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We consider contributions to the spectral function of the photon propagator from the states which con-
tain a particle (charge e and mass mz) of arbitrary spin J, and its antiparticle. We express the contributions
in terms of timelike form factors Fg(a) (where a= —P»0, and P is the momentum of the photon) with
the normalization gq(0) = (2J+1)e~. The unitarity limit of the spectral function can be transformed into
the asymptotically bounded condition P~(a) &O(a). The experimental information about the anomalous
magnetic moment of the muon gives a restriction on the sum of all the contributions. Using the restriction,
we examine various mass spectra of charged particles and obtain simple results. For example: If there is
an infinitely rising mass spectrum mz ——f(J), then the asymptotic form of the mass formula must be
bounded by condition mz&O(J) (case I or II) or mz&O(J'/("+')) (case III), where l is a parameter in
the form factors, assumed to be Fg(a)=(2J+1)e'( /4onsg s1)~1—o/ps( s' for J=O, 1, 2, , and
8 q(o) = (2J+1)e'~ 1—a/p'~ "for J= &, ss . For the purpose of experimental observations of the timelike
form factors and the spectral function of the photon, the colliding-beam experiments e++e (or p++p ) —+

X+X (where ) is a particle of arbitrary spin) are discussed in some detail.

less through their electromagnetic interactions with the
photon. The anomalous magnetic moment of the muon,
for example, must be aRected by all the particles
through their modification of the photon propagator.
Therefore, the experimental data on the muon magnetic
moment can give us valuable information about the
unknown spectrum of particles. In the usual way, in-
troducing the timelike form factors of particles, we
treat the eRects of the strong interaction on the electro-
magnetic current. Thus we can transform the informa-
tion into some possible combinations of spectra and
form factors of particles, which is a main purpose of
this paper.

In Sec. II we discuss the matrix elements of the elec-
tromagnetic current between the vacuum and the
particle-antiparticle states, introducing timelike form
factors whose properties are investigated briefly. The
contributions to the spectral function of the photon
from the particle-antiparticle states are expressed in
terms of the tiInelike form factors in Sec. III. In Sec. IV
we show how the contributions can be observed by the
anomalous magnetic moment of the muon, and from the
experimental information we obtain the upper limit for
the sum of all the contributions. In Sec. V we examine
various mass and spin spectra of particles by means of
the results given in Sec. IV. We obtain some simple
restrictions on the relation between the spectrum and
the timelike form factors. An assumption on the form
of the spectrum gives upper bounds of the timelike
form factors. For the purpose of experimental observa-
tion of the timelike form factors and the spectral func-
tion of the photon, the colliding-beam experiments
e++e (or p++y ) ~X+X (where X is a particle of
arbitrary spin) are discussed in some detail in the
Appendix.

I. INTRODUCTION

'ANY particles and resonances' have been found
- ~ since big accelerators became available about ten

years ago. Most of them can be classified into rotational
series in which the mass of member pa,rticle increases
with its spin. On the other hand, several models' 7

have been proposed in order to explain or interpret the
existence of these many particles. Some of them predict
a series of particles with infinitely rising mass and
spin levels as well as their spacelike form factors. We
can, of course, never imagine that the infinitely rising
series should be realized to its asymptotic limit, but we
are very much interested in how and in what energy
regions the present mass-spin spectra would come to
an end.

Although we have no definite and powerful theory on
the strong interactions of particles, we know, for their
electromagnetic interactions at least, the universality
which means that every particle of charge Q interacts
with a photon through its vector current with the
coupling constant Q at zero momentum transfer. If we
want to inspect the over-all features of the particle
spectrum from the viewpoint of the electromagnetic
interaction, we should remember the universality.
Above all, we should examine the spectral function of
the photon to which all particles contribute more or

A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri, L.
R. Price, Paul Soding, C. G. Wohl, M. Roos, and W. J. Willis,
Rev. Mod. Phys. 40, 77 (1968).

~ Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 368
(1966); Phys. Rev. 160, 1171 (1967).' C. Fronsdal, Phys. Rev. 156, 1665 (1967).

4 A. O. Barut and H. Kleinert, Phys. Rev. 161, 1464 (1967);
156, 1546 (1967).' H. Bebie and H. Leutwyler, Phys. Rev. Letters 19, 618 (1967).

6 M. Gell-Mann, D. Horn, and J. Weyers, in Proceedings of the
BeideSerg International Conference on Elementary Parti cles
edited by H. Filthuth (Interscience Publishers, Inc. , New
1968), p. 479.

~ S.J. Chang, J. G. Kuriyan, and L, O'Raifeartaigh, Phys.
169, 1278 (1968).

York, II. TIMELIKE FORM FACTORS

We consider the transition matrix elements of the
electromagnetic current j„between the vacuum and
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tile states wlllcll colltalll R pRI'tlcle (cllal'ge e Rllcl IIlass
r&sg) of arbitrary spin J, and its antiparticle:

(0l j„lm, y;m, —y), (2.4)

where m and m are the spin quantum numbers of the
particle and the antiparticle, respectively, along the
s axts Lm rn= —J —(J—1) ~ ~ Jj Charge conserva-
tion requires

Fs(0 l js l St, y; rs, —y) =0,
which implies"

(2 5)

(Ol jolt&s, y;e, —y)=0. (2.6)

It is convenient to consider the matrix elements of j,
and j~=j,&j„. According to the transformation
properties under a rotation about the s axis, we intro-
duce a set of timelike form factors A(~&(IN; u) and
B~(~&(r&s; u) as follows:

where p and p are the momenta of the particle and the
antiparticle, respectively (p'= p'= —mq'). The mo-
mentum of the photon is

(2.2)

For our purpose, it is sufhcient to consider only thc
timelike region of the momentum, i.e.,

F =(p+p) «.
The transition matrix elements of the initial (momen-
tum p) and final (momentum p') single-particle states
(p'l j„lp) have been studied first by Yennies and Inore
generaHy by Durand, DeCelles, and Marr. o We have
only to transform carefully their results in the spacelike
region into those in the timelike region. Although wc
shall soon find that this transformation is merely a
replacement of the momentum p' by —p formally, we
should note that there is no relationship between space-
like and timelike form factors introduced in the follow-

ing manner.
At erst wc follow thc method given by lennie.

We choose the special frame in which P=O (i.e.,
y= —y), and set the s axis along y. In this frame the
transition matrix elements are

(ol j.l
p'1&}= (p P).F(F')—

2@$0
RIld

(2.12)

)& V.FI(F')+ u"F.Fs(F') ~(p)
2f8$/2

for J=-'„(2.13)

vrhere ~ is the anomalous magnetic moment of the
particle in the unit e/2m&(s. The relations are

A(e&(0; u)=e(u/4I&ss' —1)'"F(—u), for J=O

A&'I'&(-'. u) =A('"&(—-' u)

and

(2.14)

8
=e F,( u)+» Fs(——u), (2.15)

4m'/,

B (I/s&( I ~ u)= —B (I(s&(r ~ u)

about the y axis give the following properties:

A(~&(m;u)=A(~&( —m; u) (2.9)
and

Bp(~& (m; u) = —Bp(~& (—m; u) . (2.10)

(ii) Charge conjugation and rotation of s. about the

y axis give another property to B~(~&(r&I; u) as follows:

B (~&(r&s u)= —Bp(~&(m+1. u) (2 11)

No additional properties independent of Eqs. (2.9)-
(2.11) can be obtained by any other transformations.
Note that these timelike form factors can be complex
whereas spacehke ones are always real. From Eq. (2.9)
Rlld tile comb&nation of Eqs. (2.10) Rnd (2.11), It caII
easily be seen that the numbers of independent form
factors are J+1 for A ~ (m' u) and J' for Bg ~'(rN; u)
111 tile bosoII case LJ+s fol' A( &(rN; u) RIld J+s fol'

B+(~&(r&I; u) in the fermion case).
Wc may show the relations between these form

factors and the familiar ones of lower-spin particles
(mass mg and charge e) defined by the covariant ex-
pression for a current as follows:

(Ol j, lr&s, y; rn, —y)=A(~& (rrI; u)l&„-, „ (2 &)

=2e $EI( u)+»Fs( u)g- —
25$$/Q

for J=-', . (2.16)
where u= Ps (&0). Some —useful properties can be
obtained by making the following combinations of
transformations: (i) Space inversion and rotation of s.

8 D. R. Yennie, M. M. L&y, and D. G. Ravenhall, Rev. Mod.
Phys. 29, 144 (1957}.

9 L. Durand, GI, P. C. DeCelles, and R. B. Marr, Phys. Rev.
126, 1882 (1962).

"The vanishing of (0(10(p; —
I&) is in fact independent of

current conservation, as can be proved in the same manner as
in the paper by Durand ef al. (see Ref. 9).

(2.17)A(~&(&vs; 0) =e

"As P —& 0, i.e., o ~ 0, (o/4&ass —1)'" in Eq. (2.14) should be
replaced by )o/4e&s' —1)'is. Then, (o/4&as' —1)'"~ 1 as P ~ 0,

In the case of higher spins we Gnd that the form factors
A (~& (m; u) and B~(~& (r&I; u) contain various parts from
the electric and magnetic multipole moments. It is im-
portant to note that by formally putting the momentum
P equal to zero, 9"
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Here we have used the following relation:and
8+i~l m; 0 =0, (2.18) P (0 i j„im, y; m, —

p&&m, p; m, —y i j„[0}
which is one of the expressions of the universality and
gives a guide to the normalization of the time ike form
factors in their physical regions.

III. SPECTRAL FUNCTION OF THE
PHOTON PROPAGATOR

We start from the de6nition of the spectral function
of the photon propagator":

which we can easily derive from Eqs. (2.7) and (2.8).
Considering Eqs. (2.14)—(2.16), we may illustrate the
simple results for lower spins as follows:

(3.8)

(2ir)s
II(—F') = 2 &Ol j.l s&&sl j.lo&,

$/2 y(z)~p

n i 4mo')'"
rrs(u)=

i
1—

i
iF{—a)[st)(a—4mss)

12s k

for J=O (39)
where s denotes an arbitrary intermediate state with
the total momentum p&'i. As usual we can express the
renormalized photon propagator in the Kallen spectral — 4~1/2
representation" as follows:

(3.2)
and then

+ IF (-.)+ F (- )!', (3.«)
25$j/2

In accordance with the purpose of this paper, we take
only the particle (charge e, spin J, and mass mJ)-anti-
particle state as one of many candidates for the inter-
mediate states. The contribution from the pair state is

2ml/9 g
+ Fi(—a)+I& Fs(—a)

4m'/g

for J=-,'. (3.11)

Since the contribution from every state is positive From Eqs. (2.17) and (2.18), we obtain the following
definite, 1I(—F') is always larger than Dz(—Fs), i.e., normalization condition even for higher spins:

(3.12)

(3.13)~~(o) &o(o)

id&~&{m u) i
&0(u'Is)

i~, & i(m;.) i
&0(oils)

we may choose the special frame mentioned in Sec. II in
the intermediate state. Thus, we can express II~(—F')
in terms of the timelike form factors as follows: an

(3.14)
pg(a) mJs 4m'')'Is

Ilg (a) = 1—
i

&) (a—4m''), (3.5)
12s' a a ) "V. N. Gribov, B. L. IoBe, and I. Va. Pomeranchuk, Phys.

Letters 248, 554 (196'1).
14 From Eqs. (3.4), (3.5), and (3.18), we can easily 6nd that

this asymptotic condition is also required by the renormalizability
of hadronic electromagnetic interactions (i.e., Z3 logarithmic
divergence). A more conservative requirement, the finiteness of
the contribution to the muon magnetic moment, leads to a weaker
asymptotic condition, Sq(o)&O(o') /see Eqs. (3.5), (4.8), and
(4.9)j, while the hypothesis proposed by Kroll, Lee, and Zumino
(Ref. 16) leads to a stronger one, Pq(o) (O(1) Lsee Eqs. (3.4),
(3.5), and (3.20)j.

where pg (a) is a reduced timelike form factor defined by

+J (o) =2 I
~"'(m; &i) I

s+ P I
&+'"(m; o) I

' (3 6)

"G.Eall', Helv. Phys. Acta 25, 417 (1952).

After transforming the summation P~„- p into the in- when we formally put the momentum F equal to zero.
variant integral Furthermore, the unitarity limit of the spectral func-

tion, II(a)-+ const (a-+~) "'4 places the following
restriction on the asymptotic behavior of the timelike
form factors:
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For lower spins, from Eqs. (2.14)—(2.16), this equation
means

before and is expected to be much more so in the near
future. The latest experimental value" is

and

(3.15)

(3.16)
—,
' (g„—2) op = (11666+5)X 10-',

while the theoretical value to order n' is'~"
(4 1)

which seem to be weak restrictions. For higher spins,
however, the inequalities (3.14) may become much
stronger constraints. "

In the latter part of this section, we want to note the
relation between the asymptotic behavior of the spec-
tral function (or the form factor) and the charge re-
normalization constant. It is well known that the charge
renormalization constant Zs (=es/ess) can be presented
in terms of the spectral function of the photon II(a), by"

which is the result of quantum electrodynamics in a
narrow sense, including only the interaction of the
electron (e), the muon (u), and the photon (y). The
difference between these two values is more than twice
the experimental accuracy, i.e.,

Ap—=—,'(g„—2),xo~——',(g„—2)rh...——(11+5)X 10 . (4.3)

In order to answer whether or not we should con-
sider the difference d p as an evidence of the breakdown
of quantum electrodynamics, we have to solve two
problems. One is to calculate the sixth-order radiative
corrections to the magnetic moment of the muon, and
the other is to evaluate all the possible contributions of
all particles other than e, p, and y. The former problem
has been studied by some authors" "but has not yet
been completed. All of their results already reported
are of the order 10 ', which cannot explain the di8er-
ence hp at all. On the latter problem, much work" —'4

has been done. Even if we are concerned only with
particles existing at present other than e, p, and y, we
must consider all the hadrons. All of them may con-
tribute to -', (g„—2) through their effects on the photon
propagator (Fig. 1). Among these, the simplest and
most important contribution is that of the m+ —+—inter-
mediate state that was calculated by several authors. '6—2'

II(a,)
dc (3.18)Zs 1+

The finiteness or infiniteness of Z3 ', therefore, depends
on whether II(a) behaves asymptotically as a s (rl&0)
or af ($&0). Considering Eq. (3.5) and the positive
definiteness of every contribution to the spectral func-
tion from the intermediate states shown in Eq. (3.4),
the finiteness of Z3 ' necessarily requires that the
asymptotic behavior of Fq(a) be as a' s, i.e.,

s~(a) &o(a) . (3.19)

It is remarkable that the hypothesis recently proposed
by Kroll, Lee, and Zumino" leads to the finiteness of
hadronic contributions to the charge renormalization
constant. The hypothesis is that the entire hadronic
electromagnetic current operator is identical with a
linear combination of the known neutral vector-meson
fields. Their result is derived from the situation that
II(a)&O(u ') as a —+~ because, according to their
hypothesis, the photon spectral function is proportional
to the spectral function of the neutral vector meson,
o (a),"divided by o,s, i.e.,

(Stanford Linear Accelerator Center, Stanford, Calif. , 1967)
The most recent value is —,'(g„—2) = (11661.4~3.1))&10 . Then
Ap. = (6.2+3.1))&10 . F. J. M. Farley et al. , Phys. Letters 28B,
287 (1968).

'9 J. Schwinger, Phys. Rev. 73, 416 (1948).
20 H. Suura and E. H. Wichmann, Phys. Rev. 105, 1930 (1957).
2' A. Peterman, Phys. Rev. 105, 1931 (1957)."H. H. Elend, Phys. Letters 20, 682 (1966);21, 720(E) (1966).
2' S. D. Drell and J. S. Trefil (to be published). See S. D. Drell,

in Proceedings of the Thirteenth International Conference on High-
Energy Physics, BerkeLey, &66 (University of California Press,
Berkeley, 1967), p. 85.

~4 T. Kinoshita, Nuovo Cimento 518, 141 (1967); lectures given
at the Summer School of Theoretical Physics, Cargese, 1967
(unpublished).

"H. Terazawa, Progr. Theoret. Phys. (Kyoto) 38, 863 (1967).
2' C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961).
"L.Durand, III, Phys. Rev. 128, 441 (1962)."T. Kinoshita and R. ].Oakes, Phys. Letters 258, 143 (1967).
~ H. Terazawa, Progr. Theoret. Phys. (Kyoto) 39, 1326 (1968).' F. J. M. Farley, Proc. Roy. Soc. (London) 285, 248 (1965);

S. J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620 (1968).
» G. Segrh, Phys. Letters 7, 357 (1963); H. Pietschann, Z.

Physik 178, 409 (1964); R. A. ShaGer, Phys. Rev. 135$, 187
(1964); S. J. Brodsky and J. D. Sullivan, ibid. 156, 1644 (1968)."N. Byers and F.Zachariasen, Nuovo Cimento 30, 1572 (1963);
R. D. Amado and L. Holloway, ibid. 30, 1572 (1963).

"S.Nakamura, K. Itami, and H. Ugai, Progr. Theoret. Phys.
(Kyoto) 34, 256 (1965); S. Nakamura, H. Matsumoto, N. Naka-
zawa, and H. Ugai (to be published).

3' H. Terazawa, Progr. Theoret. Phys. (Kyoto) 37, 204 (1967).

II (a) ~ o (a)/us, (3.20)

and o(a)&0(u) Lwhich is required by the sum rule

Jda o (a)/u'= (mass of the meson) —s).

IV. MUON MAGNETIC MOMENT

The value of the anomalous magnetic moment of the
muon recently given by the experiment being per-
formed at CERN" has become more precise than

"For J= 1, for example, the result will be
~
Fr (—o)

~
&O(o '")i

[Fs(—o) ( &O(o '), and (Fr(—a) ( &O(o '), where Fl(—a) is a
timelike form factor of the anomalous electric quadrupole moment.

'6 N. M. Kroll, T, D. Lee, and B.Zumino, Phys. Rev. 157, 1376
(1967).

'7This spectral function is diferent from that in Ref. 16 by
the factor a."F. J. M. Farley et al. , in Proceedings of the 1067 International
Symposium on Electron and Photon Interactions at Irigh Energies

)Ps(—a) ( &O(a—'") for J=-', (3.17)
s (gs 2)t haor=rr/2rr+0. 766(rr/s) = 11655X10 " (4.2)
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Fie. 1. Diagram for the contri-
bution to $(g„—2) from the modi-
6cation of the photon propagator.

Their result is"

8~2(g„—2) + -=6.1X10 '.
The sum of all the hadronic contributions has been
estimated by the author" using the hypothesis proposed
by Kroll, I.ee, and Zumino" stated in Sec. III. Its
upper limit is obtained as

Equations (4.8) and (4.10) show numerically that

1/leap& 1/(2.3 GeV)', (4.11)

1 1 " mg' 4m'') '"
d(l 1—

~
Sg (a) . (4.12)

A.J2 12&2 4m J~ c3 8 )

which gives an important criterion for the discussion
in Sec. V.

From Eqs. (3.S) and (4.9), we express the contribu-
tion of the particle-antiparticle state in terms of the
timelike form factors as follows:

+p (gs 2) sll hsdrons& 2.2X 10 (4 S)

n "da (a)6—'(g„—2) =— —AII(u)g~
a km„'i

' (4.6)

where m„ is the mass of the muon and

x'(1—x)
g(c) = dx

p x'+c(1—x)
(4 7)

As far as hadrons other than m mesons are concerned,
the thresholds for AII(a) are much higher than m„'
(e.g., 4mx'/m„~89))1). Therefore, Eq. (4.6), to a
very good approximation, gives

where

a,'(g —2) = (~/3~) (m P/XP) (4 8)

A2 p

(4.9)

Here we note that the quantity A' play the same role as
the phenomenological cutofI' parameter" in quantum
electrodynamics without considering its sign. '~

At present we may propose an upper limit ~ of the
sum of all the contributions other than that from the
m+ —x state, using the experimental information shown
in Eq. (4.3), i.e.,

~=~p (gs 2)sll hserons
—Ap(g„—2) + -&p~2X10 '. (4.10)

"Using the data recently given by the Novosibirsk group
(Ref. 40), we obtain the p' resonance contribution as

$ (gfs
—2) ~+~- (po reaonarhne) = (3 1+1.3)X 10

Ie S. D. Drell, Ann. Phys. (N. Y.) 4, 75 (1958).
"For example, if we make the parametrization for the break-

down of the photon propagator 1/q~ —+ 1/q2 —1/(qm+A~), we ob-
tain the result b,q(g„—2) =—(Ot/3m)m„'/4'.

which is subject to the reliability of the hypothesis.
In this section we consider the contributions to

-', (g„—2) from the states which contain a particle (spin
J and mass mq) and its antiparticle, so that we may
complete our purpose stated in Sec. I.

Generally, the contribution to -', (g„—2) from the
modification of the photon spectral function AII(a) is
given by

In order to calculate the further analytic form of
1/A&', we have to assume a proper analytic form of the
timelike form factor Pq(a). One of the simplest and
most convenient candidates for P~(a) is

(g)= (21+1)e —1)
4m J'

g 2/J

for J=O, 1, 2,

= (2J+1)e'
2lJ

1—,for J=-,', ap, ~ . (4.13)
P,J

Kg =4%J /)(l J ))1 . (4.14)

Then, from Eq. (4.13), we can easily evaluate the in-

38We note the result recently reported by the Novosibirsk
group (Ref. 40) for the e++e —+m++w colliding-beam experi-
ment at the energy region near the p resonance. The result is well
approximated by

8
iF ( (rli k 1

wherek 0.59+0.15, mp 764~11 MeV, and Fp=93~15 MeV.
39 For the spacelike form factor of the proton,

a~ =4X0.88 GeV'/0. 71 GeV'~4. 9)&1.

whose normalization is taken to satisfy the condition
given in Eq. (3.12). The reason for the different forms
for bosons than for fermions is only that we wish to
express the difference between the threshold behaviors
in the 5 and I' waves [see Eqs. (3.8) and (3.10)].Here
we have introduced two parameters, l~ and pJ2. For
lq 1, the expre——ssion Eq. (4.13) is the same as that
from the one-pole or one-resonance approximation. "

When we try to evaluate the integral in Eq. (4.12),
we want to know the information about the behavior
of the form factor F~(a) near the threshold rather than
that in the asymptotic region. It is, therefore, nothing
serious to have determined the asymptotic behavior of
the form factor as a result of assuming Eq. (4.13).
Moreover, we make an. additional assumption that
the parameter pq' is much smaller than the threshold
4' J2 i.e.,39
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tegral in Eq. (4.12) as follows:

1 n 2J+1 1
B(-', , 2lg+1), for J=0, 1, 2, ~

AJ' 48m rn J'

6 ——
2J ni.

J~ tel
FxG. 2. Various spin-mass

spectra of particles.

i px( a) i'=k— 1- , (4.17)
(~,+-,'ir, )

we can estimate the contribution to -', (g„—2) from the
EK state near the P resonance. The result is

+2(gg 2)KR(p resonance)

n ' sm„' 4mx')'12
, (4.18)

36mpFp mp' )

which gives a numerical value 2.1kgi0 ', using the
datum 7~=3.6 MeV. ' The parameter k will soon be
given by the experiment at Novosibirsk. " Supposing
k~1, the result 6-', (g„—2)xg~2. 1X10—' is much larger
than that expected in comparison with 5' (g„—2) + —,

considering only their mass difference.

V. MASS SPECTRUM OF PARTICLES

In the previous sections, we have made all the prepa-
rations for examining various mass spectra of particles
in this section. Our criterion is that we must forbid
any mass spectra of particles that would make the
sum of all the contributions to ~i(g„—2) larger than e

even if every contribution is smaller than e. We can
apply this criterion to mass spectra of resonances as
well as to those of particles because every state of a
resonance and its antiresonance is independent of other
states; then we never fall into double counting of the
contributions.

Let us consider all the particles and resonances
already known in the mass regions m&&1.8 GeV
(boson) and m&&3.3 GeV (fermion). ' Supposing lq ——0
for the sake of simplicity, we calculate from Eqs. (4.8)

"V.L. Auslander, G. I. Budker, Ju. ¹ Pestov, V. A. Sidorov
A. ¹ Skrinsky, and A. G. Khabakhpashev, Phys. Letters 25B
433 (1967).

8(-,', 2lg+2),
48K' m J2 KJ2l

for J= -'„-,', (4.15)

where g'(n, p) is a beta function, which is expressed in
terms of I' functions, viz. ,

a(,P) =r( )r(P)/r(, P). (4.16)

At the end of this section, it is worth noticing that in
the case of Jt+—X state the assumption Eq. (4.14)
will probably be wrong because the @-meson resonance
(m&' ——1.04 GeV') is situated just above the threshold
(4mx'=0. 98 GeV'). Supposing the form factor of the
E meson to be

and (4.15) the sum of all the contributions to —,'(g„—2)
from all the particles and resonances already known.
The numerical result is

6—=g 6-,'(g„—2) =0.51X10 ', from all bosons
other than the
m meson

=1.2 )(10 from all fermi-
ons other than
leptons. (5.1)

2J+1 1
hq ——constX 8(-', , 2l~+1),

mJ2 KJ2l J
fol J=O) 1) 2)

2J+1 1=const)& 8(-,', 2lg+2),
mJ2 g 2lg

for J=-'„-'„~ . (5.2)

For the sake of simplicity, we make the further

4'T. Regge, Nuovo Cimento 18, 947 (1960); G. F. Chew and
S. C. Frautschi, Phys. Rev. Letters 7, 394 (1961).

4' R. C. Brower and J. Harte, Phys. Rev. 164, 1841 (1967)."R.W. Childers, Phys. Rev. Letters 21, 868 (1968).

This shows that the mass spectrum of particles known
at present certainly satisfy the criterion mentioned
above. Here we note that in the mass spectrum there
are some series in which the masses of members become
heavier according as their spins become higher. Further-
more, these series can be Gtted to a good approximation
on the Regge trajectories or Chew-Frautschi plots4'
which are rising linearly (Fig. 2), i.e., J esz . Since in
the case of lq=0 every contribution to ~i(g„—2) has
the form constX(2J+1)/mz', it is clearly seen that
the sum of all the contributions grows linearly and
would break the criterion at a mass region of about
several hundred BeV if the trajectories should rise
linearly to that region.

Next, we shall examine possible types of ininitely
rising spin-mass spectra of charged particles more
generally and formally. 4'4' Let us consider a series
expressed by the spin-mass spectra mq ——f(J) infinitely
rising, i.e., f(J)—+oa as J—r~. Supposing the same
simple forms of the timelike form factors 5'q(u) as in
Eq. (4.13), we can find from Eqs. (4.8) and (4.15) that
a contribution of every member in the series to —',(g„—2)
has the following form:



SPECTRAL FUNCTION OF PHOTON PROPAGATOR 2165

assumption:

Then,
l =i=const. ~ (5.3)

hg = const X[(2J+1)/mq']~q (5.4)

In order to obey the criterion, i.e., Pz Aq( e, the mass
spectrum mz ——f(J) must satisfy at least the condition
that the sum of the inanite series Pq hg should be con-
vergent. From Eq. (5.4), this weak restriction leads to
the following condition by which the spin-mass spectra
of particles should be bounded asymptotically. We
illustrate three typical cases for the timelike form
factors:

Case I. 1=0; then mq) 0(J). (5.5)

Case II. l&0, ~q=~=const;
then m~)0(J). (5.6)

VI. RESULTS AND DISCUSSION

We have obtained the following simple results: the
asymptotic condition of the timelike form factors, Eq.
(3.14), and the conditions, Eqs. (5.5)-(5.9), which the
infinitely rising spin-mass spectra and their timelike
form factors must follow. It should be noted that the
latter conditions have been derived from the weakest
condition that the contributions to —',(g„—2) must be
finite. We may, therefore, give a stronger restriction on
the observable quantities if we apply faithfully the
criterion stated in Sec. V. Moreover, a much stronger
restriction will be obtained when a more precise experi-
mental value for —,

' (g„—2) is available in the near future.

44As far as the asymptotic behavior of the form factors is
concerned, the result given by Amati et al. shows that this
is the case. D. Amati, R. Jengo, H. R. Rubinstein, G. Venezpano,
and M. A. Virasoro, Phys. Letters 27B, 38 (1968); D. Amati,
L. Caneschi, and R. Jengo, Report (unpublished)."J.J. Sakurai, Phys. Rev. Letters 17, 552 (1966).

4' M. Gell Mann and F.Zachariasen, Phys. Rev. 124, 953 (1961).

Case III. l&0, pJ =p, = const;
then mg) 0(J"&"+"). (5.7)

Some of the models~' predict spacelike form factors
like the timelike ones in case II, while the vector-meson-
dominance model" '4l suggests form factors like those
in case III. We, however, consider these cases only to
see a few typical results from the criterion.

For a charged Regge trajectory rising linearly and
in6nitely, i.e., mz J'~', the conditions (5.5)—(5.7) lead
us to the result:

Case I and case II are forbidden and,

in case 111, /)-', . (5.8)

Similarly, for a model of the spin-mass spectrum in
which there are parallel infinite series rising linearly,
infinitely, and at equal distances as illustrated in Fig, 3,
the conditions lead to the result:

Of course, case I and case II are forbidden and,
in case III, /) 1. (5.9)

FIG. 3. A model of the spin-
mass spectrum of particles.

6

4

m~

From the purely theoretical point of view, we have
poor information about the timelike form factors of
particles. We can only find a prediction4~ by using the
hypothetical crossing symmetries of the form factors,
which have not been able to give definite predictions.
More studies about the timelike form factors are
required.

On the other hand, a few e+—e colliding beam
machines are beginning to work in the energy region of
several hundred MeV. ' It seems, however, to be some-
what dificult at present to observe the timelike form
factors of hadrons (e.g. , s, E, p, n, A, etc.) at energy
regions far from some vector-meson resonances. We
wish to obtain experimental information about the
timelike form factors in the broad regions which con-
tain energies near the thresholds and the vector-meson
resonances, far from them, and, furthermore, the
highest energies available.

p+ p=P

Fio. 4. Diagram for the reaction
l++l -+X+) through a one-photon in-
termediate state.

47M. Conversi, T. Massam, Th. Muller, and A. Zichichi, in
Fifth International Conference on IIigh-Energy Accelerators, 1965
(Centre Nationale d'Etudes Nucleaire, Saclay, 1966).
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APPENDIX

For the purpose of experimental observation of
the timelike form factors and the spectral function
of the photon discussed in the earlier sections, we
shall consider the colliding-beam experiments e++e
(or p++p ) —+ lI,+) Lwhere lI, is a particle, with mass mq
and an arbitrary spin J, other than leptons (t)j.These
reactions 'proceed", ;,through a one-photon intermediate
state in the lowest order of n2,'(Fig. 4)."It has been
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shown by Gatto48 that interferences between the one-
photon and the tw'o-photon channels vanish on account
of charge-conjugation invariance for experiments that
treat the charges symmetrically. In order to calculate
the differential cross sections for the reactions, we need
the following two quantities':

()++I——+ X+&&) in the c.m. system:

do {I++I »&—+X) Irn' m&,
I "

mrna mP

d(cos8) SE' E' 2e'E' 2e'E'

X LYING
&» cos'8+ KB&» sin'8

+SA &~& sin'8+88&~& (I+cos'8)j, (AS)

&ja~jr&special frame= @{u)r
=8(u},
=0

for p= v=3
for p= V=I or p=p=2
otherwise (A2)

where j„and J„are the electromagnetic currents of the
lepton and the particle X, respectively. k (k) and p (p)
are the momenta of the lepton (antilepton) and the
particle X (X), respectively (k+fc= p+p=P and I—
=-u&0). From Eqs. (2.'/) and (2.S), these quantities
are written in the special frame in terms of the form
factors, e(m;u) and $~(m; u) for the lepton, and
A(~&(m;u) and B+&~&(m;u) for the particle X, as
follows:

where E and 8 are the energy of the incident lepton
and the scattering angle of the final particle X in the
c.m. system, respectively (u= 4E'). lt is worth noticing
that the angular distributions are expHcitly shown in
Eq. (AS) for any high-spin 6nal pairs. Assuming the
lepton to have a point structure, i.e., FI(—u) = 1 and

F2(—u)=0, we get, from Eqs. (AS) and (A6), the
followmg more convenient formu1a:

drr(I++I —-+ X+1&) w&I2&f mg')'" mla

d(cos8) SE' 5 E' 3 2e'E'

mp
)& A&»(4E') sin'8+ cos'8

Ij
mp

+B&»(4E') 1+cos'8+ sin'8
I

. {A9)
E2

$(u)=+le(m; u)l'

8(u) =-,' g I (9+(m; u) I'. (A3)

B""'(u)= 2e'(u/4mlfl2)
I FI(—u)+&&P, (—u) I

',
for J=$. (A6)

We give the generalization of (j„j,) and (J„J„&to an
arbitrary Lorentz frame' ' as follows:

), (Ar)

where X=k—k and q =p —p. Then we can easily obtain
the general form of the differential cross section

"R.Gatto, Springer Tracts io. Mod. Phys. 39, j.66 (3,965).

Similar relations hold for
&J„*J„&.For lower spins, from

Eqs. (2.16)—(2.1S), A&»{u) and B&»(u) are given by

A. "'(u) =e'(u/4m(P —1)IF(—u) I', for J=0 (A4)

&""(&)u=2HIFI( u)+.(—u/4m„, ')F,( u) I2, —(As)

In the case of the e+—t. colliding beams, a further
approximation m,&&E gives much simpler formula:

r (e++s— x+1 & w
' wi')'&' wi'

d(cos8) SE' E' 2e'E'

XLA& '(4E') sin28+8& &(4E')(1+cos'8)j. (A10)

Using these formulas (A9) and (A10), we can determine
the two independent form factors xi &'& (u) and B&» (u)
if we observe the angular distributions of the final

particles. %e should note that more than tw'o inde-
pendent form factors can never be determined by the
experiment although various formulas can be obtained

by introducing many form factors of multiple-pole
moments for higher-spin particles. If we wish to de-

termine them, we must observe the spin correlation of
the scattered particles.

The total cross section of the reaction I++I ~ X+X,
&rl(u), Is related to tlM contllbutlon to tile spcctlal
function of the photon from the X—$, state, III(u), as
foHows:

(rg{u)= (Ire'/u)(1+2mP/u}III(u), (A11)

which can be derived from the combination of Eqs.
{3.5), (3.6), (A3), and (A9) or from Eq. (3.3) directly.
Using this relation, we can observe the spectral function
directly from the total cross section. Finally we note
that the asymptotic behavior of the total cross section
is bounded by O(u-') from the unitarity limit of the
spectral function"" and by O(u ') from the hypothesis
proposed. by Kroll, Lee, and Zumino. '~


