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An additional theorem of the Hellman-Feynman variety is used in conjunction with the equa-
tions derived in paper II for the first-order density matrix. This particular theorem due to
Parr relates the energy difference E(X') -E(X) to a "parameter-transition density" p(X', X) .
It is shown that E(X') —E(X) can be used as a constraint on either p(A. ') or p(A). An additional
application of the P equations as a density-fitting technique is investigated. That is, given a
set of expectation values in some basis 4', one can use the P equations to generate the density
matrix that corresponds to these expectation values in some other basis g. Several helium-
atom Hartree-Fock densities are fitted to smaller bases with various sets of operators.
Density graphs are given for comparison.

I. INTRODUCTION

In a previous paper' in this series, a constrained
idempotency variational condition was applied to
the first-order density matrix. The variational
problem gave rise to an iterative matrix equation.
It was shown there that the main difficulty was the
lack of sufficient conditions to fully constrain the
density matrix. It was also shown that when bona
fide Hartree-Fock constraints were used to fully
constrain a problem, the corresponding Hartree-
Fock density matrix was uniquely generated.

In this paper, we consider the use of additional
Hellman-Feynman-type theorems as constraints
In particular, the Hellman-Feynman theorem for
dE/dZ is studied where Z is the nuclear charge.
Because of inherent inaccuracies in computing
numerical derivatives with a finite amount of en-
ergy data, the dE/dZ expression is, in general,
not useful as an experimental constraint. Also,
since the Hellman- Feynman theorem applies only
to (8E/8Z)N (where N is the number of electrons),
isoelectronic energy data are necessary. However,
the available data are usually not sufficiently com-
plete to compute reliable numerical derivatives.

However, on the positive side, we have made
use of a theorem due to Parr' which relates E(X')
—E(&) to a one-body "parameter-transition den-
sity. "Here ~ is any parameter of the system not
entering into the two-body part of the Hamiltonian.
Although Parr's theorem applies only to exact
wave functions, we will show by direct computation
that it is very accurately fulfilled in, for example,
two- electron atomic Hartree- Fock densities. At
least in these cases, then, the AE theorem is a
bona fide Hartree- Fock constraint.

The density matrix formalism for LIE is worked
out in Sec. III, where it is shown that the "param-
eter-transition density matrix" can be written in
terms of the density matrices P (X') and P (X). The~ theorem then fits nicely into our method. In
Sec. V, we apply the formalism to some two-elec-
tron self-consistent-field (SCF) densities.

In Sec. IV, we combine ~ and the electrostatic
theorem to produce a purely theoretical transition
constraint on the first-order density.

In Sec. V, the atomic Hartree-Fock densities

are used to further corroborate some of the results
of paper II. In particular, we numerically test the
theorem that the fully constrained P equations will
generate the proper n-basis pure-state density
matrix. Obviously, the constraints used must
correspond to the state in question. One of the
important aspects of this theorem is the fact that
if a sufficient number of bona fide Hartree-Fock
constraints can be found, then the strictly idempo-
tent solutions of our equations are true Hartree-
Fock density matrices.

In Sec. VI, using the same two-electron SCF
densities, an additional application of the idempo-
tency equations is discussed. It is shown that a
given set of expectation values in some basis is
sufficient to determine a "fit" of the corresponding
density in some other basis. Although not a least-
squares-type fit, it is shown to have considerable
numerical advantages.

II. THE HELLMAN-FEYNMAN THEOREM FOR Z

In this part we discuss in more detail the diffi-
culties with dE/dZ. Thus consider an N-electron
molecular system with energy E(R . . .R~,
Zo. . .Zq, N), where Ro and Zo are the o.th nu-
clear position vector and charge. Then, using

dE=Z sZ dZ +Z& E dR +
z BZ n ~ n n BN'

we have

I p g

since by the Hellman- Feynman theorem

sE(~, " )/e. =(sa/s~ ),
so that
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(2)

Even though Z . . . Z~ and N are discrete variables,
Eq. (1) is, in principle, legitimate since we can
always think of some continuous function that pass-
es through the discrete points defined by E; actual-
ly, an infinite number of such functions exist.
This is one of the difficulties; since only a discrete
set of experimental numbers is available, an em-
pirica, l evaluation of dE/dZ is unreliable. Thus,
if we want to use Eq. (1) as a constraint in the
usual way, we have to be content with the inherent
inaccuracy in a numerical derivative determined
from a discrete set of data points.

Another difficulty with Eq. (1) is the term BE/BN.
Unfortunately, there is no Hellman-Feynman
analogforthis quantity, since N is not the kind of
parameter considered in this theorem. Thus, if
lN) is the many-body state vector, BlN) /BN is not
easy to define. The same difficulty is encountered
with the derivative of the many-body Hamiltonian.
On the other hand, we could use the quantity BE/BN
as an experimental number. Again, however,
we encounter inaccurate numerical derivatives,
not to mention the fact that data such as hE/~,
holding Z fixed, are not readily available.

For these reasons, then, the Hellman-Feynman
theorem for dE/dZ has, for now, been discarded
as a possible experimental constraint.

III. PARR'S THEOREM IN DENSITY
MATRIX FORM

The finite difference analog of the Hellman-
Feynman Theorem has been given by Parr. '
showed that

m = z(x') —z(x)

where ~ is some parameter entering into the one-
body part of the Hamiltonian with state vector 1X),
representative 4(X), and parameter-transition
density p, (X'X) -=Nfl*(X')4(X)d'r2. . . d'rN The.
one-body parameter-transition density will be re-
ferred to as the transition density.

As we will show, Eq. (3) is well satisfied for two-
electron atomic Hartree- Fock transition densities
when X is the nuclear charge. In order to do this
calculation and also for application in our general
program, we need a density matrix form for Eq.
(&).

Consider two sets of Hartree-Fock functions for
an K-body system;

o(~) =e(x)c(x) e(~') = e(~')c(~')

where 4'(A) is some m basis with metric

s(~) =-e1(~) e(~).

As usual we have

R=CC . 9=AS. P'=P; 2TrP=N

for either A. or ~'. Now define

B(X' X) -=e~(X') ~ e (X)~

then introduce new functions

y(A. ) = C (X)B-'~' (X', X )

and y(X') -=4(A. ')& '"~(&' X)

Clearly, we have

provided 8 'I'(&', X) exists. One can then easily
show that the transition density is given by

p, (~', ~)/q. 'I ~) = 2 Tr q (~')q(~)

= 2 TrS (X', X)e~(X')e(X). (5)

The second expression in Eq. (5) has the same
formal appearance as an ordinary Hartree-Fock
density, which is obtained by setting A,

' =X. Equa-
tion (5) can now be expressed in terms of the 4
basis by defining

s(x', x) -=e (y') ~ e(z).

Thus we see that

= 2 T C(A)[C~(X') S(X', X)C(X)]
P.' l x)

&& c (x')e (~')e(~). (6)

p(~', ~) =z(~', ~)s(~', ~).

Using Eqs. (6) and (7), it then follows from Eq. (3)
that

bE = 2TrP(X', X)S '(X', A.)hH(X', A. ),

where (ddI) .. —= fg.*(&')[8(&')-Z(&)]g.(X)d'r.—22 2

From Eqs. (7) it follows that

z(x' x)s(x' ~)z(~' ~) =a(~' x) ~

P(~', X)P(X', X) = P(X', X).

Since C(X) and C(X') are the rectangular matrices
of occupied eigenvectors of P(&) and P(X'), then it
follows that'

We now introduce transition density and transition
population matrices via

z(x', x) =c(~)[ct(x')s(x', x)c(x)] c~(x'), (7)

The symbolic product is defined via

S .. —=4.~ ~ 4.= &g. i g.) .
22 i 2 2

P(A. )C(A.) = C(X); P(X')C(X') = C(X')

while from Eqs. (7) it follows that
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P(X, X')C(X') = C(X'); P(X', X)C(z) = C(X). (9b)

Again we note the forrnal similarity between tran-
sition and ordinary Hartree- Fock population matri-
ces. Equations (9) also supply some coupling con-
ditions. These are,

P(X', X)P(X) =P(X); P(X, A. ')P(X') =P(X'). (10)

In our method, we do not use all of the previous
conditions. They are included here only for com-
pleteness.

The way in which we introduce 4E as a constraint
depends upon the fact that the transition matrix
P(X', X) can always be represented in terms of the
"pure" matrices P(X) and P(A. '). We now proceed
to prove this. For simplicity the derivation will
be given for orthogonal bases [i.e., S(X) -=8(X') = 1] .

From Eq. (Qa) and the idempotency of P(X) and
P(X') we can write

where q is m x N/2 and selects from P the N/2
linearly independent columns. '

We now have for R(X', A. ) the following expression:

R(~', X) =P(~)q([P(~')gj

x S(X', x)P(X)qj [P(X')q] ~. (15)

Now we can introduce any constraining condition '
involving R(X', A. ) into our ordinary variational
method without difficulty since p suffers no varia-
tion. Thus, a transition constraint would take the
form

AZ = 2 TrP(X)q ([P(X')q]

x S(~', X)P(X)j} [P(~')q] ~H(y, ~). (15)

IV. TRANSITION CONSTRAINTS OF THE P MATRIX

C(X) =PN 2(X)o(x), C(x') =PN 2(X')o.(x') (11)

as can easily be seen by substituting Eq. (11) into
Eq. (Qa). Here PN/2 denotes any N/2 columns
of P and n is an N/2 square matrix to be chosen
such that CfC =1. When N= 2, C is simply a col-
umn vector and Eq. (11) states that C is propor-
tional to any arbitrary column of P. In the more
general case, if one chooses n —= (P ~/2 tPN/2)
the orthonormalization condition on C' will automat-
ically be satisfied; i.e., CtC =1. Since PN/2~
xPN/2 is Hermitian and thus diagonalizable,
(PN/2tPN/2)'~' can always be constructed; in ad-
dition, by requiring that PN/2TPN/2 be nonsingu-
lar the existence of n is ensured.

We now insert Eqs. (11) into the definition of
R(X', X) and observe that

R(X', Z) =P 2(X)o.(X)[o.(X')P (X')

xS(X', x)P 2(x)o.(x)] n(x')P
2

(x'). (l2)

But clearly (we have used the fact that o. =a~) the
square matrices a(X) and n(X') cancel out of this ex-
pression, so that

R(X, X) =P (X)[P (X')

x S(X', X)P 2(X)] ~ P
/

(X').

Using Eq. (13) we can now included any param-
eter-transition constraint into our regular varia-
tional procedure. ' To do this most simply, we
need to write PN/2 in terms of the full m-square
P matrix. Since P' =P and TrP= N/2 it follows
that P is of rank N/2; i.e., it has only N/2 linearly
independent columns. Thus, in constructing n
some caution must be exercised in selecting from
the set of m columns of P a linearly independent
N/2 subset However. , since for our present pur-
poses we do not need e as such, we may let

In general, the term

([P(X')q] S(X', X)P(X)g)

which occurs in Eq. (15), is a square matrix of di-
mension N/2. We see, then, that if N= 2 this
quantity is a scalar and can be removed from the
trace in Eq. (16). Thus for N= 2

2 TrP(~)g[P(~')qj ~H

= m/[P(X')q] S(X', X)P(X)g)

is an alternative form of the transition constraint.
But, any scalar can be written as a trace, so we
also have

TrP(~)qq P (~')m

=-,'m TrP(X)qq P (X')S(X', X)

ol

TrP(X)qg P (X')[~- —,'~ZS(X', X)]=O. (iQ)

This constraint can now be included in a normal
way into our variational problem since when we vary
P(X) we suppose that P(X') is being held fixed.
Thus if we define

0 = qg p~(X')[&H -', DES(X',X)]--
we have TrP(A, )O =0. (2o)

2P' —3P'+P —Z.p, .S '0.=0, (2i)

which is of the same form as the constraints intro-
duced in paper II. In Eq. (20), however, Of is, in
general, non-Hermitian whereas our previous con-
straining operators always satisfied the equation,
0 =-0$. As we now show the non-Hermitain charac-
ter of Ot presents no particular problem. Thus,
consider the P equations in a nonorthogonal basis
with metric S,

(i4) where —2p, z is the ith Lagrangian multiplier per-
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taining to the constraint 2 TrPS 'Oi = Oi. We now
suppose that, in general, Oz&Ozj' and we seek
solutions such that P =AS with R Hermitian. The
hermiticity of A is a direct consequence of its
factorization as C Cj; the factorization, in turn, is
implied by the idempotency of P. To reiterate, we
require that any acceptable solution of Eq. (20) be
such that P =R S where R =Rj. It further holds
that

Pj=(RS) =S~R =SR=SPS '
(22)

Taking now the Hermitian conjugate of Eq. (21)
yields

2(P~) —3(P~) +P~ —Z.p.O .~S =0 (23)

from which, along with Eq. (22), it follows that
P must also satisfy

2P' —3P'+P Z.p. S-'0. =0. (24)

Combining Eqs. (21) and (24) we see that P must
further satisfy the equation,

2P —3P +P —Z, p. S —,'[0.+ 0. ]=0. (25)

Of course, all of these equations are equivalent.
However, since we use an iterative technique for
solving them, only the latter [Eq. (25)] is capable
of generating solutions of the desired form, i.e.,P=RS where R=Rj. In other words, a solution
P must be such that when multiplied on the right
with S an Hermitian matrix results.

V. SOME SYMMETRY CONSIDERATIONS

A further result of general relevance is the
transformation properties of the P equations when
symmetry bases are used. In this connection it
was shown in paper II that the P equations are form
invariant under any linear, nonsingular transfor-
mation of basis. That is, the usual equation

2P' —3P'+ P Z.p, .S-'0 .= 0— (28)

as well as Eq. (25) has the same form in all bases.
Now suppose in addition a particular problem

has sufficient symmetry that P has a reduced form

P2 —P =0;—K —K
K=Q, P, . .. , p

subject to constraints of the form

V

Z 2 TrP S '0. =0.; i= I, 2, . . ., K (28)
K=Q

P=P O+P O+ '''0&-P—n —P —V

where Q, p, . .. , v refer to the irreducible repre-
sentations of the pertinent symmetry group. In
other words, if we know from symmetry considera-
tions that P has the preceding form we again may
seek solutions of a special, type, namely, those
that are direct sum constructed. This problem
is most elegantly solved by restating it in sym-
metry-block form. Vfe thus require

where K is the number of constraints necessary
to fix the full P matrix. We now propose to vary
a given block Po holding all others fixed. Since
E constraints are sufficient to fully determine P,
we need only Ko to fully constrain Pz. Thus our
variational problem becomes

5 Tr [P '- P ]' = 0—0 —0

subject to
V

2 TrP S -'0 . =0. ,—K —K —SK 2I(=Q

(29)

where i = 1, 2, ..., I(.0. In the fully constrained
problem, the particular Kz(E constraints is
immaterial. If, on the other hand, the problem
is not fully constrained, a judicious choice of
which constraints to associate with each symme-
try block could well be a method for seeking the
most acceptable solution of the infinity that must
exist when the problem is not fully constrained.

It is clear now that since P~ g& is held fixed in
the variation of Eq. (29) it follows that

Eo
2P '- 3P '+P — Z p. S -'0. =0.—0 —0 —0' O' —SO'i= 1

(30)

As usual, the Lagrange multipliers p, z are deter-
mined from the appropriate constraints. They can
now be written in the form

2TrP S '0. =0.—Z 2TrP S '0 . , (31)—0'—0 —$0' 2 —IC—K —ZK
K 0 o'

where the right-hand side is a fixed number.

VI. 6E AND THE EI.ECTROSTATIC THEOREM

In Eq. (3) we can obviously let X and X' denote
coordinates. The resulting &E expression can
then be cast into a form that relates the one-body
density for a given nuclear configuration to the
one-body parameter-transition density pertaining
to two different configurations. Thus in a poly-
atomic molecule

E(R " R,)-E(R'"R,')=("l'~l"'&
(Rl R)

Kf&Vp (r R ~ ~ ~ R R '
~ ~ ~ R ')d~r

1 ' Q P' Q P

Jp (r R R R ~ ~ R ')d'~
Q V' Q P

(32)

E(R R )
(Rl b VlR'&

(Rl R')
(33)

Now, using the electrostatic theorem, the left-
hand side of this equation becomes the electronic

which follows from the fact that in a molecular
problem the quantity &H =H(R) —H(R') only involves
the difference 4V of one-electron potential energies.
Taking the gradient of the left hand side of Eq. (32)
with respect to RQ holding Rp ~ ..Rp, RQ'. . . R '

Vfixed, we obtain
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force on the nth nucleus, that is,

f& ( —Z /Ir —R I )p (r, R ...R )dsr

=V l(k ~ViR'&/«IR'&) (34)

m = (Z'I B(Z') —B(Z) I Z)/(Z'IZ)

to the actual variational

b.E = (Z'I PI Z') —(Z I HI Z) .

which represents an integro-differential relation-
ship between the one-body density of the configura-
tion R and the one-bod~ transition-density between
configurations R and R'.

This particular form of Parr's 4E theorem may
be viewed as a purely theoretical condition on one-
body densities and, therefore, has somewhat the
same status as the electrostatic-virial theorem of
paper IIL' Equation (34), however, involves a
parameter-transition density whereas the E-V
theorem does not. On the other hand, we have
shown that in the Hartree- Fock approximation
p, (r,R, R') can be represented in the sense of Eq.
(15) in terms of the individual R and R' one-body
densities. Thus if for example the R' density is
known, then Eq. (34) becomes a purely theoretical
constraint on the one-body density for the R configu-
ration.

VII. APPLICATION TO ATOMIC
HARTREE-FOCK DENSITIES

In order to test the theorems of Sec. III, we
chose to study a simple two-electron atom-ion se-
ries. The ground-state electronic wave functions
for He, I i+, . . . , Me+8 have been calculated via
Hartree-Fock methods by Clementi. ' He uses a
four- or five-function basis 4 made up of 1s func-
tions with diff erent variationally determined scale
factors. The single Hartree- Fock atomic function
4 necessary to describe the two electrons is then
approximated by 4 = 4 C, where C is the column
vector of expansion coefficients.

A. AE as a Hartree-Fock Condition

Our first calculation consisted of taking various
pairs of Hartree- Fock wave functions for different
Z values and using these in Eq. (3). Computa-
tionally this imples that we identify the parameter
X with the nuclear charge Z. We then compared

in order to ascertain how well the Hartree-Fock
wave functions satisfied Parr's theorem. The re-
sults are displayed in Table I. Although not direct-
ly connected to the ~ formalism pew se, we per-
formed another calculation to corroborate the theo-
rem of paper II relating our method to the Hartree-
Fock. The theorem states that the P equations
will generate true limited Hartree-Fock P ma-
trices provided they are fully constrained with
Hartree- Fock conditions. Using Clementi's wave
functions we computed several expectation values
(T, r ', r ', x, r'r') which were used as constraints
in our iterative P equations. With Clementi s
four-function basis, three constraints are neces-.
sary to completely fix the solution. Thus, for any
set of three expectation values used as constraints
our equations converged to the Hartree-Fock P
matrix. The accuracy was limited only by the
number of significant figures in Clementi s coeffi-
cients.

B. The Expression R(X',) )

Our next calculation on the two electron systems
was designed to check the expression for the transi-
tion density R(X', X). This formula, given by Eq.
(13), was used again for various pairs of the two
electron systems. That is, a transition matrix
R(Z', Z) was computed using the prescription of
Eq. (15). This B(Z', Z) matrix was then used to
compute bE via Eq. (16) which was then compared
to our previous, but more directly calculated val-
ue of bE =E(Z') —E(Z). E(Z) is the variational
value of the energy computed by Clementi. Again,
the results in every case agree to the significance
of the reported Hartree-Fock C matrices. Here
the choice of g is immaterial since every column
of B(A.) is obviously proportional to C(X) because

A=CC = iC&(C *.. .C+)

&. )

TABLE I. The comparison of the two independent methods of calculating 4E —= E(Z') -E(Z) for two-electron Hartree-
Fock wave functions.

&z+1la lz+1)
—(Z [H iZ)

—6E(Z' —Z=1) (a.u. )

(z+1 laII(z
+1,z) lz)

x(Z+1lZ)
(z+2 lal z+2)
—(z la lz)

—~E(Z' —Z= 2) (a.u. )

(z+2 l aa(z
+2, Z) lZ)
x(z+ 2lZ) i

(z+3 lH l z+3)
—(z la lz)

-SE(Z'-Z=3) (a.u. )

(Z+ 3 (bH(Z
+3, z) lz)
x(z+3 lz) ~

2
3
4
5
6
7

9
10

4. 37473
6.37484
8.372 93

10.374 96
12.374 98
14.374 99
16.374 99
18.374 98
20. 374 99

4.386 15
6, 38031
8.378 15

10.377 10
12.376 54
14.376 21
16.375 95
18.375 77
20. 375 58

10.749 57
14.74978
18.749 90
22. 749 94
26. 749 97
30, 749 98
34. 749 98
38.749 98
42. 749 99

10.807 71
14.779 92
18.768 17
22. 76231
26. 758 94
30. 756 86
34. 755 45
38.754 26
42. 753 49

19.124 51
25. 124 74
31.124 88
37. 124 93
43. 124 96
49. 124 97
55. 124 97
61.124 98
67. 124 99

19.260 84
25. 202 19
31.17440
37. 15935
43. 15036
49. 144 73
55. 140 53
61.137 57
67. 13545
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(C1C1*.. . C C *~

C. Use of M as a Constraint on the P Matrix

Since it is seen from Table I that ~E is a valid
Hartree-Fock condition we are prepared to intro-
duce it as a constraint into our formalism. ' We
first utilized only one ~ constraint along with any
pair of the nontransition constraints listed in Part
A. As expected, the solutions of the P equations
agreed with the Hartree- Fock P matrix to an ac-
curacy in correspondence with the reported values.
When two AE constraints, and one nontransition
constraint, were used similar agreement was
achieved.

A particularly interesting result was obtained if
three ~E constraints were used. In this case, in
addition to the exact agreement with the Hartree-
Fock P, the rate of convergence of the iterative P
equations was enhanced by three orders of magni-
tude. More precisely, when we used a given set
of three P matrices and iterated to the fourth, us-
ing only AE constraints, less than 10 iterations
sufficed to achieve a solution. This is to be com-
pared to 7000 iterations for the one and two AE
constraint calculations. ' The remarkable conver-
gence when all 4E's are used could prove very use-
ful in future calculations.

VIII. DENSITY FITTING IN THE HELIUM ATOM

As already pointed out in the introduction, the P
equations may also be used in a "density-fitting"
context. To clarify this point, suppose that one is
given a set of expectation values calculated in a
particular basis 4' with density p@. With this in-
formation alone one would now like to find p& as
expressed in some other basis y . The least squares
method for doing this requires having integrals
(g&l X&) . If this is not convenient, an alternate
procedure is possible. Thus, use the available
expectation values in the 4 basis (even generating
more, if necessary) to constrain the P equations.
The result will correspond to the representation of
the given density in another basis with regions of
space weighed according to the choice of expecta-
tion values.

This method, although not a least squares, may
have at least two advantages. First, it may be
numerically inconvenient to compute

(goal

li&),
whereas not so to compute (pflo 1 g~) and (Iffl Ol X&)
for various operators O. Second, the type of fit
one achieves depends upon the choice of O. This is
an intuitively attractive aspect of the method be-
cause one may choose operators 0 that weigh re-
gions of space particularly propitiously with re-
gard to the use one wants to make of the result.

A possible example of this type of calculation
might arise in the following way. Suppose one
wants to study Hartree-Fock density contours in a
region of space close to the nuclei. It would be
more convenient to have a large basis SCF density
represented in some smaller basis. One, there-
fore, simply computes SCF expectation values for

I
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FIG. 1. Comparison of Hp versus x for five-function
Hartree-Fock (dots) and three-function "fit' with (r )
and (x) (dashes).
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FIG. 2. Comparison of x p versus x for five-function
Hartree-Fock (dots) and three-function fit with (~)
and (y ) (dashes).

operators that weigh the region close to the nucleus
(1/r, for example) and proceeds to generate a P
matrix for a smaller basis. The resultant density,
then, is more convenient to work with and valid in
the region desired.

Of course, however, one must be careful not to
use the same density well outside its region of
validity —as in any fitting procedure.

In Figures 1 through 8, electron density plots
are given for various He atom calculations. In
these calculations Clementi five-function Hartree-
Fock wave functions were used to calculate expec-
tation values of powers of xfrom n=-2 to n=8.
These expectation values were then used as con-
straints in the P equations with two- and three-
function bases chosen from the Clementi five-func-
tion basis. In all the figures, both Hartree-Fock
and the smaller basis, "fits" are plotted.

- We note several things about these density plots.
First of all, in several cases (Figs. 1-4), we can
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FIG. 3. Comparison of r p versus r for five-function
Hartree-Foek (dots) and two-function fit" with (x)
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FIG. 5. Comparison of r~p versus r for five-function
Hartree-Foek (dots) and three-function fit with (x )
and (r ) (dashes).

detect little or no difference between the five-func-
tion Hartree- Fock and the two- and three-function
fits. These results occur if the powers of rare such
that the region of space singled out is the region of
maximum density —this can be done either with sets
involving ~-', x, and r' or (less well) average sets
such as r-' and H', etc. Our first conclusion, then,
is that He atom Hartr ee- Fock can be fit (with accu-
racy of -0.01%) to considerably smaller, more
tractable bases, if the expectation value constraints
are suitably chosen. If this result obtains, in
larger systems, it could be well worthwhile for
generating bases for bigger calculations. Secondly,
we note that as the powers of r increase (Figs 5.
and 6 for example), the "out-far" region is fit well
at the expense of the "in-close" region. This is a
result to be expected, showing that some intuition
can be used in choosing constraints. A word of
caution is in order here, however, since it is clear
that the choice of operators used to fit the density

is correlated with the choice of basis, both must
be chosen in some reasonable way. Our previous
atomic calculations indicate that any set of opera-
tors that single out the space natural to the atomic
system (r 1a.u-. in He) will work well in conjunc-
tion with an approximately variational basis. On
the-other hand, even the scale factors of the basis
can be adjusted by putting more constraints on the
problem and varying the scale factors until a solu-
tion, is reached. In this way, a "best" fit to a lim-
ited size basis, with a given set of operators, can
be achieved.

This investigation of the use of the P equations in
a density fitting role is only preliminary. To com-
plete it, we should do a comparison study with a
least-squares method. We, nonetheless, reiterate
some of the possible advantages of the present
method. In the first place, a least-squares method
requires overlap integrals between one basis and
another. In general, this could cause some nu-.
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FIG. 8. Comparison of x p versus x for five-function
Hartree-Fock (dots) and two-function fit with (x )
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merical difficulties if the bases are not compatible
in the sense of leading to integrals that can be
done analytically. Our method requires no such
"transition" integrals. Secondly, least- squares
methods are not unique in that an arbitrary weigh-
ing factor v (r) can (and should) always be inserted
into the least-squares condition,

5 1[4(r)—Z.c.@.(r)I'&u(r)d x=0 .
2

This free choice of weighting factor, of course,
plays the role of our free choice of constraining
operators. In the final analysis, then, it becomes
a matter of what one has more easily available
and which method best suits one's needs. Our
main purpose here is to describe this new inde-
pendent way of fitting densities to smaller bases.

IX. CONCLUSION

Our main purpose in this paper has been twofold.
First, we investigated the use of Parr's finite dif-
ference hE theorem as a constraint on our idem-
potency equation. All the necessary formalism
was developed and tested in several applications
in small atoms. It appears that the role of the

~E theorem in this method will be not unlike the
electrostatic-virial equation of paper III. Thus,
as a density continuation formula, this constraint
shows much promise. It can be used in both a
semi-empirical and a theoretical context. The
second aspect of this work is found in the sugges-
tion and application of the use of the I' equation to
represent (or fit) Ha, rtree-Fock densities in small-
er, more tractable bases.

It was shown that the property of the I' equations
to select any pure state, given its expectation val-
ues, can be used to advantage in this regard. Thus
although not a least-squares method, the approach
affords what may be called a more "local" fit in the
sense that expectation values may be chosen to
single out a given region of space where the density
perhaps is more important. What this "fit" cor-
responds to is a projection of the Hartree-Fock
state onto a subspaee of the original Hartree-Fock
Hilbert space. Thus depending upon one's inter-
est in the Hartree- Fock in the first place, this sub-
space may be chosen for either tractability or
physical attractiveness, or both (e.g. , the repre-
sentation of a molecular Hartree-Fock function in
a simple Slater type basis, choosing expectation
value constraints that emphasize the quantities of
interest).

*This work was supported by the Advanced Research
Projects Agency under Army Contract No. DA-31-124-
ARO(D) -14.
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Parr's theorem now follows in the form

DE=+ p'l H. (A.'}—H. (A) ~ ) )/()l. '[ x)
2 2 i

=N P.'( H(X.')-H(~)
( ~)/P. '

I ~),

where H is any one of the one-body terms. Equation (3)
nowfollows upon substitution of the spinless transition
density explicitly defined as

p (r ', r, X', X)
1 1' 1'

t 4 *(r 's '' ' ' r 's 'X')
s ...s ~ 1 1 n n1"n '

g +(r s ' ' ' r s, X)d3y ' ' d3y .11 nn' 2

In the text for p&(r&', r~, A. ', X) (the transition density), we
use the shorthand notation p&(X', X) .

A specific example involving q is given in Sec. VII B.
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A density-matrix approach to constrained eigenvalue problems is presented. It is shown
that all of the linearly independent eigenvectors of an Hermitian matrix can be generated with
the idempotency equations (P equations) developed in previous papers of this series. In
particular, the method is applied to variational calculations in Hq and He.

Since the local-energy method assumes eigenvalue form, it also can be formulated in terms
of the P equations. Various local energies for H2+ and He are ca1culated. Direct methods
of incorporating local energies as constraints are suggested. An orthogonal operator for-
malism for the P equations is given. Such operators O&, O& have the property that TrO~O)
= 0 for k & l . The iterative P equations, then, assume the simple form

P =6' +P [(0 —Tr(PO„)/TrO 2]O

where (P =—3P —2P and the constraints, TrP 0& = 0&, are now identically satisfied.

I. INTRODUCTiON

In papers I-IV of this series, 'a method was de-
veloped for the calculation of one-body density ma-
trices. In the present paper it will be shown that
the method is also applicable to general eigenvalue
theory. In particular, it will be seen that the con-
strained P equations of paper II can be used to gen-
erate all of the linearly independent eigenvectors
of an Hermitian matrix by casting the eigenvalue
equation into constraint form. The present ap-
proach allows other theoretical or empirical con-
straints to be included into the eigenvalue problem;
thus it is particularly suited for constrained ener-
gy-variational calculations. ' The method is applied
to both eigenvalue and pseudo-eigenvalue (non-unit

metric) problems with and without additional "non-
eigenvalue" constraints.

The present paper deals with eigenvalue theory
in a nonconventional way. Thus an enumeration of
the applications of the P equations investigated to
date will be given in order to establish a context
in which the current work is to be viewed.

1. Semiempixical Constraints. It was shown in
papers I and II that the electrostatic and virial
theorems can be used to generate reasonable first-
order density kernels using experimental data.
These densities can be made quantum-mechanically
valid by using the P equations. The use of hyper-
viriai3 constraints was also suggested as an area
of future investigation. Clearly, any observable
(e. g. , empirical) moments of a charge distribu-


