestion unti'on « t"'s q
ndence

he iscuss'
Qc-to-one corres

d in t c
~

ver es, 1

per"'Q .
ember o " 'rclat, on an

ality con g;f one mern
the other

r'= I
3) the retarded JoIn formn a '

t on appears.
(2 4) again& as

It has nowmaQQ reprercscnta lOQ

(2.5)

comp for

&~.Q =K~P&.
P

—
KP0 Pr

dgo
p g) (2.6)

gp
—K

120) and (25)~ a'f according to (

|'0—q —KV=KP0

2g~=(q ~

(2.1)
d g'p

f(gp&'q) t

gp
—K

d d Jost Lehmann

D d
't ls analytic, " '

„l Acco«»gly~

Eg covARIA+
regipQ whe

f jnvariants

CONNECTIOII I E
ERSION INTEGRAL

written as a I"
) „d (24) th«

OIICOV+RIAM D

d tlon a d 111 't folio s f o
d

'
dicated ln the int

/

As we alrea y
h d. persion ]Qtegr

dv
& )

t torelat~ t e
the time com-

fV&

Rcf
variant lntcg

. 7 wcwan
~ '

rais over
Accordlngl

V —V

~

Scc, I, to no
f refelencc +.ponentofg' g . (11) we now con 'f being de6ned

I wc compute&xedq. Asin e'which is performed or
it as

(2.2)= lim 0&.(go) f(gp, q),

Sllmpg= I~

if 1.17) is satisfied.
tion is needed, . s as itIf no subtrac io

. if one subtraction is neestan s;i on lOniSn
Q1Cm Clbers obtaining,

wc usc c RQIl 1cpI'cscntRtlon
(1.6) for f, so that we wi av

V

writing formally

dv dgo

(go K)gpV —V V

P = dgpo&. (gp)1

gp
—K

0(go sp) b[(g —s' —s,—

(2.3)

dgo
f~0+K

gp
—K

dgo
t

(gp —K)gp

0(gp —sp)b[(g —s '—s .H = dgogppq go 6 o—
gp K

one will obtain

dgp
f=0+V'

gp
—K

the calculation is veryrates for axed g, t c cSince one integra
easy; one gets

1 O.(S0+p) ~.(S0—p )
2 k 0+p K Sp p

so (so-P)v. (sp-P))1 ((S +p)000.(S0+p) Sp-

2p k So+p K

(2.7)
V V V

(gppp q'p)f+pt (2 8)(v'f = o

V ~V

he left intcgI'Rl. Asa de6nition of the e
'

s

'
I not very genera.was e u ainced RI'c certain y

2 6) holds, one ca
' '

mn
1 has the same snppor~ which clear y a

r it follows rom

stands for

s itself. However,
'

where p s an

Rnd s spRccs Rs 1 s
p=[(q—n ' s

g Rn
replace y, by, ln8 . I letting e~~0 one may re ln

becomes i
l y-:-p-+ . the same regu ari~. Under t eif s~

Sec. I, one thus na

—S) (8S&&S—f —I (2.4) K 1. Danske Videnskab.A. S. Wightman, Kg. a
Modd. 29, 12 (19SS}.Sels a,k b Mat. -Fys. Med .



DISPERSIVE APP ROACH TO CURRENT AI GEBRA 2187

with

p= dr f P-o

so that for vf, (2.6) is not true. Thus one expects that,
in general, extra terms appear in (2.6). We will discuss
them in Sec. III.

III. RETARDED FUNCTIONS IN THE
PHYSICAL CASE

As in Refs. 3 and 7, we consider"

1
t„,.e(q) = -d'x e"*[(P,

I
P„.(-,'x), Z,e(——',x)j IP,)

though a general treatment is possible from the results
of Secs. I and II. If

I p) is a state of nonzero spin, and/or
a multiparticle state, we average (3.1) over spin, and/or
relative momenta so that one has (we suppress n and P
in the following except if they are explicitly needed)

t. = P.P +b(q.q+q P.)+ q.q+dg. , (32)

where a, b, c, and d are Lorentz invariants. '9 As shown in
Appendix A, they are Fourier transforms in the variable

q of local distributions in x so that the results of Sec. II
can be applied. As ah.eady indicated, we will reduce the
E.T.C. and R.C. associated to t„q to integrals of the
form (2.2), so that (2.6), subtracted or not, may be
applied. To do so, we will have to introduce the com-
mutators involving divergences, namely, "

t„=q "t„g tp„+kq„——,
where

and

t= a(p q)+bq'

h=b(p q)+cq'+d,

ro= q&q"t„g l(P q)+hq——'

(3.3)

(3.4)

"The fact that one must subtract the vacuum expectation value
to give a meaning to the K.T.C. was emphasized in Ref. 2. It is
necessary here also; otherwise the spectrum properties necessary
to use the Jost-Lehmann representation would not be satisfied.
Thus our treatment of the vacuum expectation value given in
Ref. 3 is not entirely correct; however, this does not invalidate the
results of this paper.

'9 If J„is conserved, u, b, c, and d are not independent since in
this case there are only two independent amplitudes. We keep
them anyhow, since there exists no choice of independent ampli-
tude which allows us to use the Jost-Lehmann representation
completely (see Ref. 8). When necessary we will take into account
the fact that a, b, c, and d are not independent if B„Jt'=0 (see
Sec. VI).

"This is the same technique as in Ref. 7. In Ref. 1, Adler and
Dashen also introduce l,, h, and m to discuss the p~~ limit.
However, they have no general argument on the interchange of

—(pr IP~)(o I P. (kx) ~"(—2x)310)7 (3 ~)

where n and P are SU3 indices. To simplify, we consider
only the case where

P& P2 P~

In Appendix C, we discuss diferent free-field
models for spins 0 and ~~. In those examples, one sees
that an equality of the type (2.6) is sa, tisfied without
extra terms for all ub w, except for d, which satisfies
(2.8) instead, since it corresponds exactly to the ex-
ample discussed at the end of Sec. II. In general, for
dimensionality, one expects that d will contain, com-
pared to a, b, and c, extra factors of the dimension of
mass squared which will prevent (2.6) from holding.
The simplest factors are q' or q p. In those two cases,
as in the free-field model, the extra term which appears
is symmetric in n and p [see (3.6).j

We will make the simplest possible dynamical as-
sumption which agrees with the free-Geld models dis-
cussed in Appendix C, namely, that, apart from pos-
sible subtractions, (2.6) holds for a, b, c, t, k, and the
antisymmetric part of d, while for the antisymmetric
part of d, (2.8) holds instead.

Ke will discuss this hypothesis in the conclusion. Let
us remark, for the moment, that from (3.3) and (3.4),
onemay think, a priori, that thefactorsq' andq p which
appear in the definition of /, h and w invalidate our
hypothesis for these functions. As we have discussed,
multiplying by q' or q p separately certainly does.
However, in the free-field case, the particular combin-
ations of a, b, c, and d which appear in (3.3) and (3.4)
do satisfy (2.6), since the extra terms cancel. This is
likely to happen in general since, first of all, if J„ is
conserved w=t=h=0 so that (2.6) certainly holds; on
the other hand, in Lagrangian field theory, 8&J„ is not
generally a more singular operator than J„,so that it is
reasonable to make the same kind of hypothesis for
l, h, w, as for a, b, c; finally for the axial current letting
nt '=0, one has 8"J„=O and (2.6) holds for l, k, w; in
the real world, taking (Z.6) for l, k, w is thus in the spirit
of the partially conserved axial vector cu-rrent (I'CAC)
hypothesis

An interesting remark is that, again in Lagrangian
field theory, pl'B„J~ is a more singular operator than J"
since it contains higher powers of the field. Though we
cannot, for the moment, exhibit a clear cut connection,
this is certainly related to the fact that multiplying by
(q P) a distribution satisfying (2.6) introduces extra
terms. In Ref. 3 we also found the same type of phe-
nomenon in the free-field case by exhibiting explicitly
the weight functions of the Jost-Lehmann-Dyson
representation: while they were all of the same type for
a, b, c, k, t, w (i.e., with compact support), the weight
function corresponding to, e.g., (q p)a was shown to
tend to a constant at infinity, making doubtful the
derivation of sum rules from time derivatives computed
in the Breit frame.

Now we must decide upon the number of subtractions
to be performed in (2.6) or (2.8). As already remarked,
it is given by the behavior of u, b, , w for large value

the limit p —+~ with the integration as we gave in Ref. 7. In Ref. 6
we showed that this is a delicate question, so that the analysis of
Ref. 1 is incomplete.
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b, L' v~',
c~dhm v', as v —&.

(3.5)

Of course, we will use this hypothesis for negative q'
where it is not well established. However, we only need
to assume that the number of subtractions does not
increase from q') 0 to q2~& 0.

Since 5 is not the same for the part of the amplitude
which is SUo-symmetric (b &~ 1) as for the part which is
antisymmetric (b(1), we separate them out by a super-
script + or —.We will finally introduce no subtraction
for a+, b, l, one subtraction for b+, l+, c, d, h, m,
and two subtractions for c+, d+, h+, zo+.

It is very convenient to perform those subtractions
at v= 0, since, as discussed, e.g., in Ref. 3, a, ~, m have
well-defined crossing properties in v —+ —v, e.g.,

(ak bk ck dk l6 hkpgk)

~ (Ta+, +b+, Wc+, +0+, +l+, Wh+, +I+), (3.6)

so that many of the subtraction constants will actually
be zero. This is strictly possible only if p)m, or, if
p= ns, only if q2&0. The reason is that if no= p,, the one-
particle pole is at v=q'. In this case, we will assume
Grst that q'(0 and take the limit q' —+ 0. The fact that
we derive the low-energy theorems shows that this
procedure is correct.

Finally, we are ready to introduce the retarded dis-
tributions associated to a, b, , m. From now on we
consider only the case where

q p=0

which is the only one we will actually study. For a, b,
and l, we let, e.g., for a,

dqp
a(go, q) =~(~Po, —f')

27K qp
—K

while for c, d, h, m we have, e.g., for d,

(3 &)

1 dqp
&(go,q) =~a(&, I «I)+D(&Po, —f'), (3 g)

2'' qp
—K

where
f'o=q' —o."~&0,

and where 0.„0~, ry„cr„are subtraction "constants"
which are necessarily symmetric in n and P from our
previous considerations. They, in fact, depend on K

since, in general, they may depend on fo. The capital
letters represent the subtracted dispersion integrals

"As will be clear in the following, we do not need behavior of
exactly the Regge type. We use it just to simplify the writing.
Possible 6xed Regge poles do not matter here, since we consider
only the imaginary parts in our hypothesis.

of v and Axed q'. %'e take it to be of the Regge type. "
In fact, the exchange of a pole at l= 8 leads to

a~v8 2

over v without the subtraction constants; i.e., for a+,
b, l, one has, e.g., for a+,

A+(v, g') =— a+(v', g'),
2x' v v

(3.9)

2or v'(v' —v)
(3.10)

and for c+, d+, h+, m+ one has, e.g.,

D+(v,g') = — d+(v', g')
2s v"(v'-v)

and, of course,

A=A++A, etc ~

(3.11)

IV. EQUAL-TIME COMMUTATORS

We take the E.T.C. as de6ned, in a given Lorentz
frame by

z
g'), s(q)= —lim

2m' ' dg o.(go)t. '(go, q), (41)

where t„z is given by (3.1), and

lim qo, (go) = 1.
e~p

(4.2)

In general, the limit (4.1) may not exist. However,
we will prove that, if the assumptions of Sec. III are
satis6ed, then (4.1) does make sense for ti=X=O, and
@=0,X= 1, 2, 3, provided that one has

q p=0.
Thus, q~ being given in the Breit frame, we will de6ne
V' only in the set of Lorentz frames deduced from the
Breit frame by a pure Lorentz transformation in a
direction orthogonal to q& multiplied by a pure rotation.

A. Equal-Time Commutator of the Time Components

This was already studied in Ref. 7 but we consider
it again brieQy for the sake of completeness. Inserting
(3.1) into (4.1) takenfor ti=X=O, one gets (the limit
o -+ 0 is not explicitly mentioned)

z
Zoo'(q) =— &go[apo'+2bpogo+ ego'+d 1' (4.3)

2x

Now we introduce l, h, and w, writing (3.3) and (3.4)
under the form

b= (l—av)/g' c= (h —d —bv)/g' h= (u —lv)/g'. (4.4)

We will thus divide by q' inside the integral. It vanishes
for

go ——a IqI =+X;

while for b+, e+, c, d, h, m one has, e.g., for b+,

dv
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Segre, and Walecka. 26 For the other E.T.C., we have
been able to use our method because, by introducing
the divergences, one ends up with expression like (4.5)
where the power in qp is larger in the denominator than
in the numerator so that it can be reduced to dispersion
relations. As discussed in Ref. 7 and in Appendix C,
this fact suppresses the Z graphs in the p ~~ limit (see
also Ref. 1). This was precisely the criterion discussed
in Ref. 26 to distinguish between good and bad charges.
Time components give good charges while space com-
ponents lead to bad charges. And, as discussed in Ref.
26, the one-particle intermediate state gives the correct
answer as p~~ only for good-good and good-bad
commutation relations. Thus our result agrees with
those of Ref. 26.

D. E.T.C. of the Current and its Divergence

It is studied in the same way as V"„z, if m& p, one gets

A. Expression of the Retarded Commutators
in Terms of Dispersion Integrals

Consider first Rpp. As in Sec. IV A, we introduce (3.2)
into (5.1) and use (4.4) to get

1 8qo
Roo= —pp

—ppX'a —X'qo'b
2pr (qp' —qp)(qp" —X')

y—[Z (b—d)+w], (5.4)

where again the principal value has to be
taken at qp=~X. One now decomposes the factor
[(qp' —qp)(qo' —X')j ' so that (3.7) and (3.8) apply.
Using (3.3) and (3.4) to simplify the result, one finally

gets, if p)m„

Roo =&po'+ 2Bpogo+ &qo'+ D

Z

g p
P ——— dqp(tPp+hqp) = o„~—(X,)i), (4.17)

2' 2' + (V[ap(qo, &)—a~(qo, ))1+a (qo,&)

so that V"p & is symmetric as expected. If m=p, , one
must add to 0. the contribution ' of the one-particle
intermediate state as given in Appendix B.

In our approach this commutator is thus on the same
footing as the operator Schwinger term found in Sec.
IV B, being also given by a subtraction constant. One
thus understands why it is model-dependent. It is
arbitrary if the integral which gives zv does not converge
without the subtraction as happens in the real world.
In models, if the convergence is better one can compute
it, and one gets the same answer as (e.g., in the free-
quark model) when one uses the field equations.

As in Sec. IV C, our method does not determine V'~ ~.

V. RETARDED COMMUTATORS

In general, the retarded commutator is computed
from t„q(q) as

1 dqp'
R,"(qp,q) =—,t,~'(qo', q) .

2' qp
—

qp

(5.1)

As for V'„z, we will consider 8„& only in thoseLorentz
frames where

q y=0.
Also we introduce the retarded commutators involving
divergences, namely,

dqp'
R.'(qo, q) =—,t.'(qo', q),

2' qp
—

qp

R ~(qo, q)=-
27r

dqp
w ~(qp', q).

qo qo

(5.3)

"S.Fubini, G. Segre, and J. Walecka, Ann. Phys. (N. Y.) 39,
381 ()9M).

—X'[a p(X,X)—ag(X,X)]—r„(X,X)). (5.5)

Similarly, for Rp& we write

po dqo'
Rpo ——— (app+ bgp')

2x qo —qo
qIs dqp

+— (bpo+ &qo'), (5 6)
2x' qp

—
qp

which, if p)m, leads to

Roo= Apppo+B(poqo+qppo)+Cqoqo+qoo' (5 ~ 7)

or to

Roo= APpPo+B(Ppqp+qpPo)+Cqpqo

qp+ [ap(qo, 7)—ad(qo, &)—ap(&,&)+ap(&P )j. (5.8)
qp' —X'

(5.7) is obtained by expressing the symmetric part of
the coefficient of q& directly in term of 8 and C, while

(5.8) follows if one introduces b there first according to
(3.4). We thus have necessarily

[,(q, 7)—a.(q„7,)j—[,(Z,X)—.(X,7)g
=(q,'—7P)a,(q„7). (5.9)

For R;o, there is nothing to compute; one has im-

mediately

R&o= ~p~po+B(piqo+qipp)+Cqiqo+Dgio
+q,qoa, (qp, X)+g,oo p(qp, lb). (5.10)

In the same way one treats R„, obtaining, if p.)m,
R~= Lp„+Kg„+op,(gp, X)g„, (5.11)
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or, for Rp, as in (5.8),
R,=Lp,+aq p+ Lgpl(g p' X'—)]

XLo„(q~,X)—o „(X,X)], (5.12)

from which it follows that

p (qp, X)—o. (X,X)= (gp' —X')o p(qp, X). (5.13)

Finally, for completeness, let us recall that R is in fact
already given by (3.8), namely,

R=W+o„(qp,X). (5.14)

As in Sec. IV, if m= p one must add to p p(X,X)—o ~(X,X)
and to 0„(X,X) the quantities 8 and 8', respectively,
as given in Appendix B.

B. Covariant Amplitude

Until the end of Sec. V we consider only the case
p&m explicitly, since it is easy to modify the formulas,
as was done in Sec. V A, to treat the case p, =vs.

First we use (5.9) and (5.13) to transform the expres-
sion (5.10) of Rpp so that it contains only p, and op.
Collecting the result together with (5.7) and (5.10), one
sees that E„,can be written as

Rp =Rp„+(1—hpp)(1 —b„p)g~„[hard(X X)—p'p(X X)] (5.15)

where R„„is covariant, being given by

R„.=A p„p,+B(p,q.+q„p.)+Cq„q.+Dg„.
+(q„q,—q'g, „)o,(qp, X)+g„„o@(qp,X) . (5.16)

R„„will in general be identified with the physical ampli-
tude. One sees that, as expected, the retarded product
being not uniquely defined according to our hypothesis
is also noncovariant. In electrodynamics R„,—R„,
corresponds to the so-called "seagull term" which, in
this case is given by the E.T.C. of the time derivative
of the electromagnetic field with the Lagrangian. ' It
is thus model-dependent. This, in our approach, comes
from the fact that the seagull term is given by the
arbitrary subtraction constants.

It has been proposed in general by Bjorken" that
R„,—R„,be given by the Schwinger term. According to
(4.14) this is exactly what we obtain.

C. Integration by Parts

The expressions (3.9), (3.10), and (3.11), together
with (5.11) and (5.16), allow us to compute easily the

( 1 1
IL~+(2P.P~+ pq. q~) —q.

kq'+ 2gppp q' —2qpppl

divergences of the retarded products. One 6nds, taking
also (3.6) into account,

qpRpp= Rp+ pp l& 8"2~" (5.17)

q&R„=R—p (X,X). (5.18)

Combining (5.17) and (5.15), one verifies that the
standard results of the formal partial integration are
correct, namely, that the di6erence between t'E» and
R, is given by the E.T.C. calculated in Sec. III. This
was not obvious, u priori, since R„„and R„contain
subtraction constants. It follows in fact from (5.9) and
(5.13).

We have, in particular,

q&(R„„R„,)= (1——b.p) q, La.g(X,X)—o p(X,X)],
which shows that the divergence of the seagull term is
equal to the Schwinger term. This is a standard result
in the particular case of electrodynamics. ' We obtain
it in general in our scheme. This property is crucial in
deriving the low-energy theorems.

VI. LOW-ENERGY THEOREMS

Low-energy theorems were discussed for the case of
the electromagnetic currents by Low" and Gell-Mann
and Goldberger'8 long before current algebra was intro-
duced. "' Beg" used the current-algebra hypothesis
to generalize them to the SU3-antisymmetric part of
the amplitude.

The usual proof of the low-energy theorem is based
on the remark that, as g~0, only the one-particle
intermediate state contributes in the expression (5.1)
of Rpp(g). This is a simple consequence of current
conservation (in this section we assume that 8„J&=0
and m= p). It allows us to determine the physical ampli-
tude to lowest order in go.

In our approach, the dependence in q is such that as

g —+0 we will end up with dispersion relations com-
puted at zero mass. Here also, the one-particle inter-
mediate state will play a special role since the corre-
sponding pole is at the origin for g'=0.

We will consider explicitly the case of Compton scat-
tering of a spin ~~ target. In this case, according to
Appendix 8, when one separates out the one-particle
intermediate state, Eq. (5.16) reads

(1a
1)

M+ —p'+
q~l&']+q. q~lk2 g'

1
L(q,p~+q~p, )~' ppq pg, x&']+&'p—.p.+B'(p,q~+q~p, )+C'q pm+ D'

q'+2qppp q' 2qppp
/1& 1)

+ I l(q.q~—g.~q')~. (qp, l ), (6 1)
2 i

~7 F. E. Low, Phys. Rev. 96, 1428 (1954).' M. Gell-Mann and M. Goldberger, Phys. Rev. 96, 1433 (1954).
"See also S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York, 1961).' For recent references on the subject see H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. 165, 1594 (1968), and Ref. 1.
O' M. A. B. Bbg, Phys. Rev. 150, :1276 (1966).
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fhi h d Fo thes odtion of the continuum is o i

integral, one has

0 —— — ' . (6.13)dv a-(v, g')vq0
ql 0
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It follows from (6.9) that

dv a(v, O) =0,

so that (6.13) can be rewritten as

8p—b-(v, O) =
v -dg

which, from (4.12), leads to

dv e—
(v,q')

NS p

dp—b (v, 0-) = 2
2'' V dg r l=p

Finally, letting g'=0, one gets

R;o-——— q, qo(M —X )
2g pcs

dp
qomb o

——d-+0—(qp') . (6.15)
2x' p

As previously, and using (6.4), one gets

dp—d = —2M' (0),
277' V

Pop= —[—Zlr-(0)+V(V'(0)]
gp

[M'-(0) —Ã-(0)]+0(qo').
2qopo

This formula, in the rest frame (y=0), reduces to

2 Fo)
Epp- =-', [X,}I,~]m —+4qp Fi'+

~
. (6.14)

qp 4mo3

In the same frame, one easily studies the space compo-
nents obtaining

continuum can be evaluated. This involves taking the
derivative of J"dv u at q'=0. As we emphasized in
Sec. IV, this leads to the Cabibbo-Radicati sum rule.
On the other hand, this sum rule was precisely rede-
duced by Bbg from using formulas (6.14) and (6.16)
which he derived directly. One thus sees the complete
equivalence of our result with the results of the con-
ventional approach.

C. Remarks

It was, of course, predictable u priori that we would
get the correct low-energy theorems since we know from
Sec. V that the standard partial integration formulas
hold in our approach while the usual assumption on the
Schwinger term have also been verified. However, it
was interesting to show explicitly how they were
satis6ed.

Ke will not discuss the case of axial-vector current
which can be treated along the same line. We know
already that the standard results are obtained. Let us
remark, however, that if one takes ns '=0 and B„A&=0,
then as in Sec. IV 8, one can compute J'dv a by letting

g —+ 0 and then obtain the standard SU2&SU2 E.T.C.

VII. INFINITE-MOMENTUM LIMIT

As already discussed, e.g., in Ref. 7, in this case one
lets p —+pp in a fixed direction such that q. y=0. A
formula of the type (2.6) is then very useful if one takes
x'—q'=constant as p —+~ since then it contains the
dependence in p explicitly so that the p-+~ limit is
reduced to the high-energy limit of ordinary dispersion
integrals.

In Ref. 7, we used this method to re-establish the
proof of the Fubini —Dashen-Gell-Mann sum rule from
an infinite-momentum limit. We will brieQy apply the
same idea to R„„.In the pure Lorentz transformation
along y, the Lorentz vector (O,q) is invariant since

y q=O. Accordingly, if we keep qo fixed, (qp' —q') will

be independent of ~y~ and the method will apply.
It thus follows from (3.5) that (see, e.g. , Ref. 32)

which finally leads to

Z,;- =-',[};}] (F, +2F,)q,q,
2qpm

t'
+4qpmi Fi'

i
+0(qo'). (6.16)

Smo&

Formulas (6.15) and (6.16) coincide with the corre-
sponding results given by Beg."

It is interesting to remark that, for the antisymmetric
part, the one-particle intermediate state does not domi-
nate in the covariant integrals as q

—+ 0. This is due to
the fact that, in this case, we made fewer subtractions
than for the symmetric part. Nevertheless, one gets the
low-energy theorems because the contribution of the

8:(qppp) ', C ,D:(qppp)', -

with 0&8& 1 as po —+ op. One thus gets

p.p- —
poqo

It has been proposed by Bjorken" that as gp
—+~, E„,

behaves like the K.T.C. divided by gp. According to
(4.8), one sees that, after taking the limit, the same type
of result is obtained also for Gnite gp.

"J.-L. Gervais and F. J. Yndurain, Phys. Rev. 167, 1289
(1968};169, 118/ (1968}.
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An equation of the type (7.1) is of great importance
to determine, in particular the convergence of electro-
magnetic mass differences, " or P-decay radiative cor-
rections. "Our result suggests that a p ~~ limit may
be appropriate to study them. However, the condition
y q=0 is a priori diScult to take into account, since in
this type of problem, one integrates over g in the whole
space. We may devote a further publication to this
problem.

VIII. CONCLUSION

In conclusion, we present some comments on the
results obtained in this paper as well as in Ref. 7.

We assume that p. q=0. As already discussed p and

q being given, there exists a, continuous set of Lorentz
frames where y q=o. Presently we do not know how
to treat the general case. In fact this condition was
essential to obtain expressions of the K.T.C. and R.C.
where the power of go was higher in the denominator
than in the numerator so that our method could be used.
This is unimportant in the results discussed here since
the dependence of q ultimately disappears.

We considered only the case of diagonal matrix ele-
ments averaged over spin and/or relative momenta.
This limitation is not fundamental since, in particular,
we obtain the relation between covariant and nonco-
variant integrals also in the general case for which one
simply would have more invariants. However, the
calculation becomes rather tedious. It is possible that
a more powerful method can be used based on group
theory, since in the case we considered, the introduction
of matrix elements involving divergences is equivalent
to decomposing the tensor representation of the I.orentz
group, by which the commutator transforms, into
irreducible representations. If spin is taken into account,
the corresponding representation is more complicated,
but the method is perhaps to decompose it again in
irreducible representations. We may study this question
in another paper.

We cannot take commutators of two space com-
ponents into account. As we already discussed, this
limitation is natural and fundamental. It agrees with the
general feeling one now has in current algebra, namely,
that the results based on commutation of two space
components are less reliable than the others.

Our formulas are the usual ones, except for an un-
known parameter J'dv u. It can be directly computed
if the current is conserved and is then just equal to
the corresponding commutator of the infinitesimal
generator of the internal symmetry group. This result
is not surprising since, in this case the integrated
charges form a representation of the corresponding I ie
algebra. In general, one must assume the value of J'dv a,

"J.Das et a/. , Phys. Rev. Letters 18, 759 (1967).
'4 E. Abers et a/. , Phys. Rev. Letters 18, 676 (1967);N. Cabibbo

et al. , Phys. Letters 25$, 31 (1967};258, 132 (1967); K. Johnson
et a/. , Phys. Rev. Letters 18, 1224 (1967).

and this is the rigorous formulation of the current-
algebra hypothesis in our approach.

From the mathematical point of view, as we already
emphasized, the intloductlon of the K.T.C. and R.C.
from the commutators amounts to a definition of
products by 8(xo) and 8(xo), respectively. Our results
show the familiar pattern. Namely, the behavior at
infinity in momentum space of the commutator de-
termines its singularity near the origin in position space.
If it is too singular, then the products becomes ambigu-
ous and noncovariant.

For the antisymmetric part, the physical high-energy
behavior is just sufhcient to make the E.T.C. and R.C.
well defined and covariant, since the subtraction con-
stants which enter are then symmetric from crossing
symmetry. This explicitly shows how much the "low-
energy" results depend on the assumed high-energy
behavior. If more subtractions were needed they would

produce, e.g., gradient terms in the E.T.C. of two time
components, thus spoiling the low-energy theorems. On
the contrary, the symmetric part decreases less rapidly
at infinity in momentum space; as a result the corre-
sponding E.T.C. and R.C. are noncovariant and
ambiguous.

Th.at the experimental high-energy behavior is exactly
suited to getting the current-algebra results is a remark-
able fact which shows the consistency between the
present high-energy and low-energy schemes.

It is an interesting property of our approach that it
introduces naturally, by means of subtraction constants,
the quantities which usually are ambiguous and/or
model-dependent, namely, the Schwinger and seagull
terms and the E.T.C. of B„J with J . Thus in our
formalism those terms are u priori completely arbitrary.
However, let us remark that, first of all, in perturbation
theory, it has been emphasized by, e.g., Bogoliubov and
Shirkov" that renormalization amounts to the definition
of products of distributions which are a priori ambigu-

ous, being divergent in momentum space. Thus, in our

approach, to choose a particular determination of the
0's can be interpreted as a sort of renormalization which

takes the physical high-energy behavior into account.
One may in particular define the E.T.C. by letting

Then there will be no operator Schwinger term, in

agreement with the recently proposed algebra of fields. "
In the case of o (X,X), it seems to be very small if

~ p)
is not the one-s state. For instance, letting o„(X,X)=0
in the calculation of the scattering length of Tomozawa'~

3~N. N. Bogoliubov and D. V. Shirkov, ImbodecNon to the
Theory of Quantised Eie/ds (Wiley-Interscience Publishers, Inc.,
New York, 1959).

36T. D. I ee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

g7 Y. Tomozawa, Nuovo Cimento 46A, 707 (1966).
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and Weinberg" leads to

283/2+ Gl/2 0, (8 1)

are symmetric while, in this paper, we proved this result

by using essentially crossing symmetry and the high-

energy physical picture.
while experimentally this number is 0.005m

For the retarded commutators involving the diver-
gence of the axial current, the a's should be chosen so
that the amplitude is as smooth as possible from'9 g'= 0
to g'=m ', in agreement with the spirit of PCAC.
From (5.14) one has up to a factor,

(or9T i
or'$) = (g' —m ')'o. '&'+(g' —m ')'W'& (8.2)

also, it follows from (5.11) that

(rr'N
~ A„~ N) = (g' m—')a sg

+ (q' —m, ') (I.p„+Hg„). (8.3)

As expected, the on-mass-shell matrix elements do not
depend on the subtraction constants, since the 0's are
regular at g'=m '. However, the soft oft-mass-shell
matrix elements will be those for which

~ (go,X)=~a(go, li) =0, (8 4)

which also agrees with (8.1).4'

In the case of a conserved current, condition (8.4) is
of course satisfied; thus the axial current is put on the
same footing as a conserved current by the smoothness
property. This agrees with the approach used, e.g., by
Weinberg4' in which one lets m„'=0 and uses a con-
served axial-vector current.

Our last comment will be about our hypothesis of
Sec. III on the possible extra terms in the relation be-
tween covariant and noncovariant dispersion relations.
They can actually be checked on field models since both
members of (3.7) and (3.8) can be computed. Let us
remark that one should not use a nonlocal approxi-
mation since locality was the key to our results of Secs. I
and II. Thus many models, like, e.g., ladder-graph
approximations, are inappropriate. Ke have shown

that, given the physical high-energy behavior, the
current algebra results follow, up to the value of the
E.T.C., from our hypothesis of Sec. III. An interesting
question is whether the converse is true; namely, if
extra terms appear in (3.7) and (3.8), will they invalidate
the results? The answer is that certainly no antisym-
metric extra terms can be introduced without losing
the connection with the usual formulas of current
algebra, since, e.g., one obtains antisymmetric gradient
terms in the E.T.C. (an example of such a case is given
in Appendix C). There can be, in principle, symmetric
extra terms which would not change the essential
features of the results. However, this more general
approach is unappealing since one no longer has the
link between high-energy physics and current algebra.
One must essentially postulate that the Schwinger terms

'8 S. steinberg, Phys. Rev. Letters 17, 616 (1966)."Our analysis does not directly apply since here q' &~ 0; however,
one can extend our result by analytic continuation in q'."This is essentially equivalent to a discussion given in Ref. 38."See, e.g., S. Weinberg, Phys. Rev. Letters 16, 879 (1966).

APPENDIX A: LOCALITY OF THE INVARIANTS

Here we show that the invariant distributions a, b, c,
and d can be determined from t„q according to (3.2) so
that they vanish outside the lightcone in position space.
By inverse Fourier transformation, (3.2) becomes

t/ 8 8
gg(x) (Epopt+ I spo +spx

Bx" Bx"
8

c+g„g. (A1)
Ox~Ox"

It„z(x) vanishes for x'(0. To carry out the proof, it is
convenient to choose the rest frame where y=0. In this
case, (A1) takes a very simple form for the space
components:

f;s(x) = — c—db;s.
Bx&Bx~

(A2)

On the other hand, t„~ can also be expanded in x space
on a set of invariants by writing

E~x =8 popx+f/ (p~xx+ xppk)+ c xoxx+d gox ~ (A3)

Since c is a function only of x' and xo, one has for j/k

E&o= —4S/so =x/xoc (s,x ).
oi(x')'

Solving this diGerential equation with the boundary
condition

Bc
lim c= lim =0,

/x/~e) /x[~co g(x2)

one gets

Ac=— dl de c'(x , )o, e

(x)

which shows that c vanishes for x'&0, since c' does.
Knowing this result and going back to (A2), now with

j=k one verifies immediately that d is also zero for
x'(0. On the other hand, for @=0,a=k, (A3) becomes

8 „8
too = ipo f/+ c.

Dx~ Bx'Bx~
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Solving this equation in x& with the boundary condition which leads to

lim b(x'q') =0
I*I

which shows that b also vanishes for x2(0. I'inally,
from (A1) taken for u=v=0, it follows immediately
that the same property holds for ii, Q.E.D.

APPENDIX B: ONE-PARTICLE INTERMEDIATE-
STATE CONTRIBUTIONS

We recapitulate the relevant formulas and so doing
indicate our conventions of normalization. In the spin-2
case, we write the vector current as

(P'I l'.
I P)

(P+P').= pu(p') v.(Pi+Pp)'+ Pp u(P), (81)
2m

where Fj and Ii2 are the standard Dirac and Pauli form
factors, respectively. Our conventions are

(&(P»o*(p') & =Pob (p—p'),

u(p)u(p) =2m,
(82)

and we omit everywhere an over-all factor of (2') '. The
one-particle intermediate-state contribution to t„q is
then easily computed; one gets, if m= p,,

one obtains, after averaging over space and taking (A3)
into account,

00

ipob(x', x') = c—-', dur pob'(x', u)+xpc'(x', u)],
BXP

8 4' Egg P p

b+= 2xEgg+q +,
c+=2orLKip++ Kpi++ (g'/4m') Kp,+]oo",

d+= orKii+(g' —4m') op+

P=O,
h+ = —4mm'Egg+p+

+g'I Kip++Kpi+ —(g'/4m')Kpp+jq +,

K;,+ s= ', [K, ,K-Pjp.
S and 65' are here also easily computed:

(8= 2(Ki,++K,i+), S'= —4m'Kii+.

APPENDIX C: FREE-FIELD MODELS

In this appendix, we show that the results of Sec. III
are true in various free-Geld models of the current for
which current algebra is satished.

1. Free Syin-Zero Fields

In Ref. 3, we have considered the model where

8J = zo 7l"
g4

BXP'

where ~ and a are free fields of isospin 1 and 0, respec-
tively. It is easy to see that, in this model, taking the
matrix element between two x states, one gets

b+= 2m T+y+,

a+= 4mM+q +,
b+ = 2mÃ+(p+,

c+=or(3f + E+)(p+, —
d+= 2'(p g)1V+y+—

and, of course, f=h=w=0 In (83) w. e have let

o "(g P) = p(go+Po)bL(g+P)' —m'3

(83)

c+=mT+p+, 0+=0,
f+= 2or(m. '—ma') 7+op+, h+ =or(m. '—ma') T+op+,

w+= or(m, '—m ')'T+oo+,

(C2)

where T+ is given by the isotopic-spin factors.
Now one can verify directly from (84) that for op+,

the covariant and noncovariant dispersion integrals
are equal; namely, if p q=0 and g2&0, one has

/f2

++as i [Pia Pip]
I

Pp—a Pps]
4m

&"=o L(Pi+Pp), (Pi+Pp)']+. (86)

1 dv c+
(8=hm g gppp—

27I v (v gpp p)—=M+—E+. (87)

In the case of the axial-vector current we let

(O'I~. Ip)=l (P')(v.K +L(P'—P)./2~Ã )v (P)

The term Swhich appears in (4.16) is easily computed as

dip

gp
—

gp
o '(go, q,P) =

o '(v, g') (C3)
gopo

Accordingly, one verifies that (3.7) and (3.8) hold in
this model. As we indicated in Sec. III, when one com-
putes f, w, and h from a, b, c, and d according to (33)
and (3.4), the factor ppgp and g' which appears in those
formulas cancel so that f, w, and h also satisfy (3.7)
or (3.8).

Since, of course, the integrals converge already before
subtracting, one can actually compute the 0's from
formulas of the type

j. dp
p, (go,li) =— —c+(v, gp' —),') .

2' P
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One gets 2. Free-Spin-~ Fields and Vector Current
o,= T+/(m. '—m.'—g'), o o——0

—(m 2 m 2)oi, —2T+(m 2 m 2)2/(m 2 m 2 i72)

Here we take
I'» =4'v»~'V

~

Thus (4.14) shows that there is an operator Schwinger
term given by

1'.g+= —(i/2~) ggT+,

while one has from (4.17)

9"()——(i/2~) T+(m.' —m.') .

Those formulas agree with what one obtains from the
canonical commutation relations. Finally, our study of
the p —+oo limit made in Ref. 6 has shown that

so that the result is obtained from (B3), letting

As in case (1), (3.7) and (3.8) follow from (B4) for
a, b, c. However, d contains, as expected, an extra
factor g p. Instead of (B4), we use the fact that

dgp dv v—(go'po) iv+= — y+(v, g') ——',(ia 1) . (C6)
gp

—
gp v —popo

lim po dopa (gp, q)W dv lim a

while in Ref. 7 we obtained

(C4)
This equality is a particular case of (2.8). It follows from
(C6) that no extra term appears in d and that (3.8)
is also satisfied for d.

It is easy in this model also to compute the 0's. One
gets

llm pp
dgp

a = —X dvllma
gp' —X' p ~00

(CS)

Nevertheless, for go fixed and p —+oo,

0(Poaqo) —+ 1, 0(—Poago) —+ 0.

Accordingly, the Z graphs tend to zero in the limit and
the right-hand side of (C4) is not zero since, as expected,
only straight graphs contribute. For fixed q a is a sum
of h function of go, in (C4) increasing p essentially
translates a&" without decreasing its contribution to the
integral so that the interchange of limit and integral is
not allowed. In (C5), on the contrary, the factor
(qo' —X') ' suppresses the contribution of ai3i as p —+oo

so that one can interchange the limit and the integra-
tion. This is similar to the discussion of Refs. 6 and 7.

One can see, in the model considered here, how this
happens. One may separate a into two parts:

a&'i =4~T—(0(po+go)b[(g+ p)' —m. ']
+e(p, —g,)b[(q—p)' —m, ']},

ai"=4orT {0( pp gp)b[(i—J+p)—' m.']-
+0( po+ —

C )t'[(C p)' —m'5 —}
a'" comes from the one-particle intermediate state
in the noncovariant expansion of the retarded product,
i.e., "straight graphs,

" while a"& corresponds to the
three-particle intermediate states, namely, "Z graphs. "
As we already discussed, the left-hand side of (C4) is
actually equal to zero since straight and Z graphs cancel,
namely,

dgpa(') = — dgpa('&.

rc rd,

which shows that, as one knows already directly, the
Schwinger term is a c number.

and

o i, =o d= —4m'/q'

0-„=0.

(C7)

(CS)

From (C7) one sees that the Schwinger term is a c
number while (CS) shows that the E.T.C. of Ao and
8„A& vanishes. This also agrees with the free-quark
model where it is found to be proportional to Ny~l
which vanishes in the forward direction.

4. Free-Spin-~ Particle with Anomalous Moment

In this model one would take (B3) with F2WO. Then
there are extra factors which prevent (3.7) and (3.8)
from holding for the antisymmetric part. However, this
model should not be taken into account, since it leads,
e.g., to antisymmetric gradient terms in the E.T.C. of
the time components which invalidate the usual current-
algebra calculationg,

3. Free-Spin —
~ Particle and Axial-Vector Current

As usual, we let

~» =4'v»v5&'V,

so that the result is obtained from (BS) by letting

E;;=0 if i&1 or j/1.
Here also (3.7) and (3.8) are satisfied. Note that here,
as in (1), nog' or q p factor appears in'; w, and h. One
finally gets


