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Nonrelativistic Partial-Wave Scattering of Electrons by Ionized Atoms~

E. M. A. Peixoto
Department of Chemist~„ Indiana University, Bloomington, Indiana 47401

(Received 15 July 1968)

A nonrelativistic partial-v ave analysis of scattering of electrons by positive and negative
ions. has been made. Differential cross sections for 0 ("P), Na .( S), and Ne+("P) were cal-
culated for incident electron energies between 1 and 40 keV. In the case of Na+( S) the low

energy (& 1000 eV) behavior of the differential cross section is investigated, and the influence
of exchange effects are discussed. Born-approximation calculations were also carried out
and compared with the partial-wave results. Throughout the work, analytical Hartree-Pock
wave functions were used to describe the scatterer, and from these functions the static po-
tential was calculated from Poisson's equation.

I. INTRODUCTION

Recently Hanson et al. ' have reported the first
results for electron scattering from an ionic mole-
cule (N, +). Extensions of this work may make it
possible to determine the structure of molecular
ions by gas-phase electron diffraction.

It is well known that, in the analysis of electron-
diffraction data for the structure of neutral mole-
cules, accurate partial-wave atomic scattering
factors are essential. Anticipating that a similar
need will arise in the case of ionic molecules,
this study has been carried out to obtain partial-
wave scattering factors for ionic atoms and to
see how accurate first Born descriptions of the
scattering process really are.

The elastic scattering of electrons by an ionized
atom differs from the elastic scattering of an
electron by a neutral atom owing to the presence
of the repulsive or attractive unscreened Coulomb
field acting on the scattered electron at large dis-
tances from the nucleus. The effect of the Cou-
lomb field, modifying the scattering process and
the form of the wave function, is not simply addi-
tive to that of the corresponding neutral atom.
However, in the framework of the first Born ap-
proximation they are additive. Partial wave (p. w. )
treatments of the scattering process yields re-
sults significantly different from those of the Born
approximation. These differences appear to be
larger than the corresponding differences in the
case of neutral atoms.

In the following sections, we will first discuss
the theoretical aspects of the problem and then
the nature of the potential, and finally the results
obta. ined will be presented and will be compared
with other authors' approaches. '

II. THEORY

The problem of scattering of electrons by ions,
in this case ionized atoms, falls in the well-known
general category of scattering by a modified
Coulomb field or "Coulomb admixtures. "4 If Z'
is the valence of a particular ion, the scattering
potential for an ionized atom will behave asymp-
totically like Z'e'/r but will depart from it at
some distance close to the nucleus where the
screening of the electron cloud becomes more
important. For the well-known case of scattering
by a pure coulombic potential, we should remem-

ber that the scattering amplitude Ae(k, 8) can be
expressed as' 4

A (k, 8) =(q/2k sin228)

x exp(- iq ln sin' —,'8 +in +2io, ) (2. I)

with g=pZZ'e'/(5'k)

o, = argl'(I +i7I),

and o. = ragl'(i+I i +I)7.

In the above e~ is the Coulomb phase shift. ' The
differential cross section is given by

dg g (6I) t2 Q 40
dg % / 4y2 sin4 g

(2. 2)

In the Coulomb case, the wave function 4'(r, 8)
which describes the scattering is required to
have the asymptotic form4

e(r, 8)- e~(i[ke+ q Im(r - e)j)

+A (8)r ' expli[kr —rI 1n2kr]} (2. 3)

for I g'/k(r —e) I (( I .

where LI(r) becomes

(kr) ' sin(kr —71 ln2kr ——,
' Iv + o& )

at large x. Thus in the case of a modified Cou-
lomb field, LI (r) will have the form

L&(r)-(kr) 'sin(kr- ,'lm —q ln2—kr+a&+5&), (2. 5)

where 5~ is an additional phase shift due to the de-
parture from pure Coulombic scattering at small
distances from the nucleus. By an analysis simi-
lar to that for atomic scattering, 4~' one can define
a scattering amplitude due to the screening ef-
fects as

It is well known that 4(r, 8) can be written gener-
ally as

QQ

0'(r, 8) = Z (21+ l)i e L&(r)P&(cos8), (2.4)
E=o
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i(6f +2of )
A '(k, 8) =

k
2 (2l + 1)e sin6& P& (cos8) .

k

of the incident and target particles. The energy
E is in the center of mass and is related to the
laboratory energy by

(2. 6)

It is convenient to define the total amplitude for
ionic scattering A(k, 8) as

A(k, 8) =A (k, 8) +A '(k, 8),

where A(k, 8) may be rewritten as

Z =El bmf/(m, +m ).

Throughout this work the unit of length is the ang-
strom (A), and the Bohr radius is taken as a,
= 0. 529 167 A." The static scattering potential
field" will be taken as

V(r) = —Ze'/~+ e' f dr p (r)/ I r —r ' [,
A(k, 8) =A (k, 8)(1+@)

with'

8 = (1/q) sin'2 8 exp(iq ln sin' —,
' 8)

x Q (2l+1)exp[2i(o —(r )]
L =0

&& [exp(2i6 ) —1]P&(cos8).l (2. 'f)

(3.2)where lim V(r) = Z 'e'/r,
+~00

and p(r) is the first-order electronic density.
A separation of variables of the three-dimensional
Schr odinger equation leads us to the usual radial
equation

, + k2+ V(~) -, ef (~) =0, (3.3)
d' l(l+1)

Further a cross-section ratio R(8) may be defined
as

where lim 4& (x) = 0.
~-0

B(8 ) = I A(k, 8)/A (k, 8) I = I 1+8 I (2. 6)

III. DESCRIPTION OF THE CALCULATIONS

A. Wave Functions and Potentials

which shall prove useful in comparing screening
effects in ionic scattering. It should be kept in
mind that the differential cross section now con-
tains an interference term which strongly de-
pends on whether the field is attractive or repul-
sive. This will be particularly true at low ener-
gie s and at small scattering angles. Also note
that the wave vector and electron mass used in
the Schrodinger equation have been corrected for
relativistic effects, and in doing so partial account
is taken of relativistic effects. Notice that at 40
keV, v/c-0. 3 and a correction for the wave vec-
tor and mass of the electron makes a (5-6%)
change on the phase shift for l = 0.

e& (r )=S&(q, k~ )

+Cf[Gf(g, kr ) +iF(q, kr )],
where g = p, ZZ 'e'/5'k

(3.4)

C = ——,'i[exp(2i6 ) —1] .I

Thus the scattering amplitude can be written as

A(k, 8) =A (k, 8)

+
k

Z (2l+1) e f C&P&(cos8), (3. 5)
k

Asymptotically, the solution of the radial equa-
tion will match a linear combination of the regu-
lar and irregular Coulomb wave functions at the
point (rm) where the ionic potential is purely
Coulombic, i.e.

Nonrelativistic analytic Hartree-Fock (H-F)
wave functions for the neutral elements and some
ions with atomic numbers up to 36 are available. 7

In all of the calculations presented here for ions,
use was made of the H- F results to calculate the
scattering potential. It should be noted that use
of least- squares fits of the nume ric al potential
values would introduce, in some case, an appre-
ciable amount of error into the calculations. '~'

and the differential cross section is given by

der/dQ = ~A(k, 8)l (3. 6)

To solve the Schrodinger equation numerically, a
modification of Cowell 's method known as the
Noumerov" ~'4 method was used. This technique
is especially suitable when the second- order dif-
ferential equation can be written in the form

B. Partial-Wave Calculations

The Schrodinger equation for our particular sys-
tem is given by

e"(~) =A(~)e(~),

where in the present case

(3. 7)

[- (5'/2p) V~+ V] O'=Et (3. 1)
A(r) =t,(f+1)/r' V(r) k'. --

where p =m. m /(m. +m )t

with mz and net being, respectively, the masses

The substitution'3 ~'4

f(x) = 4'(r) —(k'/12)A(r)4'(r),
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with the notation

f.
1

=f (x.
1)

and f.=f(r.),

can be used with the recurrence scheme
I'x(~,.)

~~+1 ( 1 —(h'l12M(~jg ~i ~a —1'

where f, =0, f, =c, for I 0 1,
and f, = —0. 2c, f, =c, for I = 1,

(s. 6)

and f r'pf (r')RI, ,(r')d~', (3. 12b)

—)fpr nI + -, nf —1
where It& (r)= 2,&, (2( ) r . (3 13)'"p

All the integrals of the type mentioned above were
solved analytic ally. "

In the calculations for low-energy scattering,
where exchange effects must be taken into
account, the following expression was used to
approximate the "exact" potential" as

to obtain the required solutions where h is the
step size, which in this case was chosen as h
=4x10 ' A. Integrating from the origin, CI and/
or sin26~ and cos25~ were obtained by using two
points to compare the functions f(x) with the Cou-
lombic solution written as in Eq. (3.4) after it had
been modified to account for the substitution of
variables used above. Further details may be
found in the literature. "-"The caluclations of the
Coulomb wave functions were performed using
in most of the cases the asymptotic solutions
given by Froberg" for I", and G,. The values of
G~ for l)0 were obtained by use of an upwards
recurrence relation. In the case of I'~ the calcu-
lations were carried out by a downwards recur-
rence scheme as proposed by Stegun and Abramo-
witz, '7 since an upwards recurrence scheme
would lead to inaccurate results due to numerical
instability.

The calculations of the Coulomb phase shifts
(of ), were accomplished using a series solution. "~"
However, Lanczos's" method to approximate the
gamma function was also successfully used. The
value for l = 0 using the latter agreed with the one
obtained by the series solution to 10 significant
figures (single precision using a CDC 3600). The
values of the Coulomb phase shifts for /') 0 were
obtained through upward recurrence from the
value for l =0 by use of the formula"

v (~) = v(r) v —(~),

where V (x) =w '[sm'p(r)] '~'
x

(3. 14)

(s. is)

Some previous work from this laboratory has
shown that this approximation is valid for elec-
tron scattering by atoms in the energy range
50-600 eV»

IV. RESULTS

A. High-Energy Scattering (I keV-40 keV).

It is well known that the first Born approxima-
tion, when used to describe the atomic scattering
of electrons, gives a rather good approximation
to the scattering amplitude, if one restricts its
use to the keV energy range and to atoms of small
atomic number (Z). The results in Fig. 1 show
that this is true in the case of ions, but that sub-
stantial differences exist between results using
different atomic potentials.

The major difference between the first Born
results and the p. w. treatment for negative ions
occurs in the region of the minimum in the cross
section. The Born'~4~' expression for the scat-
tered amplitude is given by

g =tan-'fq/(I. +1)]+a

C. Potential Functions

(s. 9)

During the calculations, two functions were used
to approximate the "exact" potentials. For high
energy the potential given in Eq. (3. 2) was used.
The potential can be evaluated from Clementi7
H-F wave functions using the well-known relations,

I
4g N+ yg I C..~

= & 2„„v„()I'„( ')

mph'

+)
(3. 10)

do
gal

I

f Y~ (r) F, (r)dA =5,5, . (3. 11) .8 1,0 2.0 3.0
I

40

—f ~ "RI (r')RI, ,(x')dr' (3. i2a)

Furthermore, for a spherically symmetric system
the potential expression reduces to the evaluation
of the two basic types of integrals

FIG. 1. Differential cross section for the P state of
0 using Hartree-Fock wave functions. The solid curve
stands for the partial-wave treatment; the dashed curve
is the Born calculation using Clementi H-F wave func-
tions; and 0 Born results given in Ref. 3.
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f (s) =(2PO'I'/aos')[~ —& (s)],
where F~(s) is the x-ray scattering factor

F (s) =4m I p(r)j, (sr)r'drx 0

(4. 1)

(4. 2)

0
P, 'IJL/—40keV——

1 keV

with j,(sr) = (sinsr)/sr,

and where p(r) is the electron density for a particu-
lar ionized atom. From Eq. (4. 1) it is clear that
the Born result has a zero in the cross section for
electron scattering by negative ions. The results
of this work show that the p. w. result given by
Eq. (3. 5), on the other hand, ha.s a small but non-
zero value at the same s value.

The maximum and minimum in the differential
cross section are a direct consequence of the fact
that the scattering potential is attractive near the
nucleus and repulsive further out for a negatively
ionized atom.

Also in Fig. 1 the first Born calculations of
Hanson and Pohler3 are compared with the pres-
ent results for the first Born and p. w. values.
The large discrepancy is probably due to the fact
that they made use of wave functions which are
solutions of Hartree-Fock equations based on the
"old" Slater free-electron exchange" ~' expres-
sion which has since been improved by Kohn and
Sham" and Cowan et a/. " The results of Pohler
and Hanson for positive ions are in much better
agreement with these calculations as will be shown
below.

In Fig. 2, the ratio R(8) for 0 shows the de-
parture from the Coulombic behavior of the dif-
ferential cross section as a function of s. Notice
that R(8) has a minimum close to the minimum in
the differential cross sections. Also R(8) ap-
proaches unity at smaller angles which is as one
would expect.

The differential cross section for scattering of
high-energy electrons by positive ions (see Fig. 3)
shows quite a different behavior as compared with
negative ions (see Fig. 1). This is due to the na-
ture of the potential field which for a positive ion-
ized atom does not change sign. In Fig. 3 the
differential cross section of 40-keV electrons
scattered by Na+('S) is shown. A comparison
between p. w. and different Born results is also
made in Fig. 3, and again a discrepancy is found
between Born results, stressing the influences
which approximations in the scattered potential
can have on the differential cross section. It is
interesting to notice that the Born results given
here are generally higher than the p. w. results.
H ever those given in Ref. 3 are generally low-owev

leer as can be seen from Figs. 1 and 3. In Tab e
I we compare the values for the scattered intensity
as calculated with the p. w. and Born methods in
this work and the Born results given in Ref. 3.

In Fig. 4 R(8) as defined in Eg. (2. 8) is plotted
for Na+('S) for 40- and 1-keV electrons. As is
expected, R(8) approaches unity at small angles
where the scattering is mainly Coulombic. The
1-keV curve in Fig. 4 approaches unity faster
(at smaller s values) than the 40-keV curve, and
both ratios are always greater than unity.

R(e)

Oo

FIG. 2. R(0) for 1-keU (dashed curve) and 40-keU
(solid curve) electrons scattered from 0 ( I') is shown
as a function of s. A minimum is observed close to the
minimum in the corresponding differential cross sec-
tion. The Coulombic behavior can be evidenced at small
s values where R(6) approaches unity.

Partial-wave elastic electron scattering factors
are given in Tables II-IV for 40-keV electrons
for 0 ('P), Na+('S), and Ne+('S), from s=0. 2 to
s =30.

Besides the values for the scattered amplitude
given by Eq. (3. 5), we also list values for the
phase q(s) given by

q (s) = tan '[Imf (s)/Ref (s)]

which makes it possible to correct for the failure
of the Born approximation' in electron scattering
by molecules containing these ionized atoms. No-
tice that since the scattering is almost Coulombic
for small s, the values for 0(s) are approximately
given by

q (s)- tan '(- q ln sin'2 8 + 20'0)

where, since q & 0 for a positive ion,

lim g (s)- tan '(- ~) = ——,'w .
s-0

Note that the values for 0(s) have been reduced
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FIG. 3. Scattered intensity of 40-keV electrons scat-
tered on Na+( S). The solid curve stands for the partial-
wave results; the dashed curve is the Born approxima-
tion results; and Q represents Born results (Ref. 3)
obtained using numerical Hartree-Fock Slater (Ref. 24) .

FIG. 4. Ratios R(8) between the partial-wave differ-
ential cross sections for 1-keV (dashed curve) and 40-
keV {solid curve) electrons scattered from Na+( S) and
Rutherford scattering of electrons by a singly positive
point charge.

to the range 0-27t'.

B. Low-Energy Scattering (( 1000 eV)

TABLE I. Differential cross section (A ) for 40-keV
electrons scattered from the S state of Na+.

2.
5.
9.

27. 709
4. 517
0.805
0. 176

Z (Hef. 3)

27. 143
4.309
0.758
0. 171

Partial wave

27.43
4.441
0. 786
0. 171

This calculation using H-F wave function (Ref. 7).

Calculations have been carried out for energies
between 40 and 500 eV for elastic electron scat-
tering from Na+('S) and Ne+('S). In Fig. 5 the
behavior of the A(e) for the 'S state of Na+ as a
function of s for energies of the incoming elec-
tron between 40 and 500 eV is plotted without in-
cluding exchange in the scattering potential. How-
ever, by analogy with atomic scattering it should

be expected that exchange effects will be important
at the lower energies. This can be seen in Fig.
6, where we compare 40-eV differential cross
sections for Na+('S) without exchange and with
exchange included in the scattering potential, as
given by Eqs. (3. 14) and (3. 15), respectively.
In fact Bransden and Dalgarno" have already
pointed out the importance of polarization and ex-
change effects for scattering of electrons at low
energies for He+. In the case of negative ions
the range of the exchange approximation extends
to such large r values that the current numerical
techniques proved to be inadequate for the calcu-
lation of the phase shifts.

In Fig. 7 exchange" effects predicted by the po-
tential given in Eqs. (3. 14) and (3. 15) are observed
by comparing curves with and without exchange.
The inclusion of the exchange correction in the
scattering potential has obviously a strong influ-
ence in the scattered intensity of 40-eV electrons
from Na+; its inclusion in the calculations seems
to be necessary not only for a quantitative but also
for a qualitative description of the scattering
phenomena as can be seen from Figs. 6 and 7.
These exchange effects seem to be more impor-
tant for the ionic case than in the case of scat-
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TABLE II. Partial-wave scattered amplitude f (s) for
40-keV electrons scattered from 0 ( P) as a function of
s = 2k sin& 0. The third column on the right gives the
phase as defined in Sec. IV.

TABLE IV. Partial-wave scattered amplitude f(s) for
40-keV electrons scattered from Ne ( P) as a function
of s= 2k sin28. The third column on the right gives the
phase as defined in Sec. IV.

0. 20
0.60
1.00
1.20
1.40
1.60
1.80
2. 00

2. 20
3.00
4. 00
5.00
6.00
7.00
8.00
9.00

10.00
13.00
16.00
19.00
22. 00
25. 00
28. 00
32. 00

If(s) I

(A)

98.35
7.921
0.9175
0.2427
0.8135
1.146
1.328
l.419

l.454
1.337
l. 057
0.8122
0.6263
0.4898
0.3901
0.3161

0.2609
0.1600
0. 1087
0.079 19
0.06047
0.047 83
0.038 76
0.030 22

g(s)
(rad)

3.391
3.340
3.193
0. 8127
0.3695
0.3168
0. 2979
0 ~ 2894

0. 2854
0. 2878
0.3062
0.3315
0.3601
0.3901
0.4200
0.4491

0.4767
0. 5492
0.6066
0. 6534
0. 6934
0. 7280
0.7599
0.7977

s
(A-')

0. 20
0.40
0. 60
0.80
1.00
2. 00
3.00

4.00
5.00
6.00
7.00
8.00
9.00

10.00

13.00
16.00
19.00
22. 00
25. 00
28. 00
32. 00

If(s) I

(A)

103.1
26. 72
12.56
7. 603
5.301
2. 151
l. 450

1.105
0. 0739
0.7017
0. 5693
0.4666
0.3864
0.3234

0. 2019
0. 1369
0. 098 97
0.075 12
0. 059 11
0. 047 81
0. 037 23

g(s)
(rad)

-6.037
-6.071
-6.095
-6.116
—6. 134
-6.199
-6.238

-6.267
0. 01184
0. 040 24
0. 06954
0. 09950
0. 1297
0. 1598

0. 2449
0.3189
0.3811
0.4338
0.4792
0.5193
0. 5667

TABLE III. Partial-wave scattered amplitude f(s) for
40-keV electrons scattered from Na+( 8) as a function of
s = 2k sin2 8. The third column on the right gives the
phase as defined in Sec. IV.

terming by neutral atoms.
To conclude, it should be stressed that the p. w.

treatment is necessary to provide a quantitative
description of ionic scattering not only at low
energies but also in the keV energy range. This
is especially true for negative ions in the region
of the minimum in the cross section. The ex-

lf (s) I

4)
q(s)
(rad) 5.0-

0. 20
0.40
0.60
0. 80
1.00
2. 00
3.00

4. 00
5. 00
6.00
7.00
8. 00
9.00

10.00

103.1
26. 65
12.50
7.538
5. 238
2. 107
1.429

1.103
0. 8867
0.7237
0.5960
0.4947
0.4140
0.3495

-6.037
-6.071
-6.096
-6.117,
—6. 136
-6.205
-6.245

-6.276
0. 020 27
0. 048 23
0. 077 09
0. 1068
0. 1371
0. 1675

R@

4.0-

1.0-
08-

Q 0 1.0 20
—J
3.0 4.0 5.0 60

13.00
16.00
19.00
22. 00
25. 00
28. 00
32.00

0. 2214
0. 1508
0. 1091
0. 082 65
0. 064 93
0. 05244
0. 040 79

0. 2562
0.3363
0.4055
0, 4647
0.5160
0.5610
0.6138

I'IG. 5. R(0) as defined by Eq. (2.8) is shown for
partial-wave differential cross sections and Rutherford
scattering for Na+( S) as a function of s and different
electron energies from 40-500 eV. Exchange correc-
tions between the scattered electron and the atom were
not included.
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P.W.

40eV
WITHOUT EXCHANGE———WITH EXCHANGE

1.5—

Na 'S

P.W.

250 eV

WITHOUT EXCHANGE——WITH EXCHANGE

do (p2)dll

1.0

d 0 ($2)
dn

I.p—

0.5— 0.5—

0.0 I / I I

1.4 2.0 3.0 4.0 5.0 6.0 7.0
s(A )

I I I

10.0 11.08 0 9.0

0.0 I

2.p 3.p 4 p 5.0 6.0 7.0

s(A )

I I I

8.0 9.0 10.0 11.0

FIG. 6. Partial-wave low-energy (40-eV) differen-
tial cross section for Na+( S) with (dashed curve) and
without exchange {solid curve) .

FIG. 7. "Exact" differential cross sections for elas-
tically scattered electrons from the S state of Na+ with
exchange (dashed curve) and without exchange {solid
curve) included in the scattering potential, are compared
for 250-eV electrons.

change effects seem to be more important for
the ionic case than in the case of scattering by
neutral atoms. Perhaps scattering at low ener-
gies from positive-ion beams will offer a test for
the various approximations of the exchange poten-
tial. Although more difficult to accomplish ex-
perimentally the characteristic features of the
cross sections for negative-ion scattering offer
potentially an even more sensitive test of the
atomic field.

Finally I would like to call attention to the
works of Bely" in this field where problem of

exchange is taken in consideration in the scatter-
ing of electrons by positive ions, and substantial
contributions done by Seaton" in excitation of
positive ions and quantum-defect methods. "
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