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A dynamical theory of nucleon-nucleon scattering is proposed, employing Sudarshan's universal coupling
scheme for all primary interactions. The basic nature of all interactions is assumed to be vector and axial-
vector. The contribution to the nuclear force, therefore, comes from vector, axial-vector, and pseudoscalar
(longitudinal components of axial-vector fields) meson exchanges. The resulting potential has all the requi-
site features of a two-nucleon force, notable among them being the natural occurrence of a repulsive core
at short distances. The various phase shifts and mixing parameters are then compared with experimental
results. This being a parameterless theory, complete agreement is, of course, not expected; however, the
over-all agreement of our results with experiments is very good. Another important feature of the present
work is the occurrence of a CP-violating nuclear force, responsible for induced CP-violating effects in weak
interactions. The consequences of this force with respect to the polarization and asymmetry measurements
in nucleon-nucleon scattering are found to be consistent with the available experimental results, which
have large uncertainties.

1. INTRODUCTION
' ~VER since the fundamental discovery of Yukawa, '

~ that the force between two nucleons may be due
to the exchange of a meson, no subject has attracted
more attention than the nuclear-force problem. The
subsequent development of the nuclear-force problem
(and, of course, nucleon-nucleon scattering) has been
mainly along two parallel lines: purely phenomeno-
logical analyses coupled closely with experiments, and
meson theory. Over the years, a closer examination
shows that there has been surprisingly little interaction
between these two lines. The phenomenological analyses
and related general theoretical considerations were de-
veloped more or less without recourse to meson theory,
and the meson theory proceeded along its own path,
developing into an abstract discipline, taking very little
help from experiments, from pion-nucleon scattering if
at all. The relative independence of two approaches has
proved to be a boon, since a more or less comp/eke

phenomenological description of proton-proton scatter-
ing (and a relatively less complete description of neu-
tron-proton scattering) up to about 400 MeV is now
available.

The main result of these phenomenological analyses
has been the construction of a two-nucleon potential,
which, in general, contains a large number of param-
eters (the strengths and ranges of the various types
of forces, e.g., tensor force, spin-orbit force, etc.). How-
ever, the general form of the two-nucleon potential (if
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f. On leave of absence from Pakistan Atomic Energy Commis-
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' H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935}.
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such a nonrelativistic concept is applicable to the
description of relativistic scattering) is more or less
agreed upon, ' in that it must contain spin-dependent,
tensor, and spin-orbit forces, and must also contain a
hard core. ' Perhaps the nuclear force also does contain
a short-range force proportional to I, I, (where I is the
orbital angular momentum). ' '

On the other hand, the progress in meson theory as
applied to the two-nucleon problem has been very
meager (mainly due to the formulational difficulties of
quantized field theories). Perhaps the two most import-
ant advancements in the two-nucleon problem, due to
meson theory, are (i) the recognition due to Wick' and
to Taketani et al.' that the nuclear force must essentially
contain three ranges, the longest one due to one-pion
exchange, the intermediate one due to two-pion ex-

change (or, in modern language, the exchange of p, &o, and

q mesons), and, finally, the shortest range consisting
of an extremely repulsive interaction (hard core); and
(ii) the derivation of a hard core from meson theory. '
The essential difFiculties in a meson-theoretic approach
to the nuclear-force problem are, however, formula-
tional ones (e.g. , whether interacting field theories are
empty of content and whether they are self-consistent

'See, for example, J. L. Gammel and R. M. Thaler, Progr.
Cosmic Ray Phys. 5, 99 (1960); M. J. Moravcsik, The Two-
Nucleon Interaction (Clarendon Press, Oxford, 1963}.The last-
mentioned contains a long list of references on phenomenological
two-nucleon potentials,' The change of sign of the 'S0 phase shift confirmed for the first
time the existence of a hard core, which had been suspected for
some time.

4 T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
'K. E. Lassila, M. H. Hull, Jr. , H. M. Ruppel, F. A. Mc-

Donald, and G. Breit, Phys. Rev. 126, 881 (1962).
' G. C. Wick, Nature 142, 993 {1938).
7 M. Taketani, S. Nakamura, and M. Sasaki, Progr. Theoret.

Phys. (Kyoto) 7, 45 (1952).
g M. M. Levy, Phys. Rev. 88, 725 (1952); A. Klein, ibid. 94,

1052 (1954).
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and how should one. interpret the divergences of quan-
tum 6eld theory). On the other hand, the reliability of
the approximations used (e.g., the static approximation
or the adiabatic approximation) to derive an essentially
nonrelativistic potential from the quantum 6eld theory
is also questionable. The situation, therefore, is ex-
tremely confused and deserves more attention.

However, the foregoing discussion is not meant to
suggest that there have been no attempts to synthesize
the phenomenological and meson-theoretic points of
view. The Signell-Marshake and Gartenhaus" potentials
the modi6ed analysis scheme, "and the various versions
of the boundary-condition models" are attempts to
synthesize the two parallel approaches, but these are
comparatively recent developments and rather limited
in their scope.

Thus it is quite clear that, after all is said and done,
one always ends up with a potential involving many
parameters (often as many as 20 or 30), which gives a
good 6t to the nucleon-nucleon scattering data up to
about 400 MCV. The need for a theory which relies on
its internal consistency rather than on a large number
of coupling constants is now compelling.

Recently, Sudarshan" has proposed such a universal

theory, which generalizes the important and well-

recognized vector and axial-vector interaction theory"
of weak interactions to all primary interactions. The
principle of chiral invariance which led originally to the
universal V—A theory of weak interactions was used
in an essential manner to investigate the nature of all

interactions. Sudarshan suggested that perhaps all inter-
actions are due to the mediation of vector and axial-
vector 6elds. The vector 6elds satisfied B„V„(x)=0,
while the axial vector 6elds had a longitudinal compon-
ent to be interpreted as a pseudoscalar meson. One is
thus 1ed to a coupling scheme of baryons with vector
and axial-vector 6elds which in its nonrelativistic form
satlsfles an SP(4) symmetry 1 The various couphng
constants become related and give rise to many inter-
esting results, ""including the pleasant one g~/gv
=(25/18)'I'." The whole coupling scheme therefore

9 P. S. Signell and R. E. Marshak, Phys. Rev. 109, 1229 (1958).
'0 S. Gartenhaus, Phys. Rev. 100, 900 (1955)."M. H. MacGregor, M. J. Moravcsik, and H. P. Noyes, Phys.

Rev. 123, 1835 (1961);J. K. Perring, Nucl. Phys. 30, 424 (1962).
~~ G. Breit and W. Bounicius, Phys. Rev. 75, 1029 (1949);

H. Feshbach and E. Lomon, ibid. 102, 891 (1956); A. M. Saper-
stein and L. Durant, ibid. 104, 1102 (1956)."E.C. G. Sudarshan, Nature 216, 979 (1967); Proc. Roy. Soc.
(London. ) 305A, 319 (1968).

'4 E. C. G. Sudarshan and R. E.Marshak, in Proceedings of the
Padua Conference on Mesons and Recently Discovered Particles,
1967 (unpublished)."R. P. Feynmnan and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

'6 An extension of this theory to include strange particles gives
a value of the Cabibbo angle tang= m /as~. Also an application to
nonleptonic and leptonic E-meson decays seems to work out. See
R. H. Graham and S. K. Yun, Syracuse University Report No.
SU-1206-146 (unpublished); P. Ramond (to be published).

"T.Pradhan, E. C. G. Sudarshan, and R. P. Saxena, Phys.
Fev. Letters 20, 79 (1968).

&& This result has also been deduct;d by many authors. See, for

contains only a single ovcr-all coupHng constant which

may be chosen to be the universal coupling constant of
the p meson with the conserved isospin current. This
theory, therefore, does not contain any free parameters
and, as discussed before, seems to be ideally suited for
ouI purpose.

It should be emphasized, however, that such a uni-

versal theory can, at best, only hope to be an effective
replacement of the hadron dynamics. The apparatus of
perturbation theory, called in modern language the
"tree-diagram" approximation, can therefore be hope-
fully used. The renormalizability of the interaction
scheme is a question which we do not propose to answer,
as well as other formulational questions. %C simply
accept the fact that Sudarshan's theory might be an
"CGectivc" way to describe hadron dynamics" and pro-
ceed to investigate the nuclear-force problem, using this
theory.

In recent times, a great deal of Cavort has gone into
the construction of effective Lagrangians from chiral

symmetry, " which, in general, reproduce the results
obtalncd fr'oQl currcIlt algebras and thc hypothcsls of
partially conserved axial-vector current (PCAC). How-

ever, these I agrangians are, in general, nonlinear in char-
acter and thus differ essentially from Sudarshan's theory,
which employs linear Yukawa-type couplings only.

The aim of the present paper is to evaluate the two-

nucleon force, employing this universal theory, and to
test whether the resulting nucleon-nucleon potential
(which is highly energy-dependent and nonlocal) pro-
vides a dynamical explanation of the. nucleon-nucleon

scattering data. The task is enormous, and it is hearten-
ing to note that our results are in good agreement (at
least as good as achieved by anyone else in the past)
with experimental data. The novel feature of the present
work is the presence of an extremely momentum-de-

pendent force which violates time-reversal invariance.
Thc coIlscqucnccs of this tcrn1 with respect to thc polari-
zation and asyn1metry parameters in high-energy

( 600-MeV) nucleon-nucleon scattering are examined

and found to be consistent with experimental data,
which are very unsatisfactory. At low energies, this term
is entirely negligible. A more meaningful comparison of
the T-noninvariant term in nucleon-nucleon scattering
must await better experimental measurements.

The paper is arranged as follows. Section 2 contains a
brief review of Sudarshan's theory which forms the

example, J.Schwinger, Phys. Rev. Letters 18, 923 (1967);P. G. O.
Freund, ibid, 19, 189 (1967)."The word "effective" should be understood to imply that the
heavy-vector and axial-vector mesons produce the same effect
as would be produced by two or more pion exchanges.

20 Working from the hypothesis that the pion transforms non-
linearly under chiral transformations, a number of authors have
derived the so-called eBective Lagrangians. See, for example,
S. Weinberg, Phys. Rev. 166, 1568 (1968);J. A. Cronin, ibid. 161,
1483 (1967); F. Gursey and P. Chang, ibid. 164, 1752 (1967);
J. %'ess and B. Zumino, ibid. 163, 1727 (1967); J. Schwinger,
iNd 167, 1432 i1968l;. 8, W. Lee and H, 7, Nieh, ibid, 3.66,
I507 ($968),
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starting point of our work. In Sec. 3, we have derived
the two-nucleon potential and compared it with other
existing potentials. Our method of numerical solution
of the Schrodinger equation with an energy-dependent
potential is outlined in Sec. 4. In Sec. 5, we calculate the
time-reversal-noninvariant effects and compare them
with the existing experimental data. A detailed com-
parison of the nucleon-nucleon scattering phase shifts
with the experiments is made in Sec. 6. Lastly, in Sec. 7
we provide a brief discussion of our results and a possible
outlook for a universal theory of hadron dynamics.

egv),46y

e'(nsv' V),+m„'W), ) Sy. (2.1)

The coupling of baryons to vector Gelds is chosen to be

JtT(-', g~ V)yg+ ',g'~ V),„so),.+ ',g-0Wxy), +-',g0'W-g„', o-g, -
+ sg004'A'x+ sg00 4xvsoxv)$ (2 2)

e, e', g, g', gp gp gpp andgpp are dimensionlesscoupling
constants. The vector Gelds are described by 10-com-
ponent DuQin-Kemmer objects."The four components
V), and the six antisymmetric tensor components
Vq„=(1/m, )(r)qV„—r),Vq) describe the p field. For the
ro and p fields the corresponding quantities are Wz,
Wq. , Pq, and pq, Since there ar. e no scalar mesons in
nature, one assumes that

r)„V„=O, r)„W„=O, r)v&„=0. (2 3)

The current that couples with photons is thus strictly
conserved. The eGective nucleon-photon coupling can
now be worked out and gives (equality of electron and

"R.Delbourgo, A. Salam, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965).

2. REV?EW OF SUDARSHAN'8 THEORY

This theory is based on the hypothesis that the three
primary interactions —weak, electromagnetic, and
strong —are all characterized by a single coupling con-
stant. The primary weak interactions couple leptons
among themselves and to vector and axial-vector Gelds,
but not to baryons. The basic electromagnetic inter-
action couples the Maxwell Geld to charged leptons and
neutral vector Gelds, and once again, not the baryons.
The only strong interactions in this theory are due to
the coupling of vector and axial-vector fields with bar-
yons and among themselves. All the interactions are
assumed to be universal. The electromagnetic and weak
interactions of baryons thus become derived properties
through the mediation of vector and axial-vector Gelds.
In what follows, we shall borrow heavily from Sudar-
shan's paper. "

As mentioned above, the Maxwell Geld 6,), couples to
leptons P and neutral vector fields Vq and Wq, corre-
sponding to p and ~ mesons. The couplings are

proton charges)
0/g go= g (2.4)

To derive further relations between coupling con-
stants, Sudarshan assumes an SU(4) symmetry. The
nucleons and the I=7= ~3 Ã* form a 20-dimensional
representation. The vector field components are as-
sumed to constitute a 15-dimensional representation.
Its contents are (0;,(1/m&) 0;,sr),&j„and (1/m, )0;,sr), 90)
This gives for the coupling constants

g /g=5/3 g« =g g«=go =0 (2.5)

The resulting anomalous moments are in good agree-
ment with experiments.

The weak interactions couple leptons among them-
selves and to vector and axial-vector fields. The basic
couplings are

aild

-',v2G(up~(1+ps) v„) (ey~(1+ps) v,)

G'(m Vvg+mg'A) ) (eely(1+ps) vt),

(2.6)

(2 7)

where G is the universal Fermi coupling constant and is
related to the p-decay lifetime. It turns out that
G=(2.43&&10 ')m„s. Vy and Aq are charged vector
and axial-vector Gelds. Since there are no scalar quanta
and one would like the vector current to be conserved,
we choose 8),V),=—0. The axial-vector Geld, however, has
a longitudinal component, which is nothing but the
pseudoscalar pion Geld. %e choose for Aq the Stuckel-
berg form

Ax=B),+{&/m )r)),@, (2.8)

G'= —G/g. (2.10)

For computing the axial-vector contribution to weak
interactions, we choose the following strong interaction
(the arguments are the same as before):

fEt 7,p, ~ A~+(f'/f) ', o„ass~ A~,]X-, (Z.11)

with similar couplings with other axial-vector Gelds. The
axial-vector P-decay coupling constant is now given by

(g~/g V) = f—lgr (2.12)

Note that the idea of a nonrelativistic symmetry
[SU(4)] which led us to the nontrivial coupling-con-
stant relations (2.5) forces us to construct another meson

"R.H. Capps, Phys. Rev. Letters 14, 31 (1965); J. G. Belin-.
fante and R. K. Cutkosky, ~bid. 14, 33 (1965).

2'M. Gell-Mann and M. M. Levy, Nuovo Cinmnto 16, 705
(1960); Y. Narnbu, Phys. Rev. Letters 4, 380 (1960).

where the transverse part B), describes a real axial-
vector meson (say, the Ar meson) satisfying r)&Bq=—0.
For pion momenta on the mg, ss shell, we have the
familiar PCAC condition" built in, in (2.8):

a,A,=((/m. )Z4.=(mA. . (2.9)

One can now write the effective vector (weak) inter-
action of baryons using (2.2) and (2."I):
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matrix (containing axial-vector mesons also). However,
the nonrelativistic form of (2.11),

', fÃt-~. o,[A;+(f'/f) Ao;$X, (2.13)

—(g~/g v) = (25/Ig)'", {2.15)

in excellent agreement with experiments. '5

The effect of the CP-violating term in (2.13) in normal
P decay is negligible (because of its large momentum
dependence) and cannot be tested at the moment. The
cQccts ln hypcI'OD dccRys Rnd p-capture reactloQs should
be much larger. However, the fact that this term pro-
vides a natural vehicle for CI' violation in weak inter-
action but not in e)ectromagnetic phenomena is of great
interest in view of the experiments on EI.O and E80
decays. We shall return to the question of CP (or T)
viola'tloll 111 stl'ollg llltcl'cKtlolls (pal'tlculRI'ly Illlclcal
force) in a later section.

We are now in a position to write the comP/8t8 strong-
lntcractloD LRgl'RnglRQ of SudRrshRQ s theory which
does not contain any parameters apart from the over-
all coupling constant. It looks like

@strong= g+[Vxs'e ' pi+ (g /g) s&ls s's' pxv+ s (go/g)'Yeso)

+(goo'/g) se)A~.+{f/g)vivos~ Ai+r(fo/g)v)vsZ),
+(f'/g) so~.ass~ A»+ s {fo'/g)e), .

vsse�

),.j&. (2.16)

Equations (2.5) and (2.14) determine the coupling-
constant relations. The couplings of pseudoscalar
mesons are via the Stuckelberg decomposition (2.8).

Wc sha11 choose this Lagrangian as our basis and
compute nuclear force employing the exchange of vec-
tor~ Rxla1-vcctorq Rnd pscudoscRlRl ITlcsoQs lQ thc Qcxt
section.

The computation of nucleon-nuc1eon potential from
the choice of the Lagrangian [Eq. (2.16)) is a straight-

~' J.H. Christenson, J. %. Cronin, V. I . Fitch, and F. Turlay„
Phys. Rev. I.etters D, 138 {1964)."Using the algebra of currents, the value of gg/g~ was obtained
by S. Adler, Phys. Rev. Letters 14, 1051 (1N5l; W. I. Weisberger,i'. l4, 1047 {1965).

colltRllls R CE"non1nvarlant tclnl (tile tclI11 lnvolvlllg
Ao,). We should not put f'/f =0 because of the experi-
mental con6rmation of CI' violation'4 in neutral E-
meson decays, Any further choice would be totally
arbitrary. f'/ f=&1 would correspond to maximal viola-
tion. We make this choice, and the norma1ized meson
matrix (15-dimensional) thus has the components
(po,Z;, (sr&2)(A,+Ao;)) where ZI is an isosinglet axial-
vector field whose pseudoscalar component is the g
meson: Zs~ ((/rn„)BI&„. With the above choice, the
coupling constants satisfy the relations

f=7= (25/») I"g (2.14)

The axial-vector-to-vector ratio (2.12) now becomes

5'Is=(3/r')(e r)(e, r) —e, e„
K=I&k,
S=—',(el+et),
it = —srl/Br.

(3.2)

~6 D. Y. Kong, Nucl. Phys. 55, 212 {1964).
~7 The 8 meson in this work has been assumed to be an axial-

vector particle, while the present experimental indications are
that it may be a pseudoscalar,

"The fact that the axial-vector mesons provide the inner core
of the nuclear force is vital from the point of view of the universal
theory, since the hypothesis of chiral invariance demands the
vector and axial-vector nature of all interactions. See Ref. 13 for
detMls.

~9 V, V. Babikov, Nucl. Phys. 76, 665 {1966).
'0 The potential {3.1) has been written in a symmetrized form

for convenience.

forward one."Since the Lagrangian contains the inter-
action of nucleons with pseudoscalar (Ir and tl), vector
(p, oo, and tt), and axial-vector (Ai, D, and E) mcsons, 'I
wc shRll have R nuc1cRI' foI'cc conslstlng of three dlstlnct
ranges (on account of the diferent masses of the mesons
lllvolvcd), Rs vlsuahzcd by cai'lici authors. Tile
longest-range force mill, of course, come from the ex-
change of a, single m meson. The intermediate-range
force, which in traditional meson theory comes from
2sr exchange {probably from XK exchange as well)
and more complicated Feynman diagrams, shall emerge
111 tllc plcscllt worir 111 Rll 8+8ctM8 way from tllc cx-
chRDgc of g, p, e, RDd @.Thc lnncl core of nuclcRr foI'cc
(often called the hard core) comes from axial-vector-
meson exchanges" {a part also comes from vector-
meson exchanges). In addition, we have a CP-violating
force corning from the pseudotensor interaction term of
the axla1-vcctor mesons.

Our procedure of calculation is simply to compute
thc VRI'ious Born terms corrcspondlng to thc cxchRngc
of pscudoscRlRl q vector) Rnd RxlRl-vector mcsons RQd

evaluate their Fourier transforms in the nonre1ativistic
limit. '9 The nonlocality coming from the difference in
relativistic and nonrelativistic phase-space factors
(rls/F) is confined to regions of the order of a nucleon
Compton wavelength and shal1 be approximated by a
polynomial dependence on momentum i lu Wong. '6

The resulting potentials wBI thus be seen to be extremely
momentum-dependent.

We shall choose to write our potential in the following
form" (apart from the nonlocal factor mls/E):

U(r) = U,+V.(ei es)+ VzSIs+ Vis(L S)+sit '
)&[eI lIU.,e lI+s(eI ~es))+(s/2m)[eI IIV rye. s r

+el rUrves is+(el+-+es)), (3.1)

whclc U,. 1S thc pure ccDtrRl potcntlRl, U, ls thc spln-
dependent central potential responsible for singlet-
triplet splitting, UT is the tensor force, U1.8 is the spin-
orbit force, U „ is the force which couples spin and
momenta, and Ugy is the time-reversal-violating nuc-
lear force. The various operators are standard and are
defined bc1ow for completeness:
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All the potential terms are assumed to be functions of
IrI and k'.

A. Pseudoscalar Potential

As mentioned before, the pseudoscalar mesons arise
in our theory as longitudinal components of axial-
vector fields. Their coupling constants are determined
from the relation

~),=%+(k/mz) ~~4 ~, (3.3)

FIG. 1.Feynman diagram for
nucleon-nucleon scattering, il-
lustrating the kinematics.

p a p
I 2

Pl -Pg * P4" Pg

~ q2

fI= f~5 (3.4)

where $ is a predetermined universal parameter [see
Eq. (2.9)] and m~ is the mass of the pseudoscalar
meson. The axial-vector coupling constant fg is now
related to the dimensionless pseudoscalar coupling con-
stant (pseudovector coupling) fr by the relation

U, =O,

U.= (f~'/12m)Z4(mg r),
Ur (fp'/12m)Z4(m~r),

UIs= U y= Urn=0

(3.7)

The evaluation of the potential is now straightforward:

The Born term corresponding to the exchange of a
pseudoscalar meson is simply given by

where

Zo(mr) =e "'/r

2"= (fp/m~)'Oru(p4)(y g)y4N(pg)(t —mp') —'

x -(p)(~ g)~, (p). (3.&)

(See Fig. 1 for kinematics. ) Here Or is the isotopic spin
operator equal to 4~& ~z for the pion (I=1) and 4 for
the g meson (I=0). In what follows we shall drop the
isospin dependence, since it is a trivial multiplicative
factor. The nonrelativistic form of the above expression
is now written in the convenient form

T= (fz/m~)'(&qteq g&i)(&4t4r2 41&2)(&—m~') '. (3.6)

Z4(mr) = (3/m'r'+ 3/mr+ 1)e ~"/r, (3.8)

Note that higher-derivative terms in (2.16) (involving
Zq„and A&„) do not contribute to the pseudoscalar
force. The above potential is the same as the one ob-
tained before by many authors.

B. Vector Potential

The Born term, corresponding to the exchange of a
vector meson, is (apart from isospin factors)

T= [g'N(p4)V. N(p~)~(p4) V.N(p4)+(g"/m v')N(p4) ~"~-N(p~) ~(p )v erg(p ) (gg'/mv)—

f gI.+Aviv/—mv'
t

x(N(p )v,g(pi)N(p ),eye~(p )+&(p ) .-&.N(p )N(p b 44(p ))]I I
(3.9)

&
—m, '

The nonrelativistic form of the above expression can now be arranged in the form (3.1) and the appropriate Fourier
transforms yield the well-known potential

g' ( m v4 m v4 2k' k'mv' k4m v4'l gg' t'm v m v' kmm v k'm v''l
U.= —

I
1+ + + + —

I

——
I

+ +
4s k 2m 64m m4 16m' 128m'I 47r k m 4m' m' 16m' I

g" (m v' m v' k'm v' k'm v4)-
+—

I + + — —
I Z4(mvr), (3.10)

4s (4m2 64m' 16m' 128m')

g' m v' m v' k'm v' k'm v4& gg' / 2mv m v' 2k'm v k'm v')
+ + —

I

—
I + +

4~ 6m 64m 24m 128m l 4gr( 3m 4m 3m 16m I

g" t'2 m v' m v' 4k' k'm v' k'mv4)
+—

I
-+ + + + —

I Z4(mvr), (3.11)
4s (3 2m' 64m' 3m' 24m4 128m4)

g'f mv' k'mv') gg'(mv k'mv) g"(1 2k' k'mv')
+ I+—I + I

——
I
-+ + I Z4(mvr),

47r (12m' 48m4 I 4' (3m 3m' ) 4s E3 3m' 48m4 ] (3.12)
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g' 3m v' m v' k'm v' k'm v4) gg'(4mv mv' 2k'mv k'm v')

4n. 2m' 16m' Sm4 32m') 47r k m mo m' 4m' )
g" (3m v' m v' k'm v' k'm v')

+ + —
~

Zg(mvr), (3.13)
4m k 2m' 16m4 Sm4 32m' )

g'(mv' k'mv ) gg' mv k mv) g'( mv k mv )
I+— —

I

—
/
2+ —

I Zo(m«)
4tr (16m' 32m4 ) 4x m 4m' ) 4n E 16m' 32m4 ) (3.14)

Uzy ——0,

where

Zy(mr) =
~

—+ ~e "'/r
&mr moro)

(3.1S)

(3.16)

C. Axial-Vector Potential

Using the axial-vector couplings given before [Kq. (2.16)], the axial-vector-meson exchange amplitude may be
written

I'= [f'~(po)V P'o&(pi)N(p4) Y,pou(po)+(f"/m, ')u(po) ~„~q yol(pi)u(p4) o,eqpyou(po) (ff'/m—&)

mg2

( gpv+gpgv/mz )~ (N(po)ya roN(p&)+(p4)+ PVPVo+(po)+1(po)&page'VSQ(pl)Q(p4)yp'yoQ(po))]~ l(3.17)

The resulting potentials are

f' mg4 k'm~' k'mg4—
U.= — + — Z, (m, r), (3.1S)

4x 64m4 16m4 128m'

f' 2 m~' m~4 k'mg' k'mg4)
U = ———— +

4z 3 3m' 64m' 24m' 128m')

f"(1 mg' 2k'
——

~

—+ + Zo(mar), (3.19)
4~ k3 12m' 3m'

f'(1 mg' k—'mg')
U.= —

)
-+ +

4o. k3 12mo 4Sm4 )
f"(1 m~' 2k' ~

I
-+ + I

Zo(m~r), (32o)
4tr (3 12m' 3mo)

f' (m~' m~' k'mg' k'mg')—

4m. (2m' 16m4 Sm4 32m' )
XZg(mar), (3.21)

The last term [Eq. (3.23)] violates tinM-reversai in-
variance and its consequences will be discussed in detail
in Sec. 5."

Note that in writing the above potentials all energy-
dependent factors except the phase-space factor m/E
have been expanded in powers of k' and terms up to k'
are retained. The relativistic phase-space factor is
multiplicative to all terms and will be approximated
by m/8 1—k'/2m'

In order to introduce these potentials in a Schrodinger
equation we erst estimate their energy dependence.
Should it turn out that our potentials are sensitively
dependent upon energy (in the low-energy region, say,
up to 300 MeV), we shall be forced to treat k' as an
operator and the resulting differential equations will be
of a very complicated form. To be allowed to treat the
momentum-dependent potentials written above as c-
number functions of nmnmnta (operators otherwise), we
should be able to show that the momentum dependence
is small. Ke shall therefore write the total potential
due to all the. eight mesons (including the phase-space
factor m/E) in the form

f'( m~' k'mg'
U,„= ——

~
2— + Zo(m~r),

4o.k 16mo 32m4

ff'( k'm~q-
Ur v= —o

I
2m~+

I
Z, (m~r).

4k m)

"The existence of this term is vital because in weak interactions
this term provides a natural vehicle for CI' violation as an induced
strong-interaction eGect, while in pure strong interactions it is not
so disastrous, as we shall discuss later.

(3.23)

(3.22)
U(r, k') = U.+(~, e,)U.+S&,U,+ I. SU„

+ei kU, ~eo $, (3.24)
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—0.0057
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0.0075
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0.0—0.0300—0.0616
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0.0032
0.0022
0,0012

0.1141
0.1106
0.1065

—0.1778—0.1693—0.1597

0.0—0.0291—0.0598
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0.0

—0.0767—0.0813—0.0859
—0.0767—0.0813—0.0859

0.0
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k being the unit vector along k. Here

U,= P A,Zg(pg),

S

U.=p 8;Zo(pg),

8

Ur ——Q C;Zm(p;r), (3.25)

Uzs=g D;Zg(p;r),

U.,=Z @Zo(p,~),

where p; is the mass of the meson exchanged and A;,
8;, C;, D;, and E; are polynomials in P. Table I shows
the dependence of A;, 8;,- ~ -, upon energy. In most

t s th t the e t dcp d e y
small. In some cases (e.g., A for p and ru), it is about
30%. Since we are interested in doing a phase-shift
analysis at low energies only, we are probably justi6ed
in treating this small momentum dependence as a c-
number.

%C now perform a partial-wave projection and plot
the effective partial-wave potentials" in Fig. 2 for vari-
ous energies. A comparison of our potentials with other
I'cccDt ones obtRlncd by SUgR%'Rl R Rnd VOD Hlppcl
and by Reid" leads us to make the following remarks'.

(i) The 'So potential shows the well-known hard, core
and changes sign at about 0.6 or 0.7 I'. In the present
work~ this ls R DRtUx'Rl consequence of SudRl'shaIl s UIQ-

versal theory. Our potential has the same shape, passes

3~See, for example, M. L. Goldberger and K. M. Watson,
COll$$$08 Th80fp (John Wiley Bz Sonsq Inc.

q NNv York~ 1964)~

Chap. 7, p. 384.
ll' H. Sugawara and F. von Hippel, Phys. Rev. 172, 1764 {1968).
34 R. Reid, Ph.D. thesis, Cornell University (unpubhshed).

through zero at about the same point, and is slightly
less attractive as compared to the potential given in
Ref. 34. However, in Reid's work, this hard-core be-
havior was contrived at by a judicious choice of his
parameters.

(ii) In general, our potentials (see Fig. 2) are in good
agreement with the phenomenological ones used by
Rcld howcvcx' ln some pRl tlR1 %Rvcs notRbly ~82
our potential is even opposite in sign as compared to
Reid. This difference will be reQected in the phase shifts
and mill be commented upon later.

(ii*i) In the so-called zero-parameter fit by Sugawara
and von Hippel, " the extreme short-range potential is
obtained by considering fouxth-order diagrams including
the effects of S* production in interInediate states.
These effects px'csunlRMy glvc llsc to thc hard cox'c
However, in the present work the exchange of heavy
axial-vector mesons seems to simulate the effect of in-
elastic channels in the intermediate state. It is, therefore
hcRl tcDUlg to note thRt lD oux' simple-minded lowest"
order calculations it is possible to simulate the effects
of hIgh-mass lnclRstlc- channels~ pI'ovldcd that duc cogni-
zance is given to axial-vector mesons and their universal
coupling s.

4 SCHRODINGER EQUATION ~D
METHOD OF SOI,UTION

In Sec. 3, we have discussed the energy dependence
of our potential. Ke shall therefore treat the k' depen-
dence of the potential as a c-numbcr35 and attempt to
solve the Schrodinger equation for various partial
%'aves. OUI' method of solution ls qUltc stRDdar(I 32 36

and we shall only sketch it briefly for the sake of
completeness.

"Ifone regards the momentum dependence of the potential as
an operator dependence, the resulting Schrodinger equations are
extremely complicated. See, for example, M. Razavy, G. Held,
and J. S. Levinger, Phys. Rev. 125, 269 (1962)."See B.L. Scott, thesis (unpublished); R. A. Bryan and B.. L.
Scott, Phys. Rev. 135, 3434 (1964).



CH IANG, GLE ISER, HUQ, AND SAXENA

4.0" 40" P 4.0"

2.0"
T~O T~300

2.0'

0

-4.0

40

T~ 300

S,

0

-2.0"

"4.0"
12.0$
4.0

2 0

-2.0*

-4.0-

4.0'-

T H I40

TN 300

2.0
T&0

2.0--

0

"2.0"
2 0

"2.0- ~

2 0

-2.0-

4,p -'! 3p 4.Q-'& P~F

-4.0..

4.0.". F2

FM. 2. Plot of momentum-
dependent partial-wave potentials
for laboratory kinetic energies of
0 and 300 MeV.

2.0" 2.0 2.0- ~

TAO 00

0 I f'
~- T 300

I «T~O

0

-2 0"

0

-2,0"

I 2

"4.0" -4.0- "40"

4.0"-

2.0"

0

-2.0.-

"4.0 ~

For the singlet state (/= J, S=O) and the unmixed
triplet state (/= J, S= 1), the radial Schrodinger equa-
tion is (in what follows, our discussion follows very
closely that of Refs. 32 and 36)

point r=r such that r„&)1/p, '" p being the mass of
the lightest meson exchanged (in our case, the v mesori).

For the mixed partial waves we follow the convention
of Blatt and Biedenharn" and define the radial wave
functions by

jr d' J(J+1)~
+k' — i~vs;zs (r)

&dr' r' ) )d' J(J—1)~
+k —

~N p (r) =vg y, y;g y, g (r,k )
=vzs;zs (r,k )wgs, Js (r). (4.1) kyar r

Xu, p (r)+vt g, g, g~g, g (r,k')w, p (r), (4.3)The wave function m (and the potential v) are written
for the transition m~q,. ~. ,8~. To solve for the scattering
phase shift, one looks at the asymptotic form of the tt'd2 (J+1)(J+2))J A2 ~'rvarial wave function i'+k I~ (r)

~vs, zs (r) const sin(kr ——',Jv'+4s;zs ). (4.2) =»+~, ~; ~+~~'(r, k')~-p'(r,),
The phase shift can now be extracted from (4.1) and

(4.2) by matching the logarithmic derivatives of the
solution of (4.1) and the asymptotic wave function at a

+vJ+1,1;J—1;1 (r k )+,p (r) (4 4)

"In actual practice we found that at about r =1/8m the
asymptotic conditions are well satis6ed.
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where a and P are indices denoting the two eigen-
channels. Equations (43) and (4.4) will have two
linearly independent solutions (labeled 1 and 2) which,
in general, will not be the eigensolution~. To find the
eigenwaves, one must 6nd the linear combination of
solutions 1 and 2, wherein the 3=J—1 part has the
same phase shift as the 1=7+1 part. The two linearly
independent solutions are written in the form (dropping
the superscript J)

N1, 2(r) 241(2r),
'JJ j-1,1,~ + 'JJ j+1,1,~, (4.5)

where N1, 2 and w1, 2 are any two solutions of (4.3) and
(4.4), and 'JJ 1s~j are the spherical harmonics. The eigen-
waves, of course, must have the form

fp(r) gpLjj 1(kr) —tanbp r4j 1(kr) 1'jij 1,1,„j
+Ljj+1(kr)—tan4N j+1(kr)1'JJ j+1,1.-' (4 7)

Here j and n are the spherical Bessel functions and
Neumann functions, b, p are the eigenphase shifts, and

g, p are the mixing parameters which are related by the
unitarity condition g /ps= —1.

Assuming the eigenwaves to be linear combinations
of the solutions (4.5), we again match logarithmic de-
rivatives at r=r to determine the eigenphases b, p

and the mixing parameters. The resulting algebra is
quite complicated but standard. "We merely quote the
results

tan&, = —-',aW((,'S)2—Cl'~2,
where

(r41p4 434p1+433p2 r42p3)/(433p4 424pS) y

(431PS 422P1)/(QSP4 424PS)

d (NS,S)
Q1,2= jj-1(kr)—

I

'

[

—kjj-1'(kr)N1, 2,

(4.8)

(4.9)

(4.10)

(4.11)

f (r) Ljj 1(kr) —tanb Nj 1(kr)]'jij 1,1„j
+ St 3jj+1(kr) tan~t2 23j+1(kr)jJj+1,1, (4.6)

alld

The unitarity condition g /ps= —1 will only be used
as a check on the calculations. The sign ambiguity in
Eq. (4.8) can be settled by noting that in the absence
of noncentral forces the eigenwaves n and p get de-
coupled. "If in the absence of noncentral forces bp~~b,
one should use the upper (lower) sign in Eq. (4.8) for
tanb and the lower (upper) sign for tan53.

For actual numerical solution of the Schrodinger
equations, we had to use a cutoff at small distances,
since the potential is extremely singular at r=0. The
terms in our potential (Sec. 3) which have a 1/r'-type
singularity have a nice cancellation mechanism"'7 for
I=1mesons, but not so for I=0 mesons. Such a cancel-
lation of 1/r' terms was visualized in very early days
by Schwinger. "However, for our complete potential
it does not work and we are forced to use a cuto8. We
have used two forms of cutouts: a hard-core cuto6,
which means an infinite repulsion for r&r„and a soft-
core cutoff, implying V(r)= V(r,) for a—ll r&r, . Our re-
sults for various phase-shifts and mixing parameters
(3,= tan 'q, ) along with experimental values" are
plotted in Fig. 3 for various cutoffs.

S. VIOLATION OF TIME-REVERSAL
INVARIANCE

As mentioned before, a part of the tvyo-nucleon inter-
action via the exchange of axial-vector mesons PEqs.
(2.11) and (3.23)j violates time-reversal invariance. We
have chosen the coupling constants in such a way that
the violation of T (or CP) invariance is maximal.
However, this term is extremely momentum-dependent
(as argued before) and its effects will be seen in only
high-energy nucleon-nucleon collisions.

Perhaps the simplest way to detect T (or CI') non-
invariance in nucleon-nucleon scattering is to measure
the polarization P in unpola, rized particle collisions and
the asymmetry 0', in the scattering cross section of
totally polarized beams. If 2' invariance is good, I' and
0', should be equal. In the present work, however, they
will nOt be equal. To compute the quantity I—8, we
rewrite our Feynman amplitude M in the standard
form given by Wolfenstein and Ashkin40 and by Dalitz4':

d f 1,2N
n3, 4= —33j 1(kr) i i+k33j 1'(kr)N1, 2.

dr& r) (4.12)

M= (24+3)+(24—r)e1 n432 n+c(431. a+432 n)

+(g—k)431. m432. m+(g+k)411 1432 l. (5.1)

The violation of T invariance allows one to add the
following term" "'

The quantities P12 3, . are obtained from , ,4312Sby
replacing I's with 24's and J—1 with 1+1.The mixing
parameters q and qp are given by

M"'= T(431 1432 m+431 m422 l), (5.2)

where 1=(k+k')/~k+k'~, m=(k' —k)/[k' —k~, and

421+as tanb~

P1+PS tan8

432+434 tank

p2+p4 tan8,

p1+pS tanks p2+p4 tan83

421+433 tanhs 422+434 tan54

(4.13)

"J.Schvringer, Phys. Rev. 61, 387 (1942}."M. H. MacGregor, R. A. Amdt, and R. M. Wright, Phys.
Rev. 169, 1128 (1968); R. A. Amdt and M. H. MacGregor, ~bid.
141, 873 (1966).

«L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952)."R.H. Dalitz, Proc. Phys. Soc. (I,ondon) A65, 175 (1952)."R.J. N. Phillips, Nuovo Cimento 8, 265 (1958).
4~ L. I.Lapidus, Rev. Mod. Phys. 39, 689 (1967).
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n= l&&m, ir and Ir,
' being the initial and 6nal momenta

in the c.m. system.
Using (5.1) and (5.2), one can compute the polari-

zation P and asymmetry 8, parameters. Their difference
is given by

P 8=——8 Im(T*h)/o o, (5.3)

where &TO is the differential cross section at any angle.
Since this difference is expected to be small, and at
any rate the present experimental data are extremely
uncertain4'4' with respect to the parameters E' and 0',,
we make only a crude estimate using the Born approxi-
mation for the right-hand side of (5.3). In the Born
approximation, h is purely real and T is purely imagi-
nary, so that

P Ol= ——8 ImT Reh/o s. (5 4)

Our results for P Rare a—s follows: At 400 (lab energy)
and 600 MeV, for an angle of scattering around 40',
the values of E'—8, are 0.028 and 0.049, respectively.
These are to be compared with 0.0019&0.01045 and
0.021+0.027,44 respectively. In view of the large un-
certainties in the experimental measurements, our re-
sults can certainly be regarded as being consistent with
experiments. We also computed the ratio

~

T
~

'/o s, which
can be called a measure of 1' violation in the theory.
The value of this ratio decreases very fast at low energies
It varies from 1.5X10 ' to 0.8X10 ' for lab energies
varying from 400 to about 600 MeV. These estimates
agree with those of Ref. 44 but not with those of Ref.
45. At the present time, one cannot say with any degree
of certainty whether the experiments show any T viola-
tion at all. For testing the present theory properly, the
experimental accuracy must go up by an order of
magnitude.

44 Yu. M. Kazarinov, Rev. Mod. Phys, 39, 509 (1967).
4' R. Handler, S. C. Wright, L. Pondrom, P. Limon, S. Olsen,

and P. Kloeppel, Phys. Rev. Letters 19, 933 (1967).
4' V. S. Auslander, G. I. Budker, J. N. Peslov, V. A. Sidorov,

A. N. Skriusky, and A. G. Khabakhpashev, Phys. Letters 25B,
433 (1967).

47 In Sudarshan's theory the pmw coupling consists of a vector
as well as a tensor part. )See T. Pradhan, E. C. G. Sudarshan,
and R. P. Saxena, Phys. Rev. Letters 20, 79 (1968), in particular,
Eq. i8lg. Dne to the intefrerence between the two parts, one
obtains a p width of 90 MeV for g'/4~=6. 5.

48 P. Soding, C. G. Wohl, A. Roos, and W. J. Willis, Rev. Mod.
Phys. 40, 77 (1968).

6. COMPARISON WITH EXPERIMENTS

Looking at the phase-shift and mixing-parameter
curves, a few general remarks can be made. In general,
the phase shifts prefer a soft core (though some partial
waves are better with hard core) at a distance r,= 0.6 F.
The best value of the over-all coupling constant seems
to be g'/4r=6. 5, corresponding to the width of the p
meson being 90 MeV. 4' 4' Since there seems to be some
uncertainly about the width of the p meson' and con-
siderable spread in the value of the universal p coupling

obtained from other sources, "we have even tried vary-
ing g'/4' up to about 8.125 (corresponding p width
~115 MeV). As can be seen from the curves, for some
partial waves even this value of the coupling constant
seems to be all right. However, the over-all prediction
of all partial waves seems to be in good agreement with
experiments (with some exceptions, of course) with
g'/4n. = 6.5 and a soft core at r,= 0.6 F.

As mentioned before, the most heartening feature of
the present work is the eatlral occurrence of a repulsive
core in 'So potential (largely due to the axial-vector
mesons); however, the slope of the 'Ss phase-shift curve
seems to be too small for low energies (0&E& 100MeV).
Increasing the coupling constant helps a little but not
very much. If one uses a hard core, the results become
much worse. A tentative reason for the slope being too
small can be found by looking at our potential at inter-
mediate and long ranges. The potential is attractive
but momentum-dependent; therefore, for low energies
the attraction is reduced and hence the slope of the
phase-shift curve.

For the 'S» state our result is extremely good up to
about 300 MeV. For higher energies, the phase shift,
in general, rises, due to the soft core with attractive
potential near r=0. In practice, this may not be the
case. The hard-core results are uniformly bad for this
partial wave. The mixing parameter e» can be 6tted
quite well in the intermediate energy range (100&E
&300 MeV). The bad fit at lower energies may be due
to our calculational inability to satisfy the unitarity
condition ri /rip —1, whil——e for higher energies the uni-

tarity relation was very well satisfied. For higher
energies ()300 MeV) a reason similar to that given
above might be responsible. The partial wave 'D» gives
good results with both soft and hard cores up to 200
MeV, beyond which the hard-core result is bad and the
soft-core result continues to be good. The numerical
dependence of our results on the value of r, is very weak.

The»P» phase shift is repulsive and soft-core results
(less repulsive than hard-core) are preferred. The results
are insensitive to the value of coupling constants. The
'Po and 'P» partial waves are the notable exceptions
which seem to prefer a hard core, although the soft-
core results have a similar shape and are not so bad.
The best value of parameters for these partial waves
seems to be g'/4w=6. 5, r, =0.6 F (hard core). Our
results for 'Ps phase shifts are uniformly bad (lower
than experiment). The reason for this is the existence of
a large attractive L 8 force arising due to the exchange
of heavy axial-vector mesons (see Table I for D and E
mesons). For 'Ps, 'Pr, 'Ps, partial waves, this force
is repulsive and merges with the repulsive core at short
distances. For 'D», 'D3, 'G3, ~ partial waves, it is
again repulsive due to isotopic spin factors. The only
other place where this large attraction at extremely

49 P. S. Signell and J. W. Durso, Phys. Rev. Letters 18, 185
(1967).
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short distances can give rise to trouble is the 'F4 partial
wave, where our results are uniformly bad. However,
this should be not regarded as a serious drawback of the
present theory, owing to the rather uncertain existence
of D and E mesons. The consequences of their absence
will not be disastrous elsewhere, the A& meson already
provides a suitable amount of repulsion at short dis-
tances. The other notable features of the nuclear force
at intermediate and long ranges are already present in
this theory.

As for the rest of the higher partial waves, our results
are in good agreement with experiment. They are largely
independent of cutoB and mostly favor g'/4ir= 6.5. For
some notable exceptions (e.g., es, es, 'Fs), the experi-
mental data seem to be in a bad shape and thus our
results cannot be properly compared. It therefore ap-
pears that in the present work we have a reasonably
good dynamical explanation of nucleon-nucleon scat-
tering data (for E(400 MeV) with essentially a single
parameter.

V. DISCUSSION AND OUTLOOK

We have thus seen that a largely successful descrip-
tion of nucleon-nucleon scattering can be given on the
basis of a "universal theory of primary interactions. "
The fact that such a theory can account for a large
volume of nucleon-nucleon scattering data is in itself
not very surprising. After all, all the ingredients of a
successful two-nucleon potential (e.g., three distinct
ranges, L S force, and a large repulsion at short dis-
tances) are found naturally in the theory. From the
authors' point of view, the most heartening feature of
the theory is the complete absence of any dynamical
(or otherwise) parameters. The cutoff distance r, is also
largely a parameter introduced for calculational con-
venience and does not significantly aBect our results
for higher partial waves. The fact that the cancellation
mechanism" "for the 1/r' singularity of the potential,
which works nicely for I= i meson exchanges, does not
do so for I=0 mesons is unfortunate and forces us to do
calculations with an arbitrary parameter. The theory
in its basic concepts is otherwise free from parameters.
The other so-called zero-parameter fits (e.g., Ref. 33)
have quite a few hidden parameters which are chosen to
fit other experimental data. In this sense, our work,
which relies basically on the internal consistency of
Sudarshan's universal theory, may be claimed to be
better.

The few failures of the present work are largely due
to experimental uncertainties (about the existence of
I=O axial-vector mesons), and could probably be ex-
plained better if one had more data on axial-vector
mesons. We have repeatedly mentioned before that the

axial-vector mesons are the main important new feature
of this work. The axial-vector mesons provide the ex-
treme short-range force' which traditionally was ob-
tained in meson theory via the exchange of two or more
pions and inclusion of inelastic channels in fourth-order
diagrams. The fact that the axial-vector mesons eBec-
tively simulate these effects is, in our opinion, another
major success of the theory. Including too many of them
without worrying about their experimental existence
has led us to a strongly attractive L S force in the 'P2
and 'F4 partial waves. As mentioned before, this is not
disastrous, since the absence of D and E mesons (per-
haps even of one of them) would improve the situation
in these partial waves without upsetting our good re-
sults elsewhere. The experimental situation about the
existence of the particles should be much clarified before
we can reach an unambiguous conclusion regarding
their role in the nuclear-force problem. On the other
hand, the necessity of the so-called S-wave xm pair ex-
change, or, more simply, the scalar mesons, seems to be
vitiated now for two reasons: first, the repeated failure
of experimenters to successfully find a scalar meson,
and, second, the fact that the axial-vector mesons simu-
late the same eBect as shown by the present work.

Apart from the success of the present work, the fact
that a large class of phenomena" ""can be correlated
and understood by employing the single idea of the
universality of all primary interactions encourages one
to hope that such a theory might form an effective basis
for studying hadron dynamics.
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"In a recent paper LG. Breit, K. A. Friedman, J. M. Holt, and
R. E. Seamon, Phys. Rev. 170, 1424 (1968)g it has been remarked
that the existence of a short-range nuclear force in Ref. 1.7 is not
very obvious. We submit that the mechanism of axial-vector-
meson exchanges in the present work provides a short-range force
of the right type to explain many of the features of the two-
nucleon system.


