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The expansion of operators as ordered power series in the annihilation and creation operators a and a~

is examined. It is found that normally ordered power series exist and converge quite generally, but that
for the case of antinormal ordering the required c-number coefficients are infinite for important classes of
operators. A parametric ordering convention is introduced according to which normal, symmetric, and
antinormal ordering correspond to the values s=+1, 0, —I, respectively, of an order parameter s. In
terms of this convention it is shown that for bounded operators the coefficients are finite when s&0, and
the series are convergent when s& ~. For each value of the order parameter s, a correspondence between
operators and c-number functions is defined. Each correspondence is one-to-one and has the property that
the function f(n) associated with a given operator Ii is the one which results when the operators a and at
occurring in the ordered power series for Ii are replaced by their complex eigenvalues n and 0.*.The corre-
spondence which is realized for symmetric ordering is the Weyl correspondence. The operators associated
by each correspondence with the set of 8 functions on the complex plane are discussed in detail. They are
shown to furnish, for each ordering, an operator basis for an integral representation for arbitrary operators.
The weight functions in these representations are simply the functions that correspond to the operators
being expanded. The representation distinguished by antinormal ordering expresses operators as integrals
of projection operators upon the coherent states, which is the form taken by the I' representation for the
particular case of the density operator. The properties of the full set of representations are discussed and
are shown to vary markedly with the order parameter s.

I. INTRODUCTION

MBIGUITIES in the ordering of operator products
were among the earliest questions to occur in the

development of quantum mechanics. In more recent
years we have come to understand a close relationship
between particular types of measurements and the oper-
ator orderings best suited to describing them. In many
quantum-mechanical problems, such as those of quan-
tum optics, we are now concerned with the ordering of
general operator functions rather than simple operator
products.

In the present paper we shall discuss the representa-
tion of arbitrary operators that refer to a system which
we choose, for simplicity, to have only a single degree
of freedom. We shall describe this system in terms of a
pair of complex operators, a and at, which we refer to
as the annihilation and creation operators. These oper-
ators, which obey the commutation relation [a,at]= 1,
play a fundamental role in descriptions of systems of
harmonic oscillators and quantized fields. Operators
with the same algebraic properties may be de6ned for
a broad class of different dynamical systems by form-

ing complex linear combinations of pairs of observables

q and p that are canonically conjugate, [q,p]=i h

Because of ordering problems which arise from the
noncommutativity of the operators a and a~, the repre-
sentation of operators is a considerably richer subject
than the representation of c-number functions. We
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examine several aspects of this structure in the present
paper with particular emphasis upon the types of order-
ing that are most useful in the description of physical
experiments. In the paper which follows, we shall apply
this analysis to the closely related problem of expressing
quantum-mechanical ensemble averages in forms that
oGer, as much as possible, the simplicity of classical
ensemble averages. The present discussion of operator
ordering will provide the basis for our discussion there
of the I' representation, the Wigner distribution, and
other ways of representing density operators.

It is conventional to distinguish the products (at) "g~
and a (at)" by calling the first normally ordered and the
second antinormally ordered, In general an operator is
said to be normally (antinormally) ordered if the oper-
ator a stands always to the right (left) of the operator
ct. It is clear that any polynomial in the operators a
and a~ may be cast into normally or antinormally
ordered form by using the commutation relation a
finite number of times.

A problem we discuss in detail is that of expanding an
arbitrary operator as an ordered power series in the
operators u and ut. %e show that virtually every opera-
tor of interest possesses a convergent power-series ex-
pansion in. the normally ordered products (at)"a".
Power-series expansions in the antinormally ordered
products a (at)" are, however, of considerably less gen-
erality. We show that for many well-behaved operators,
ones that are bounded and of 6nite trace, the required
c-number coefficients are infinite.

These two varieties of ordering have been discussed
recently in a number of references and some discussion
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has also been given of other varieties of ordering. ' '
The emphasis of the work published to date has been
principally upon the development of formal expressions
for ordered operators rather than upon their exphcit
meaning. Since those meanings are not in all cases self-
evident and we want in any case to understand their
limitations, we have found it necessary to exercise some
mathematical care in the development of our arguments.

In order to examine more closely the role of operator
ordering in power-series expansions and to be able to
interpolate between normal and. antinormal ordering,
we have been led to introduce a parametrized ordering
convention. This convention associates with every com-
plex number s a unique way of ordering all products of
the operators c and u~. Normal ordering, antinormal
ordering, and a type of ordering that is symmetric in
the operators c and ct correspond to the values s=+1,
—1, and 0, respectively, of the order parameter s. We
are not attempting by introducing this continuum of
orderings to deal with all possible forms of ordering nor
do we know of any physical applications for arbitrarily
ordered operator functions. We shall continue to center
our attention on the three principal forms of ordering.

By embedding them in a continuum of orderings, we
provide for them a natural context for viewing their
di6'erences and interrelationships.

Our parametrized ordering convention enables us to
consider the existence of ordered power-series expan-
sions for intermediate orderings. We show that for
bounded operators the required c-number series coe%-
cients are 6nite whenever the ordering is closer to
normal ordering then to antinormal ordering, i.e., for
Res&0. We show as well that for such operators the
power series converge, in a sense which we make pre-
rise in Sec. IV, when the ordering is closer to normal
than to symmetric ordering, or, more precisely, for
Res) -', +-,' (Ims) '.

These ordered power-series expansions and the as-
sociated formulas for the c-number cocKcients a6ord
for every value of the order parameter s a relatively
direct type of correspondence between operators and
c-number functions. The rule characterizing each cor-
respondence is to replace the s-ordered products
((at)"a~), in the power-series expansion of a given

operator by the monomials (e*)"n . The properties of

these correspondences, which are one to one, depend
markedly upon the order parameter s. The classes of
operators for which they are appropriate and the types
of functions which they associate with different classes
of operators are discussed in Sec. VII. The correspond-

' W. H. Louisell, Radiatzozz and Poise iN QNeltem E/ectrorIics
(McGraw-Hill Book Co., New York, 1965), pp. I04-j.j.9.

2 K. E. Cahill, thesis, Harvard Uni'versity, j.9N (University
L~icrohlms, Ann Arbor) (unpublished). Many of the results of the
present paper are presented there.

'M. Lax and W. H. Louisell, J. Quantum Electron. QE3, 4g
(r962).' M. Lax, Phys. Rev. 172, 350 (f968}.

~ G. S. Agarwal and E. Wolf, Phys. Letters 26A, 485 (1968).

ence speci6ed by s=o and associated with symmetric
ordering may be identi6ed with a correspondence in-
troduced by Keyl. '

Our main interest in these correspondences is the
possibihty of using the function assoriated with a given
operator as a weight function in an integral representa-
tion of that operator. This possibility is realized in
Secs. VI and VII, where for each correspondence we
introduce a set of operators that forms a basis for such
an integral representation. We discuss the properties
of these representations and of their weight functions
in Secs. VI—VIII.

We begin with two introductory sections. Section II
summarizes the useful properties of the coherent states
and of the displacement operators exp(act —n~u). In
Scc. III wc discuss thc propcltlcs of an lntcglal rcplc-
sentation for arbitrary operators that is based upon the
displacement operators. This expansion, which is due to
Weyl, ' provides the basis for much of our subsequent
analysis.

H. COHERENT STATES AND DISPXACEMEÃT
OPERATORS

An important part of our discussion will be based
upon the use of a particular set of quantum states. If
the system being studied is the electromagnetic 6eld,
these are the states that describe completely coherent
fields. The systematic use of such coherent states has
been found particularly well suited to the solution of a
number of quantum-electrodynamical problems and
problems of other types involving harmonic-oscillator
degrees of freedom. In this section we shall indicate
how states of a corresponding type may be de6ned for
a broad range of physical systems. This extension of the
definition of coherent states furnishes the opportunity
to review their properties briefly.

Let us consider for simplicity a dynamical system
that is described by a single pair of Hermitian observ-
ables q and p which are canonically conjugate, I q,pl= jh, and have eigenvalues which range continuously
from minus infinity to plus in6nity. The operators we
shall use in de6ning the coherent states are complex
linear combinations of q and p. Corresponding to any
real parameter X, different from zero, we may form the
combinations

a=(2h) '12Pq+k 'p)

at=(2h) '"(Xq—zX 'p). (2.2)

These operators satisfy the familiar commutation
relation

6H. Weyl, The Theory of Groups uzi Qzzuetgm Mechanics
(Dover Publications, Inc., New York, 1950), pp. 272-2/6.

(2.3)

and therefore possess the same algebraic properties as
the operators associated with the complex amplitude of
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a harmonic oscillator or the photon annihilation and
creation operators of quantum electrodynamics.

The operator a possesses, as we shall see, a two-
dimensional continuum of eigenstates. Let us first note
that it has a particularly simple eigenstate correspond-
ing to the eigenvalue zero. If we denote this state by
IO), then its defining equation

aIO)=0 (2.4)

may be written in the representation in which q is
diagonal as

(!~'q'+ hd/dq') (q'
I 0)=0. (2.5)

The wave function for this state is therefore a Gaus-
sian function which takes the normalized form

(q'
I 0)= (!i'/x.h)'" expL —(Xq')'/2h]. (2.6)

ataIn)=nIn) (2.7)

This state, incidentally, is one for which the uncertainty
product hqAp assumes its minimum value of sh with
the ratio hp/Aq= X'.

It is clear from the algebraic properties of the oper-
ators a and ut that we may construct, just as in the case
of the harmonic oscillator, a sequence of states for the
system which correspond to integer eigenvalues for the
product ata. These states, which we label as

I n), satisfy
the equation

Let us now define for each complex number o. the
exponential operator'

D(a) = exp(aat a—*a),

which is unitary and obeys the relation

(2.11)

D(a) —a
—]a[ /2~act~ —a a

and as the antinormally ordered form

D(a) —~(a[ /2~ —a a~eat

(2.14)

(2.15)

By differentiating these two ordered forms of the
operators D(a) with respect to a*,—we find'

8/Ba*D—(a) = D(a)(a+-', a)
= (a—ka)D(a),

which implies the relation

(2.16)

'(a)=D '(a)=D(- ) ( )
These operators, which were introduced by Weyl, ' are
easily written in forms in which the operator u appears
exclusively to the right or to the left of the operator a~.
By means of the identity'

expA exp8= exp(A+8+ i2LA, B]), (2.13)

which holds whenever the commutator fA,B] com-
mutes with both 3 and 8, we find as the normaBy
ordered form

for m=0, 1, 2, . They may be generated from the
state I0) by the rule and its adjoint

D '(a)aD(a) =a+a (2.17)

In)= (n!) '"(at)" IO). (2.S) D '(a)atD(a) = ai+a* (2.18)

The wave functions (q'
I n) which represent these states

are easily seen to take the same form as the familiar
stationary-state wave functions for the harmonic oscil-
lator. They are the Hermite functions which form a
complete basis for the expansion of any quadratically
integrable function. These states In) therefore form a
complete set.

It may be noted that no specihcation has been made
of the Hamiltonian of the system that we are discuss-
ing. Since the system may have arbitrary dynamical
behavior, the states In) will not in general be energy
eigenstates. Only when the Hamiltonian is a function
of the operator

ata= (2l/) '(X 'p'+li'q' —/i/) (2.9)

will the states
I n) be stationary. The Hamiltonian of a

harmonic oscillator of mass m and angular frequency
co is

II= (2m) '(p +m'cv'q'). (2.10)

The states In) become the stationary states of this
Hamiltonian when the arbitrary parameter X is given
the value (mo&)'". A normal mode of the electromag-
netic field in a dielectric possesses a Hamiltonian of the
form of Eq. (2.9) with X=g(~), where e is the dielectric
constant. In this case the state In) is an n-photon state.

Because of their property of displacing the operators
a and at in a conjugate fashion, the operators D(a) have
been called displacement operators.

It is evident from their definition that the displace-
ment operators obey a simple multiplication law. By
applying the identity (2.13) we find

D( )D(P) =D(a+&) expI l( P P)]. (2 19)

Thus, apart from unimodular phase factors, the dis-
placement operators form an Abelian group.

For each complex number a the coherent state Ia)
is defined by'

I a) = D(a) I 0) (2.20)

From Eqs. (2.4) and (2.17) it is clear that the state
I a) is an eigenstate of the operator a with eigenvalue a,

8 A =CL Q (2.21)

The displacement transformation (2.20) leaves the
variances of the coordinate and momentum variables
unaltered so that they have for all coherent states the

~ R. J. Glauber, Phys. Rev. 131, 2766 (1963).
8 A. Messiah, QNuetem 3Iechanics (North-Holland Publishing

Co., Amsterdam, 1961), Vol. I, p. 442.
9 In this and in all subsequent di6erentiations with respect to

conjugate complex variables we observe the convention Ba/8a*=Bn~/8a =0.
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values

(~p)'= x'(~q)'=-', z'h, (2.22)

III. COMPLETENESS OP DISPLACEMENT
OPERATORS

which are characteristic of the ground state (2.6).
By using Eqs. (2.4), (2.8), (2.14), and (2.20), we may

relate the coherent states to the states
I e&:

In& =D(n)
I o)

—e—i «i ~/2e««te-«*«
I 0)

««t
I 0)

=e ~«~'" g (I') '"n«le).
n=o

(2.23)

&Pln&=exp( —llnl' —2IPI'+P*n), (2 24)

which shows that no two coherent states are orthogonal.
The extent to which they overlap

This expansion and the orthonormality of the basis
states Ie) allow us to write the scalar product (Pln)
in the form

The displacement operators D(n), which were defined
in Sec. II, possess a number of simple properties which
will be particularly useful in the analysis which follows.
Principal among these is the representation that they
a6ord for a certain class of operators as weighted inte-
grals with square-integrable weight functions. In this
representation, as we shall see, they play a role very
much analogous to that of the unimodular exponential
functions in the Fourier integral representation of
square-integrable functions. Although the completeness
property has only recently been formulated rigor-
ously, ' " the displacement operators have often been
discussed in the literature. ' ' " "Because our analysis
is cast in terms of the complex operators a and at, as
opposed to their real parts q and p, we shall need a
notation for the Fourier transform that is more suited
to complex numbers than to pairs of real numbers. If
g{$) is a function of the complex variable $, then we
define its complex I'ourier transform f(n) by the relation

I &PI n&
I

'= e ~" '~' (2.25) f(n)= e'* 'g($)~ 'd'(, (3 I)

e'*'&" *"'g{N+is)n'dN de, (3.-.2)f(x+~y) =
{2.26)~ 'd'n= ~ 'd(Ren)d(Imn),

is, however, negligibly small when the states are macro- where the integration is over the whole p plane, and the
scoPically distinguishable, i.e., when In Pl))I. eleme„tdm~isdea„ed by Fq {226) By lett, n«

The coherent states provide a convenient representa- and $
—I+jp we may wrjte f(n) in the form

tion for the unit or identity operator 1. I et us define
as a real element of area in the complex 0. plane

which, by writing

dn= (2h) "'(Xdq'+iX 'dp'),

we may recognize as the familiar differential element of
phase space~

vr 'd'n=h 'dq'dp'.

Then on using the expansion (2.23) and integrating over
the complex plane, we 6nd

~(*)~(y)= gi (xk+y k')

(2m.)'

we may express the two-dimensional 8-function

from which it is evident that f(n) differs from the usual
Fourier transform only by a scale change of its argu-
1Tlents Reo.'and Imn.

By recalling the familiar formula for the Fourier
integral representation of the product of two 6-functions

ln&(nlrb-'d'n= P Ie&(nl
n~o

8'"(n) = h(Ren)b(Imn)

in the more convenient form
(2.27)

TrLP)= Tr P ln)(nl7r-'d'n

(nl Zle&~-id2n (2.28)

which illustrates the completeness of the coherent states.
This relation aRords for the trace of an arbitrary oper-
ator Ii the simple expression

g (2) (n) — e«P—««f&—«d 9( (3.3)

Io J. C. 'L Pool, J. Math. Phys. 7, 66 (1966)."J.E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1948).
"M. S. Bartlett and J. K. Moyal, Proc. Cambridge Phil. Soc.

45, 545 (1949).
"U. Pano, Rev. Mod. Phys. 29, 74 (1957)."J.Schwinger, Proc. Nat. Acad. Sci. (U.S.) 46, 883 (1960).
~5A. E. Glassgold and D. Holliday, Phys. Rev. 139, A1717

(1965).
'6 J.R. Klauder, J.McKenna, and D. G. Currie, J.Math. Phys.

6, 743 (1965).
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which implies that the function f(t) is square-integrable the operator identities
when the trace Tr[F~F] is finite. This trace is closely
related to the Hilbert-Schmidt norm IIFII for the oper-
ator Ii which is defined by

(3 15) and

(3.19)

llfll= IIFII (3.16)

%'e shall say that an operator is bounded if this norm
is finite. With this terminology, we may draw from Eqs.
(3.12)—(3.14) the conclusion that if a bounded operator
F possesses the expansion (3.12), then the weight func-
tion f(t) is given by Eq. (3.13), is unique, is in L&,

and has the same norm as the operator Ii, i.e. ,

where 1 is the identity operator.
We now note that by using twice the resolution (2.27)

of the identity operator we may express an arbitrary
bounded operator F as an integral over the coherent-
state dyadics

I n) (P I
in the form

(3.21)We shall now derive the expansion (3.12) and several
other identities. Our method will utilize the properties
of the matrix elements of the displacement operators

etween coherent states. I.et us denote by the symbol Thus if we substitute in this integral the expression
(3.19) for the dyadic

I n)(P I, we arrive at the expansion

1(~,P,v, »= &PID(t) l~&&&ID(—~) I»~ 'd'S (317)

We note that by writing the displacement operators in
their normally ordered form (2.14) and using the eigen-
value property of the coherent states, we may write
this integral in the form

1(,P,v, b) = &0 I o)6 I b)

and by using Eqs. (2.27) and (2.28) we find

(~IFD(g) l~)D( p)~ 'd'«~(y

(3.22)

The Gaussian integral which occurs here occurs in a
number of other places in the course of this paper; it is
evaluated explicitly in Appendix A, Eq. (A2). By apply-
ing that result we find

1(~,P,v, b) =
&PI ~&h I » «p[(P—v)*(b—)]

If we simplify this expression by using formula (2.24)
for the scalar product of two coherent states, we find

1(~,P,v, b)=6 l~)(PI»

which is the expansion (3.12). This argument concludes
our derivation of the completeness property of the dis-
placement operators.

Let us now observe that by multiplying both sides of
expansion (3.22) by an arbitrary bounded operator G
and forming the trace, we obtain the identity

Tr[FG]= Tr[FD($)] Tr[GD( —$)]m 'd'$ (3.23)

When the operators F and 6 are both bounded, the lef t-
hand side of this equation is finite because of the
Schwarz inequality

and so obtain the integral identity
ITr(FG)

I
& IIFII IIGII (3.24)

(el~)&&lb)= &&ID(&)l~&hID(—&&l»~ 'd'& (3 18&

which holds for all complex numbers n, P, y, and b.

I.et us now recall that a matrix element identity of
the form (b F Ic)= (blGlc), if it holds for a complete
set of states b), I c), , is equivalent to the correspond-
ing operator equation F=G. Thus, since the coherent
states form a complete set of states as shown by Fq.
(2.27), we see that the integral identity (3.18) implies

By referring to the inequality (3.9) and Eqs. (3.13) and
(3.16), we may impose the same upper bound upon the
right-hand side of Eq. (3.23).

If we multiply both sides of the identity (3.20) by
the coherent-state matrix element (nlF ly& of an arbi-
trary operator E and integrate over n and p by using
Eqs. (2.27) and (2.28), then we arrive at the identity

1 Tr[F]= D($)FD '($)vr 'd $ (3.25)
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By multiplying both sides of this equation by an arbi-
trary operator G, we may obtain the relations

G Trl F]= GD($)FD-'($)7r 'd'$ (3.26)

ance

Tr[G] Trl F]= Trl GD($)FD '($)]m'd2$. . (3.27)

Let us now observe that if some set of states la),
I b), I c), forms a complete orthonormal set, then the
matrix elements (alD($) Ib) form a complete ortho-
normal set of functions. For if we let F= Ic)(dl and
G= Ib)(al then Eq. (3.27) becomes

&alD($) I
c)(dlD '($) Ib)m 'd'$

&alD(&) I c&&b ID(t) I
d&*m 'd'S (3 2g)

which verifies the orthonormality property. The state-
ment of completeness follows from Eq. (3.11), which,
when two factors of the identity operator in the form

1=E.I a&&a I

then me may draw several parallels between it and the
complex Fourier transform expansion (3.1) of an L2
function f(n&. We may observe that the operators a
and at in Eq. (3.32) correspond to the variables n
and n* in Eq. (3.1) and that the unitary operator
exp(aP —at)) in Eq. (3.32) plays the role of the uni-
modular function exp(nP —n*$) in Eq. (3.1).The weight
function Trl FD($)] corresponds to the function g(])
and may therefore be thought of as a species of Fourier
transform for the operator F. Just as the ordinary
Fourier-transform expansion (3.1) induces a one-to-one
correspondence f(n) ~g($) from L2 onto itself that is
norm-preserving, Ilfll= Ilgll, so too the correspondence
(3.31),between L2 and the class of all bounded operators
is one-to-one and norm-preserving.

So far we have been talking about the expansion of
operators that are bounded. In the remainder of this
section we shall say a few things about the expansion
of other types of operators.

We have been using, and shall continue to use, the
term bounded to denote operators for which the Hilbert-
Schmidt norm IIFII=I Tr(FtF)]'i2 is finite. Another
operator norm which is frequently used and which we
shall denote by IIFlli is the least upper bound (l.u.b.),
taken over all states Ig) of unit norm Q If&=1, of the
quantity /IF'Fly&, i.e.,

are inserted, becomes
IIFlli= l u b &PI F'F

I 4&. (3.33)

Za, b&a ID(5) Ib)(a ID(&') I b)*= mba" ($—f) . (3.29)

As we show in Appendix B, when the orthonormal states
are the basis states

I I), the matrix elements &m
I
D(() I n)

assume the form

(m ID($) nI)= I—
I $ "e ~ '8L„'~ "'(I)I') (3.30)

&~!&

where Lii'"'(x) is an associated Laguerre polynomial. "
Let us now return to the expansion (3.12) which, as

we have seen, affords a one-to-one correspondence

f(~) =T t FD(~)] (3.31)

F= exp(aP ad)) rTl F(—D$)]m- 'd'$ (3.32)

between the class of all bounded operators F and the
class Lq of all square-integrable functions f($) In view.
of Eq. (3.16) this correspondence is norm-preserving in
the sense that the L2 norm II fll of the weight function

f($) is equal to the Hilbert-Schmidt norm IIFII of the
operator F being expanded.

If we write the expansion (3.12) in the form

It is, loosely speaking, the largest eigenvalue of the oper-
ator FtF. Operators for which the norm IIFlli is finite
are often called bounded, but we shall call them $nite
All bounded operators are finite, and we have IIFlli
& IIFII. The most important unbounded but finite oper-
ators are the unitary operators for which IIUlli

——1.
The displacement operator expansion (3.12) is not in

general suited to the expansion of unbounded operators,
even those that are 6nite. When the operator F is un-
bounded, the appropriate weight function TrLFD($)],
which must according to Eq. (3.14) lack square-in-
tegrability, is often singular. If, for example, we take
as the operator F the displacement operator D(u),
which being unitary is finite, then the weight function
f(f) is given by Eq. (3.11)asm. bi'i(n+ $). For this reason
we shall not in this paper attempt a careful formulation
of the representation of unbounded operators.

We may observe, however, that the coherent-state
expansion (3.21) affords a representation for a broad
class of unbounded operators. In this representation,
as in the one aff orded by the displacement operators,
we find quadratic integrability linked with boundedness.
For by using Eq. (3.21) to form the Hilbert-Schmidt
norm of the operator It, we secure the result

'9 W. Magnus and F.Oberhettinger, Formulas amdt Theorems for
the Functions of Mathematica/ Physics (Chelsea Publishing Co.,
Nevr York, 1954), p. 85.

IIFII'=TrCFtF]= 1&&IFIP) I
'm 'd'ad'P (3 34)
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The weight function {nfFIP) of the representation
(3.21) has no singularities in the fInite n, p planes unless
the operator I" is particularly pathological. ~ Moreover,
when F is a fInite operator the modulus of (u I

F
I p) is

bounded by I I
F

f f I,

1{oIFIP) I
& IIPIII (3»)

s,s may be seen from the defInition (3.33).
For an arbitrary bounded operator F the weight

function Tr[FD(g)g need not be bounded or contin-
uous. Thcl c ls) howcvcl') R 8Inallcx' clRss of opclRtoI'8 foI'

which both of these conditions are met. This is the
trace class, also called the class of nuclear operators.
The derivations of the statements that we shall now
make about tx'Rcc-clRss operators may bc foUDd ln Rcfs.
2 and 20.

Every trace-class operator F Inay be factored uniquely
into the product of unitary operator U and an operator
8 which is positive-de6nite and of 6nite trace,

(3.36)

In terms of this decomposition, the trace-class norm is
defined as

(3.37)

Every density operator p is a member of the trace class
with ffpff1

——1.
Every trace-class operator is bounded, as is shown by

the inequality~
(3.38)

for the three norms which we have mentioned. The
pI'odUct of R 6nltc opcl RtoI' G Rnd R tx'Rcc-class opclRtol'
F is a trace-class operator and we have the inequality'0

(3.39)

Flom this I'clatlon lt, follows) slncc thc dlsplRccmcnt
operators are fInite with IID(&)III——1, that for every
trace-class operator P the weight function Tr[FD(()j
is uniformly bounded by the trace-class norm IPIII

I Tr[FD(4)jl & IIFIII (3 4o)

It may also be shown' that for every trace-class operator
P t11e welgllt fIIIlct1011 Tr[FD(()$ Is a (uIIlfollllly) coll-
tinuous function of (.

opclatoI'8 c RIld 8 ~ Thc CRscs of Qormal ordering) of
antinormal ordering, and of a type of ordering that
ls symmetric in the creation and annihilation operators
occupy most of the present section, Fox these orderings
wc obtR1D closed lntcglRl cxplcssloDS fox' thc cocKcients
of thc power-scrlcs cxpanslons of RD 8I'bltlRry bourldcd
operator. It will become evident that there is a marked
contxast between the properties of normally and anti-
nolmally ordered powcl'-scl les cxpRnsloQS. wc show that
normally ordered power-series cxpRnsloDS cxlst RQd con-
verge in a weH-defined sense for a very broad class of
operators. Antinormally ordered power series, however,
do not RGord a completely satisfactory representation
for all bounded operators; wc show that the appropriate
coefFicients are singular for large classes of bounded
operators. Wc also consider brieQy the expansion of
bounded operators as ordered power series in the opera-
tors g and p. Because these operators are Hermitian, the
series coeKcients) as we shall see, tend not to develop
SlQgU1R1 1tCS.

To begin with, let us consider the possibility of ex-
pRndlng RD RI'bltlRx'y bounded opcx'RtoI' P Rs R normally
ordered powcx' scIlcs) l.c.) ln thc form

P Q g (at) cpm

where the coefFicients c„, are complex numbers. Since
the operator Il is assumed to be bounded, it possesses
the expansion (3.12),

(4.2)

where the weight function Tr[FD(&)j is square-in-
tegrable. We may formally generate the expansion (4.1)
by writing the operator D-I($) in its normally ordered
form (2.14),

P— Tr[FD($)js Ifl Ii1s toter+I-tr IIiI]-(4 3)-

and then expanding the exponentials in powers of a
and u~ so that we have

The completeness property of the displacement oper-
ators, which we discussed in Sec. III, RGords a con-
venient framework for examining various ways in which
bounded operators may be represented. In this section
and in Sec. V, we discuss the problexn of expanding a
bouDdcd opex'Rtol Rs RD ordered power scx'lcs ln thc

F P {at)Nose

e~esI
Tr[FD(g)]e—~1~'"

X( ])m(f4)ts~-Igl] (4 4)

c„, = (tI!tN!) 'Tr[F—D($)fe ~8'"(—$)"

We may therefore identify the coe%cicnts c„, with the
lntcgl Rls

'0 I. M. Gel'Pand and N, Ya. Vilenkin) Generalinfg FewcHoes,
translated by A. Feinstein (Academic Press Inc. , New York, 1964),
Vol. 4. Chap. 1, Sec. 2, is a detailed and readable account of the
properties of trace-class operators and of Hilber t-Schmidt
operators.

X(P)"~ 'd'5 (4 S)

By using the inequality (3.9) and the relation (3.16),
we 6nd that for every bounded operator Ii the cocfFici-
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F g d om(ot) n {4.7)

ents c„, are 6nite and are bounded by the quantities

le .-1&(~'m') 'l:{~+m)~3'"IIFll (46)

where llFll is the Hilbert-Schmidt norm (3.15).
The presence of the factor e I 8 I in the mtegral (4.5)

for the coeKcients c„, suggests that normally ordered
expansions may be appropriate for a larger class of
operators than the one being considered. %e shall take
up this matter, as well as the question of the conver-
gence of the series (4.1), after we have considered the
cases of antinormal and symmetric order.

The coefFicients d„,„of the antinormally ordered
expansion

ways of ordering the product of n factors of e~ and m
factors of a. Let us denote by the symbol {at"a"} the
average of these (n+m)!/n!m! differently ordered oper-
ator products.

Two examples of this average product, which we shaH

refer to as the symmetrically ordered product, 2 2'2' are

{ata}= ,'(ate+-aat)
and

{ata'}= o'{ata'+aata+a'at)

In this notation we have

n ~!
(not —n~a)" = Q n"(—n*)"-".-o r!(tt —r)!

X{(gt)ron—t'} (4 13)

of an arbitrary bounded operator Ii may be identified

by an argument entirely similar to that of Eqs. (4.1)—
(4.5). If we write the operator D '($) in Eq. (4.1) in
its antinormally ordered form (2.15), we have

QA + fry

D(n) = 2 {(ot)"a-}
e!m!

(4.14)

so that we may write the expansion (4.12) for the dis-
placement operator as

F= Tr[FD($)5e~&~'"e&"e &'ttr 'd'$, (4.g)
By differentiating these relations we 6nd for the oper-
ator {(ut)"a"}the expression

and, by expanding the exponentials in powers of a and
6 ) we6nd

d~ ~=(e!m!) ' TrLFD(g)]e~&~'"(—t)"

ge+mD(n)
{(ot)mom}—

snag( n4)m
(4.15)

&&(p)"tr-'do&. (4.9) which may be simplified to the form

This expression differs from the corresponding one
(4.5) for the coefficients e„, of the normally ordered
series in that the exponential e ~&l'!" has been replaced
by e+l &l'~'. Since for the class of bounded operators Ii the
weight functions Trf FD($)] form exactly the class I.o
of square-integrable functions, it is evident that the co-
eScients d„, can become singular for certain classes of
bounded operators. Examples of such operators are dis-
cussed at the end of this section.

So far we have made use of the normally and anti-
normally ordered expansions F Q b {(ot) cpm} (4.17)

pe+no (o.gt+yo) n+in

{(nt) nnm} (4.16)
»"ay- (I+m)! . „o

where the variables x and y are set equal to zero after
the differentiation.

%'e may now proceed as in the cases of normal and
antinormal order to construct for an arbitrary bounded
operator Ii its symmetrically ordered power-series
expansion,

(not)n ( n4n)m

D( )=
n, m-o

(—n*o) («t)"
D(n)=e~ ~'"

e,m-o

When the expansion (4.14) is inserted into the general
4.10

representation (4.2), we find

F= P {(at)"a~}(tt!m!)—' Trl FD(g)j(4.11

Let us now examine the expansion

D(n) = exp(net n*u)— X ( $)"(P)"tr 'd'f—, (4.18)

which implies that the coeKcients b„, are given by the

(tt|) '(not —n o)"
a~0

(4.12)

in which the operators a and a~ are on an equal footing
with respect to order. There are (e+m)!/to!m! different

~ B. R. Mollow, Phys. Rev. 162, 1256 (1967).
"R. J. Glauber, in Proceedings of the Second International

SNmmer School on Iiendamental Problems of Statistical 3fechanics,
Eoordmj k-aan-Zee, The netherlands, A%67, edited by E. G. D.
Cohen I'North-Holland Publishing Co., Amsterdam, j,968).
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integrals

f„„=(I!m!)-' TrLFD(g) j(—~)"(P)"~-'d'P (4.19)

The class of bounded operators F for which these
integrals converge consists therefore of those whose
weight functions TrLFD($)] possess 6nite moments,
While this is not the entire class of bounded operators,
it is a much broader class than the class of operators
for which the coefficients d„, of the antinormally
ordered expansions are finite. Speaking loosely, we might
say that the coefficients b, tend to be finite for
bounded operators.

Let us now return to the case of normal ordering and
take up the question of convergence. A sequence of
operators A„ is said to converge weakly to the operator
A if for every pair of normalized states

I f) and Ig)
the sequence (f I

A —A „Ig) converges to zero. This type
of convergence is clearly inappropriate as a definition
for the convergence of power-series expansions. The
state Ig), 6~1

n-o n

for example, is normalized; but the quantities
(gl(at) "u~lg& are all infinite, except when n+m(2
Thus, the power-series expansions that we have discussed
do not converge weakly unless they terminate.

We shall adopt for simplicity the following criterion'
for the convergence of ordered power-series expansions.
The power series

In order to examine the analyticity of this function,
let us use Eq. (2.23) to write it in the form

(RIFI~), - (~IFlm&
e-e+a n~m

&pl a&, -e (I!m!)'~'

This series converges and defines an entire function of
P* and n for an extremely broad class of operators. This
is the case, for example, when for some M, Ri, R2, and
a) 0 the inequalities

Im&I &i!dZpZ, "(n!m!)'I' ' (4.23)

are satisfied. Finite operators fulfill these conditions
wit Z, =Z, =1, e=-'„andiV=IIFII, .

We have shown that an operator F possesses a con-
vergent normally ordered power-series expansion when
the series (4.22) converges and that the latter series
converges when the operator F satisfies the condition
(4.23). The very general condition (4.23) is therefore a
sufficient one for the convergence of the normally
ordered power series (4.1).

It is easy to adapt the methods of this section to the
expansion of bounded operators as power series in the
Hermitian operators q and p. To begin with, we must
write the displacement operator D(a) in forms in which
the operators q and p appear in definite orders. By using
Eqs. (2.1), (2.2) and (2.13), and writing n=(2A) '
X(hq'+iX 'p'), we find, after putting A= 1,

D(q' p') =D(a) = e~ «n' vu'i'—
(4.20)

—e 'q p e-ipq'~i q' p' /2

=e—'p~ e'~p e'~ (4.24)

F= Tr[FD(q', p')7e '«&' i'&'&(27r)-'d-q'dp-', (4.25)

where the symbol ((at)"a")„e denotes an arbitrarily ff we now write Eq. (4.2) if the form
ordered product, will be said to converge if for every
pair of coherent states

I n) and
I P& we have

Z Z &&If.,-((~')"a-)-.lo& (4»)
N, &~~ n Om 0

In effect this is weak convergence over the set of co-
herent states. Since the coherent states form a complete
set, an operator is defined uniquely by its power-series
expansion if that expansion converges.

In terms of this criterion the question of the conver-
gence of the normally ordered power series (4.1) is a
simple one. Our task is to show that the sequence (4.21)
converges to the matrix element (Pl F In&. The series in
question is

F= P q"p (I!m!) ' TrIFD(q', p') j( ip')~—
n, m=O

X(iq') "e *"&'(2s)-'dq'dp', (4.26)

the g-ordered expansion
(4.22)

then we may derive in analogy with Eqs. (4.4), (4.9)
and (4.18) three expansions for an arbitrary bounded
operator F. These are what we may call the p-ordered
power-series expansion

We note that this series converges if and only if the
function &PIFIof&/(Plu) is an entire function of the
variables P" and n. X (iq') "e""'( m2) 'dq'dp', (4.2p)
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and the q-p-symmetric expansion

F= Q (q"p"}(n!m!)-' Tr[FD(q'p')]( —ip')"
n, m=O

X (iq')" (2~)-'dq'dP', (4.28)

dF(X)
+t+),ate—1

dk
(4.32)

We may find directly the normally ordered power
series for F(X) by differentiating it with respect to X:

where the q-p-symmetric product is defined by analogy
with Eq. (4.15) as

Then since for any function f we have

af(ata) = f(ata+ 1)a, (4.33)
gn+mD(q~ p~)

(qnPm} dna —e

~(p') "~(q') e='=0
(4.29)

we may write
dF(~)/d& = ot&, -t-a

= u'F(X)a. (4.34)

Bees,use the commutator [q,p]=i is purely imagi-

nary, the integrals defining the coefficients of these
expansions differ from one another only by unimodular
factors in their integrands. A bounded operator that
possesses one of the expansions (4.26)—(4.28) is there-
fore very likely to possess the other two. This class of
operators is approximately the same as the class for
which the symmetrically ordered expansion (4.17) is
appropriate.

Let us now illustrate some of the results of this section
by considering some simple examples. Our first one will

serve to answer a question which was not raised in the
foregoing discussion, namely, whether antinormally
ordered expansions are suitable for trace-class operators
(defined in Sec. III). The operator In)&PI, which is the
outer product of two coherent states, is both bounded
and in the trace class. By using Eqs. (2.14) and (2.21),
we find as its weight function the exponential

»[D(() lo)&PI]=&Plo&exp( —klgl'+y* —P~) (43o)

Reference to Eqs. (4.5), (4.9) and (4.19) reveals that
the coefficients of the normally and symmetrically
ordered expansions are finite, whi1. e those of the anti-
normally ordered expansion are singluar.

Another operator which is in the trace class is the
outer product In&&ml of two states with fixed numbers
of quanta. The appropriate weight function is

TrL In&&~ I
D(4)]= &~ ID(&) In&,

and from the explicit formula (3.30) for this function
and Eqs. (4.5), (4.9) and (4.19) it is evident that the
coefficients c„, and b„, are finite, while the d„, are
singular. We conclude from these two examples that
trace-class operators do not necessarily possess anti-
normally ordered power-series expansions.

As a more useful example let us consider the operator

F(X)=l~~t =exp(ate ink) (4.31)

which depends analtyically upon the complex parameter
) since the operator a~a has integer eigenvalues. This
operator is finite for X

I
&1 and is both bounded and in

the trace class for
I
li & 1.The operator F(X) has many

applications in thermal equilibrium statistics where we
usually have X = exp( —Are/kT) & 1, where b is the Boltz-
mann constant and T is the temperature.

The operator F(X) thus satisfies a differential equation
whose solution is a normally ordered exponential func-
tion of ata. The initial condition F(1)= 1 is satisfied by
the solution

F(y) .c(i—i)ate ~ (4.35)

where the symbol:: means that the exponential is in

normally ordered form.
The coefficients c„, of this expansion are given by

c„,„=b„„(n!)—'(X —1)". (4.36)

= e~t'~'" exp[go* Pn+—(li 1) I cxl—']
Xm. 'd'n, (4.37)

an integral whose value is given by the general expres-
sion A2 as( )

(I+~) I
Pl'

Tr[F(X)D(()]= —exp— (4.38)
(1—X) 2(1—X)

According to Eq. (4.19) the coefficients b„, of the sym-
metrically ordered power series for F(X) are given by
the integrals

b. , (~)=
(n!)'(1—~)

(I+~) I kl')

(exp—
2(1—X) )

X ( I Pl 2)n~—id2P

which converge whenever F(X) is bounded, i.e., for
Il~

I
&1, and. yield

28„, ( l~-iq"
b. ,„(x)= I

2
n!(X+1)E X+1)

(4.39)

These coefficients are analytic functions of X and may be
continued outside the region in which the integrals de-

fining them converge. They all have a pole at ) = —j.,
where the operator F(X) is finite but not bounded. Using

They are entire functions of X. Since the operator F(X)
as is easily shown, satisfies the conditions (4.23), its
normally ordered expansion (4.35) converges for all X.

By using Eq. (2.15), (2.28) and (4.35), we may write
the weight function for F(X) in the form

Tr[F(li)D($)]=e~&~"'Tr[er'tF(X)e &"']



the symbol {}once more to denote symmetric ordering,
we may express the symmetrically ordered series for
F(X) in the closed form

2 X—1
F(X)= exp 2ata

X+1 x+ j.
(4.40)

Turning now to the case of antinormal ordering, we
find from Eq. (4.9) the result

d (X)— exp — (—i P i
')" 'd'(

(e!)'(1—X)

(4.41)

Section IV contains some elementary observations
about ordered power-series expansions. It was shown
that normally ordered power series converge for virtu-
ally all operators of interest but that the coeScients of
antinormally ordered expansions are singular even for
some trace-class operators, In order to shed more light
on this matter we introduce in this section a param-
etrized ordering convention according to which normal,
symmetric, and antinormal ordering are distinguished

by three distinct values of a continuous order parameter.
By means of this convention we are able to vary the
type of ordering in a continuous way from antinormal
order to normal order and to see when the coefIIcients
of the expansions become finite and when the expan-
sions themselves become convergent. We show that for
all bounded operators the coeKcients are finite when
the ordering is closer to normal than to antinormal
ordering and that the series converge when the ordering
is closer to normal than to symmetric ordering.

II1 llltx'oducing this ordering convention we do not
suggest that the new types of orderings it defines have
direct physical signihcance. It is intended instead as a
useful device for understanding the problems associated
with the three useful orderings —normal, symmetric, and
antinormal ordering. Our main use of the ordering
convention will be in connection with a parametrized
integral representation which we introduce in Sec. VI.

These coeKcients all have poles at) =0 for which value
the operator FP,) is the projection operator ~0)(0~,
which is both bounded and in the trace class. If we
denote antinormal ordering by the symbol ( }g, then
we may express the antinormally ordered series in the
closed form

F() ) =X-"{expL(1—X
—')a'"a]}g. (4.42)

It may be shown' that the antinormally ordered series
for F(X) converges only for

~
1—X '

~

(1or equivalently
for ReX) ~.

D(n 0)—east —aea

and antinormally ordered

(5.3)

(5.4)

Proceeding as in our description of symmetric order-

ing, Eqs. (4.12)—(4.16), we define the s-ordered product

{(at) "a"},by means of the Taylor series

D(n, s)= Q ((a")"a"},(I!m!) 'n" (
—n*)"—(5.5)

a,m=o

or, equivalently, as the derivative

{(at) mam}
gn+mD(n s)

au "&(—u*)" .=o
(5.6)

evaluated at. n= 0.
By applying this differential relation to the ordered

exponentials (5.2)—(5.4), we find that the ordeiings
speci6ed by s=+ 1, 0, —1 are, respectively, normal,

{(at) ma~} {at)casa (5.7)

symmetric in the sense of Eqs. (4.12)—(4.16),

((a') "a"}o={(a')"a }
and antinormal,

{(at) mam}
—am(at) e (5.9)

The s-ordered products can be simply expressed in
terms of normally ordered products. Thus, for example,
by writing

D(u)s) = e&' '&[I['"D(n,1))—(5.10)

we find for the simplest nontrivial s-ordered product
{ata},

(ata},= e(s—i)[a[&/senate —a I
~

Dna( n*)—
8=—Pe-ra+-,'(1-s)ne-t] (.=o

Dot'

=a'a+-,'(1—s) .

It will be helpful there to observe the way the structure
of this representation changes with variations of the
order parameter.

We have seen in Eqs. (2.11)—(2.15) how to express
the displacelnent operators in various ordered forms.
Let us de6ne the s-ordered displacement operator
D(n, s) by the relation

D(n, s) =D(n)e'[~['I' {5.1)

where s is a complex number. For the three discrete
values of s=+1, 0, —1, the operator D(n, s) can be
written as an exponential which is, respectively, nor-
mally ordered

D{n 1) eaate a~a—

symmetrically ordered
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D(n, s) =e(' ')~N-~'('D(n, t)

and differentiating, we find

( . ) e) (m)( (t si ~—((')™}= 2 &' ll II I
((a')" 'a" '}ti( tik 2 i

(5.11)

(5.12)

where the symbol (n,m) denotes the smaller of the
integers n and m and where

(I)
r![k!(r—k)!] '

&ui

is a binomial coefFicient. These relations may be put
more succinctly in terms of the associated Laguerre
polynomials. "As we show in Appendix C, we have for
n&m,

t—s 2a~a
f (gl')n. um} (at) n—mI (n—m) (5.13)

2 s—t g

and for m&n
t sy)" — 2ata)

((at)mam} r)f
I

gm —nL (m n) —
I

(5 14)21 s ti—
where the polynomials within the curly brackets are in
3-ordered form.

We are now in a position to consider the expansion of
a bounded operator Ii as the s-ordered power series

F= P f (s) ((at) "am}„
n, m-O

(5.15)

where the coefficients f,„(s) are complex numbers.
We may identify the coeKcients f, (s) by substituting
in the general expansion (3.22) the expression

D-'($) =e 'N~'"D( 5, s), -
so that we have

Similarly, for the s-ordered product (a"a2},we find

fata'},=ata'+ (1—s)a.

It is not difIicult to express an arbitrary s-ordered
product as a polynomial in the t-ordered products,
where t is also arbitrary. By writing

F~= Z f (s){(a')"a"}
n, m=O

of which the coherent state matrix elements are

(5.20)

integrals

f„„(s)= (rt!m!) ' Tr[FD($, —s)](—$)"

y (~4)m&-ld2~ (5 18)

The parametrized relations (5.16)—(5.18) compactly
express the previously derived results for normal, sym-
metric and antinormal ordering. We recover Eqs. (4.5),
(4.19), and (4.9) by setting s=+1, 0, and —1, respec-
tively.

By applying the inequality (3.9) and the relation
(3.16) to the integral (5.18), we find that for all bounded
operators F the coefFicients are Gnite when Res&0 and
are bounded by the quantities'

[(+ )'1'"
I f„(s)I

( —,(5.19)
~!yg ( [Res](™+i)/2

where IIFII is the Hilbert-Schmidt norm (3.15). This
inequality generalizes the upper bound (4.6), which was
obtained for normal ordering, s= i, to those orderings
specified by Res& 0, i.e., to those which may be thought
of as closer to normal than to antinormal order.

We recall from Sec. IV that the coefficients f„, (0),
corresponding to symmetric order, are singular for cer-
tain bounded operators. Ke may therefore say that the
coeflicients f„(s) are finite for all bounded operators
F if and only if Res) 0.

Before turning to the question of the convergence of
the series (5.15), we may note' that if the operator F
is bounded then the coefTicients f„,„(s) are all analytic
functions of the order parameter s throughout the half-
plane Res&0. This analyticity is intuitively clear from
the structure of the integrals (5.18) and from the square-
integrability of the weight functions Tr[FD($)] be-
longing to bounded operators.

We defined a type of convergence that is suited to
ordered power-series expansions in Sec. IV, Eqs. (4.20)
and (4.21). We shall now show that for bounded oper-
ators F the series (5.15) converges according to this
definition when Res) —',+~ [Ims]'.

The series (5.17) is the limit of the sequence of oper-
ators FN,

F= Tr[FD($)5e '~t~'"D( )s)7r 'd'$ (5.—16) N

&&IF~la&= 2 f.,-( )&s'il f(a')"a-}.la&
n, m 0

which we may expand in powers of a and a~ according
to Eq. (5.5):

F= P ((at)"a"},(rt!r)t!)-' Tr[FD($, —s)]
n, m=o

X(-&).(P)" -d t. (5.»)
In this way we obtain the coeflicients f„,„(s) as the

jn+m

= 2 f-,-(s) &t IDu, )l-&l =.
ai "8(-i*)

N n + m

Tr[FD((, —s)]
n, m=o n~ ssI

~"™&ttlDQ,) I &

I)r-'d'g. (5.21)
gfmg( P)m i
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The sequence (PI F~
I n) therefore, converges to (P I

F In)
when in this expression the limits of summation and
integration may be interchanged. The relevant sequence
of functions is

(—f)" (8)" ~n+™(PID(f',)I )
v~(t)= Z

m 0, =22! 222! /PE( —i.*)~

which converges to

F(X)=Vt.=
2 !' 2(X—1)ata )

expl (5.27)
1+s+X—sX kl+s+X —sX)

By examining the convergence of the integral (5.23),
we find, taking s real for simplicity, that the s-ordered
power series for F(X) converges when

the location of the singularities of the coefficients f„, (s)
ranges over the half-plane Res(0 as the parameter X

ranges over the region in which the operator F(X) is
bounded. On summing the s-ordered power series for
F(X), we obtain the expression

It is not dificult to show that for all E the functions
t2~($) are dominated in accordance with the inequality

Reh —1
s) 1+ (5.28)

I 2 ~(6)I &~(b I(& =
—In)1 expLlls

—111(i'
+ (I&l + lnl)lklj (5 22)

Thus, according to the I.ebesgue dominated conver-
gence theorem, "the interchange of limits is permissible
when the integral

Thus, when X=O and F(X)=10)(01, for example, the
series (5.27) converges for s)0.

As a Anal illustration let us note that we may write
the s-ordered displacement opera, tor D(n, s) in the form

~(t) I Tr(FD(g, —s)l I
tr 'd2& (5.23)

D(n)s) = e'~ ~~'~'D(n)

= (exp(nat n"'a—)),
= (D(n)) *, (5.29)

converges. Now for an arbitrary bounded operator F
this integral converges when Res) ls —11, or, equiv-
alently, when s lies in the parabolic region

Res) -', +-',
I Ims]2 (5.24)

This condition is therefore sufficient for the series (5.15)
to converge for every bounded operator F. In particular,
all bounded operators possess convergent s-ordered
power series for s)-,', i.e., when the ordering is closer
to normal than to symmetric.

The example considred in Sec. IV,

F(X)=Z.t,

which justifies our calling it the s-ordered displacement
operator.

VI. INTEGRAL EXPANSIONS FOR
OPERATORS

The representation of operators as integrals over the
displacement operators is in many respects analogous
to the representation of functions as Fourier integrals.
The displacement-operator expansion

F= e~r" ~«f(&)tr 'd2j—

g(n) = em&' —"*
ys($) -tr' d(2

(1—s 1
exp I

— +
Z—1)

f„,„(s)=
22!20!(1—X) because of the noncommutativity that distinguishes

the variables a and u~ from their counterparts a and n*.
Distinctions in operator ordering lend an interesting
structure to the Fourier representation of operators.
Ke consider some elementary aspects of this structure
in the present section. For each value of the order
parameter s, we define a set of operators T(n,s) that
forms a basis for an integral representation for arbitrary
operators. Each of these representations has the desir-
able property that the associated weight function bears
a particularly direct relationship to the operator being
expanded.

These new representations are interesting from a
number of st.andpoints. In particular, for the case of

d2$

X( p)n(p)m

6„„1—s 1 )
—

& "+'&

+
22! (X—1) 2 X—1)

(5.25)

where we have used a series expansion of the formula
(A2) to do the integral. The coefficients f, (s) are
analytic functions of s except for poles located at

(5.26)s= (X+1)/P, —1).
This relation is a familiar one; it maps the interior of the
unit circle

I
X

I
& 1 onto the left half-plane Res&0, Thus,

provides a simple illustration of some of the results that
we have derived. By using Eq. (4.38), we find that the differs from the Fourier exPansion

integrals (5.18) for the coefficients f (s) assume the
form
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By using Eqs. (5.29) and (3.3) we may express the
operator T(u, s) in the suggestive forms

To find the s dependence of the operator T(u,s) we
note that the operator T(0,s) is defined by Eq. (6.6)
as the integral

T(u, s) = exp[(u a—)P —(u~ —at) &]m 'd'g (6.12) (6.20)

=ir{8&2)(u—a)) .. (6.13)

In terms of this notation we may write the representa-
tion (6.11) in the form Tr[T(0,s)D(()g= e'& &' ' (6.21)

This is a displacement operator expansion of the form
of Eq. (3.22) with weight function

F= f(u, —s) {&&&'&(u—a)),d'u. (6.14)

g(u) = g(u') &&&'&(u u')d—'u' (6.15)

in which the relationship between the function being
expanded and its weight function is one of identity.
The considerably more interesting structure of the
representation (6.14) arises, of course, from the non-
commutativity of the operators c and at.

On the basis of the analogy between Eqs. (6.14) and
(6.15), we may reasonably expect to find a close relation-
ship between the weight function f(u, —s) and the oper-
ator F in Eq. (6.14). We shall describe this relationship
and other properties of these representations in Sec.
VII. The remainder of the present section is devoted to
the properties of the operators T(u, s).

By using the definition (6.6) to form the Hermitian
adjoint

Tt(u, s) = D( P, s*) exp(u*P —uP—)ir 'd'$

and replacing $ by —$, we find

T'(u, s) = T(u,s*) . (6.16)

Thus for real values of the order parameter s, the oper-
ator T(u, s) is Hermitian,

T(u, s) = Tt(u, s) for s real. (6.17)

From the multiplication law (2.19), we find

D( )D(ks)D ( )=D(4s) exp( F k)

which, when substituted into the definition (6.6), yields

T(u, s) = D( )D(gu, s)D-'(u)s 'd'$

= D(u) T(0,s)D-'(u) . (6.18)

Thus, the u dependence of the operator T(u, s) is gov-
erned by the unitary transformation induced by the
operator D(u). On using Eq. (2.19) once again we find

T(u,s) = D(u —P) T(P,s)D '(u —P) . (6.19)

The classical analog of this representation is therefore
the trivial identity

then, since the correspondence F~ Tr[FD($)) is one-
to-one, we secure the result

2 fs+1
T(0,s) =

1—s&s—1)
(6.22)

By using Eq. (6.18) and the displacement property
(2.17) and (2.18) of the unitary operators D(u), we ob-
tain for the operator T(u,s) the following expressions:

s+1 '
T(u, s) = D(u) D '(u)

1—$ $—1
(6.23)

s+ 1 &at—a+) &ss—a)

1—s s—1
(6.24)

(s 1
exp (at—u*) (a—u) ln~ . (6.25)

ks—1

The expansion of T(u, s) in terms of the eigenstates
~
n)

of the operator ata is, from Eq. (6.23),

2 s+1
T(u,s) = P D(u) i n) (ni Dt(u) . (6.26)

1—s n=o $—1

The states D(u)
~
n) thus form a complete orthornormal

set of eigenstates of the operator T(u, s),

2 s+1"
T(u,s)D(u)

i n) = D(u) In) (6 27)
1—s s—1

with eigenvalues

(6.28)

which are independent of n.
We note in particular that for all values of o. all the

eigenvalues e„(s) of the operator T(u, s) are infinite at
s=1. At s= —1, on the other hand, the series (6.26)

We encountered a similar weight function in our dis-
cussion of the operator F(X)=X't and, if we compare
Eqs. (6.20) and (6.21) with Eq. (4.38) and make the
identification

s+1
or )

s—1
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terminates after the first term and the operator T(n, —1) elements the relations
is simply the projection operator on the coherent state
ln)=D(n) Io&,

T(n —1)= ln)&nl. (6.29)

Let us now consider to what classes of operators the
operator T(n,s) belongs for different values of s. The
three norms that we defined in Sec. III are invariant
under unitary transformations and do not, therefore,
for the case of the operator T(n, s) depend upon the
parameter n By .using Eqs. (3.13)—(3.15) and (6.21),
we may express the Hilbert-Schmidt norm IIT(n, s)ll
in terms of the integral

IIT& s)ll'=

eRee )$~e~—ld2)

II T(n s) lli=
1—s,

for Res&0. (6.31)

For Res&0 the operator T(n, s) is not only bounded
but also in the trace class. By using Eq. (6.26) we obtain
for its trace class norm (3.37) the series

2 ~ s+1"
T(n s) ll2=

!1—sl =0 s—1

=2/(I1 —sl —I1+sl) «» Res&0 (6.32)

Thus, for Res&0 the operator T(n,s) is a member of all
three classes of operators, for Res) 0 it is in none of
them, and on the line Res=0 it is in only the largest
class, the class of finite operators.

By referring to the relation (4.35) between the oper-
ator F(X) and its normally ordered form we find

T(n, s) =
1—$

2 ):exp l(nt n*) (a n)— —
s—1i

(6.33)

so that we have

IIT(n,s)ll= 1/( —Res)'t' for Res&0. (6.30)

The operator T(n, s) is therefore a bounded operator
only for Res&0. When Res&0 the operator T(n,s) is a
finite operator, and by using Eq. (6.26) we find for its
norm

II T(n,s) II i, defined by Eq. (3.33), the value

and

2
X-p (P*—*)(~—) (6.35)

s—1

2!n-Pl'
&PI T(n s) IP)= exp— (6.36)

1—s 1—s

from which, by taking the limit as s approaches unity
from smaller real values, we find

(PIT(,1)IP)= &"'( —P) (6.37)

By using Eqs. (6.36) and (2.28), we may express the
trace of the operator T(n,s) as the integral

Tr[T(n,s)]= &P I T(n, s) I P&~ 'd'P

2ln P I
'id—'P

exp—( !
1—s

= 1 for Res&1. (6.38)

Tr[T(n, s) T(P,t)]= Tr[D(g, s)D(l, t)]

Xexp( P *&+Pg* —P*f.)—
Xm 'd'$d't

exp[(n —P)P—(n —P)*&

+ ', (s+t)
I
Pl']ir —-'d'(

exp
s+t s+t

That the operator T(n,s) is of unit trace can also be
seen by summing its eigenvalues e„(s) which are given
by Eq. (6.28). The procedure given above is a rearrange-
ment of the series Ze„(s) which for Res&0 lies outside
its radius of convergence but can still be summed to
unity.

Another trace which will be useful in what follows is
Tr[T(n, s) T(P,t)]. By using the definition (6.6) and the
orthogonality rule (3.11) we find that

for Re(s+t) &0, (6.39)2!nl ') 2na'
=exp — exp T O,s

1—sl 1—s where we have used the formula (A2) to do the integral,
which converges only for Re(s+t) &0. By letting t ap-

~

~

proach —s from below we find
Xexp !, (6.34)

1—si Tr[T(n, s)T(P, —s)]=7rb~" (n —P), (6.40)

where the colons denote normal ordering. From Eq. which is the counterpart for the operators T(n, s) to the
(6.33) there follow easily for the coherent-state matrix orthogonality rule (3.11) for the operators D($,s)
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If we now apply the expansion (6.11) to the operator
T(n,s), we find, using the trace relation (6.39),

T(n, s) = T(P,t) Tr[T(n, s) T(P, —t)]~-id2P

Hy applying the orthogonality rule for the T operators
(6.40) to Eq. (6.45), we obtain the relation

Tr[{(a')"a"},T(n, —s)]

t—s

t —21n—p 1
~i d2p

expl IT(p t)
t s—

for Ret) Res. (6.41)

Tr[T(P,s) T(n, s)—](P*)"P~ir 'd'P-

(p8)epmb(2)(n p)d2p

This Gaussian convolution is the complex Fourier
transform of the product exp[—,'(s—t)1/1']D(Q). The
differential form of this integral relation can be found
by differentiating both sides of Eq. (6.6); it is

(6.47)

which is the inverse of the relation (6.45).
From the relation (6.18) with n infinitesimal we find

that
dT(n, s) = [atdn adn—*, T(n,s)]BT(n,s) 1 O'T(n, s)

2 BQ80! or, equivalently,
i6.42~

BT(n,s)/i7n= [at,T(n,s)]

8T( sn)/8 *n= —[a,T(n,s)],
By further differentiation of Eq. (6.6), we obtain the
relations

(6.48)

(6.49)

(6.50)

8"+ T(n, s) d2$
= D(~, )(P)"(-r)"—(643)

gnng(n+)m

If we use Eqs. (3.4) and (3.5) to invert Eq. (6.6), we
And that

and, by expanding both sides in powers of $ and P and
using the definition (5.6), we may express the s-ordered
products as the integrals

{(at) "a"}.= T(n, s) (n*)"n"m.—'d'n. (6.45)

1= (T,n) s-s' 'dn (6.46)

which for s= —1 is the completeness relation (2.27)

1=
1 n)(n 1

ir 'd'n-

The fact that under integration the operator T(n,s)
turns the monomial (n*)"n into the s-ordered product
{(at)"a™},illustrates again the sense in which it is an
s-ordered operator analog of the 5 function. As in the
use of singular functions, some discrimination is called
for in the application of this relation, particularly for
Res)0, where T(n, s) is not a finite operator and at
s= 1 where it is explicitly singular.

When n=ni=0 Eq. (6.45) becomes

which are the complex I'ourier transforms of the com-
mutation relations implicit in Eqs. (2.17) and (2.18).

From Eq. (6.36) by a process of differentiation we

may obtain the matrix elements (n1 T(n, s) lm). As we
show in Appendix D, the result of that calculation is

(nl)'"t 2 )" "+' s+1)"
(nl T(n s)1~)=1 —

1

&5$!) E1—s) s—1&

( 2lnl'i t'41nl'
&«xpl — lL-'" "'I (6»)

1—sj E1—s'

where L '"i(x) is an associated Laguerre polynomial. "
VII. CORRESPONDENCES BETWEEN

OPERATORS AND FUNCTIONS

In Sec. VI we introduced the operators T(n,s) which
form, for each value of the order parameter s, a basis
for the expansion of operators as weighted integrals.
In this section we show that each of these integral repre-
sentations maintains a close relationship between the
operator being expanded and its weight function. We
show that the mathematical properties of the weight
functions change substantially as the order parameter
is varied from s= —j., antinormal order, to s= 1, normal
order.

We have seen that, at least in the vicinity of the line
Res=0, every bounded operator F possesses the
representation

f(n, s)T(n, s)7r 'd—'n, —

where the weight function f(n, —s) is given by the trace

for the coherent states. f(n, s) =Tr[PT(n, ——s)]. (7.2)



I.et us note that when the expansion is in terms of the
operators T(n,s) the parameter s appears in the weight
function f(n, —s) with a minus sign.

We now observe that the trace (7.2) is the unique
weight function for the operator I' in the expansion
(7.1).For if the operator F and the function g(n) stand
in the relationship

F~ f(n, s)—=Tr[FT(n, —s)j (7.8)

involves simply the interchange

Thus, for every complex number s the operator-function

correspondence

f (at)num} ~ (n4)nnm (7 9)

g(n') T(n', s)x-' d'a', (7 3)

then by using the trace relation (6.40) we 6nd that

Tr[FT(n, —s)j= g(n') Tr[T(n', s)T(n, —s)]m
—'d'n'

g(n') 8'»(n —n') d'a'

=g(a). (7 4)

We may regard Eqs (7 1) and (7.2) as de6ning, for
every value of s, a correspondence F~ f(n, —s) be
tween operators and their weight functions. Since the
weight function corresponding to a given operator is
unique, these correspondences are one-to-one.

It is in terms of power-series expansions that the cor-
respondences„which we have just introduced, take their
simplest form. If we assume that the operator Il

possesses the s-ordered power-series expansion

F—Q f (s) ( (at) num)
a,m=0

(7.5)

= 2 f, (s) T [((&')"ii").T(, —s)3

f., (s)(n*)"n",
n, m=0

(7 6)

where the coeKcients are given by Eq. (5.18), then by
using Eq. (6.47) we may secure for the weight function

f(n, —s) the power-series expansion

f(n, s)=Tr[FT—(n, —s)j

which is affected by the reciprocal relations (6.45) and

(6.4/).
We shall refer to this correspondence as the cor-

respondence C(s) or, when it is clear which value of the

order parameter is meant, as the s-correspondence.
Another way of expressing the correspondence C(s) is

to say that the weight function f(n, —s) is a generating

function for the coefficients f„, (s) of the s-ordered

power-series expansion for F according to the rule

gn+mf(n S)

gnn g (am) m
=n!m!f„, (s). (7.10)

The consistency of this prescription for the coefficients

f, (s) with the earlier one (5.18) follows from Eq.
(6.43). Two simple examples of the correspondence C(s)
are

D(&,s) ~ e& *-&" (7.11)

and
T(~,s) ~ ~&i»(n —~).

There are two ways in which singularities can occur

in the representation (7.1). For Res&0 the operator

T(n, s) is not a 6nite operator and when we form a
matrix element {y~F~P) of the representation (7.1)
singularities can arise in the function {&p~ T(n, s) ~P)
which appears in the integral (6.10).On the other hand,

when Res&0 the weight function f(a, —s) can become

singular because the operator T(n, —s) in the trace

f(n, s) =Tr[FT—(n, —s)j is not a finite operator. Such

behavior on the part of the weight function f(a, —s)
for Res&0 is of course related via Eq. (7.10) to singu-

larities in the coef6cients f„, (s), the occurrence of

which we discussed in Secs. IV and V.
The trace relation

with the same coef6cients f„, (s). Conversely, if we
assume for the function f(n, —s) this series expansion,
then by using Eq. (6.45) we may obtain the operator F
in the form

F= f(n, —s)T(n,s)~-'d'n Tr[FT(n, —s)]Tr[GT(n, s) jm 'd'n (7.13)

n, m 0

f„,„(s) {n*)nnmT(n, s)m='d'n

f (S)( (Ct) num}

illustrates the need for caution in departing far from

the line Res= 0 since both operators T(n, s) and T(n, —s)
appear explicitly. We note that the functions f(n, —s)

(7 7) and g(n, s) are associated with the operators F and G

by the correspondences C(s) and C(—s), respectively.
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F= Z f-,-(1)(n')"~".
n, m=O

(7.14)

The corresponding function

f(n, 1)=—Tr[FT(n, —1)]

Only for s=0, symmetric order, do the two correspond-
ences coincide.

The correspondence C(1) associated with normal
ordering, s= 1, is particularly simple. As we have shown
in Sec. IV, virtually every operator F possesses a con-
vergent normally ordered power-series expansion

where the weight function P(n) is given by' '

P(n) = w
—' Tr[pT(n, 1)]. (7.22)

Applications of the present results to the representation
of density operators and to P representation in partic-
ular are discussed in the following paper.

There are no serious problems in the correspondence
C(0) associated with symmetric order, s=0. The func-
tion f(n, 0) associated with the operator F,

f(n, 0) =Tr[FT(n,0)], (7.23)

is the weight function for the expansion

is, according to Eq. (6.29), just the diagonal coherent-
state matrix element

F= f(n, 0)T(n,0)s 'd'n. (7.24)

&nlF In)T(n, i) -id2. , (7.17)

is of decidedly less generality since it involves the oper-
ator T(n, 1), all of whose eigenvalues are infinite, as
shown by Eq. (6.28). In fact, it may be shown' that for
no states lg) and

I p) is the matrix element &y I T(n, 1) I 4)
a square-integrable function of n.

For the case of antinormal ordering, s= —1, the cor-
respondence C(—1) associates with an operator F the
function

f(,1)=Tr[FT(,1)], (7.18)

which is clearly not in general free of singularities. These
singularities are intimately related to those which occur
in the coeKcients of the antinormally ordered expansion

f(n, —1)=& IFln) (7.16)

Although the correspondence C(1) is well defined for an
extremely broad class of operators, at s=1 the integral
expansion (7.1),

The operator T(n, 0) appearing in these relations is
finite, though not bounded; and, as we observed in Sec.
VI, the function f(n, 0) is in L2 (i.e., is square-integrable)
when the operator P is bounded.

We recall, from Eqs. (3.12)—(3.16) that the corre-
spondence F ~Tr[FD($)] is one-to-one between L2
and the class of all bounded operators and, from Eqs.
(3.4)-(3.6), that the Fourier transform maps L2 onto
1.2 in a one to one fashion. Thus, since we defined the
weight function f(n, 0) as the complex Fourier transform
(6.3) of the function Tr[FD($)], it follows that the sym-
metric correspondence C(0) maps L2 onto the class of
all bounded operators in a one-to-one fashion. The cor-
respondence C(0) is also, in view of Eqs. (3.6) and (3.16),
norm-preserving in that the L2 norm (3.8) of the weight
function f(n, 0) is equal to the Hilbert-Schmidt norm
(3.15) of the associated operator F; i.e., we have

llf(n, O) II
= IIFII. (7.25)

In terms of power-series expansions, the symmetric
correspondence C(0) associates the operator

F P f ( 1)nwa(gt—)a

n, m=O
(7.19) F= Z f„„(O)((n').n-),

n, m-O
(7.26)

F= f(n, 1)T(n, —1)ir—'d'n

f(n, i) ln)(nl7r 'd'n (7.20)

For only when the function f(n, 1) is infinitely differ-
entiable at n=0 are the coefficients f, (—1) finite, as
is shown by Eq. (7.10). When, however, the function

f(n, 1) is well behaved, then according to Eq. (6.29) the
expansion (7.1) assumes the simple form

with the function

f(n, o)= 2 f--(o)(n*)"n, ",
n, m=O

(7.27)

where, as we have seen in Secs. IV and U, the coefFici-

ents f, (0) are finite for most though not all bounded
operators P.

The correspondence C(s) can easily be written in
terms of complex Fourier transforms. Hy using Eqs.
(3.7) and (6.6), we see that the correspondence C(s)
associates the operator

For the case of the density operator p, this is the I'
representation" ~ '4

p= P(n) I n) &n I
d'n, (7.21) g(& ~)D(—8 ~) (7.28)
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with the function

f(u, —s) =Tr[FT(n, —s)]

g($, —s) exp(nP —n~$)w 'd'$. (7.29)

By setting s=0 and using Eq. (2.1) and (2.2) to write
these relations in real rather than complex notation,
we may express the symmetric correspondence C(0) in
the form in which it was introduced by Acyl':

g(q', p')e "&"' ""&(2') 'dq'dp', (7.30)

f(xy)= g(q', p')e "*"' ""'(2 ) 'dq'dp', (7.»)

where we have set 5= I.
It is a straightforward matter to derive a number of

the properties of the weight functions f(n, —s) by using
the analysis of the operators T(n,s) which was presented
in Sec. UI. To avoid unnecessary minus signs we shall
discuss the function f((s,s) rather than the weight func-
tion f(e(, —s) of the expansion (7.1).

By multiplying both sides of Eq. (6.41) by the opera-
tor F and forming the trace of the resulting relation, we
6nd that for different values of the order parameter s
the functions f(n, s) are related by the simple Gaussian
convolution

sub)ect to the existence of the trace and the convergence

of the integral. This expression for the trace of an oper-

ator is a generalization of the earlier one (2.28) which

may be recovered by putting s= —i.
Le't lls liow llse tile pl'opel'ties of tile operatol' T(0( s)

which were discussed in Sec. UI to characterize the be-

havior of the function f(n,s)= Tr[FT(n, s)] as a func-

tion of the order parameter s. We 6rst focus our at-
tention primarily upon the left half-plane Res &0 where,

as we shall show, the function f(n, s) is a bounded,

square-integrable, and in6nitely differentiable function

of 0. for all bounded operators F. We shall then examine

the changes in the properties of the function f(a,s) as the

real part of s becomes positive.
We have noted earlier that the operator T(n,s) is

bounded for Res&0, as is shown by the estimate (6.30)
for its Hilbert-Schmidt norm llq'(ap)ll. It follows,

therefore, from the inequality (3.24) that if the operator
F is bounded with norm IIFII, then the modulus of the

function f(a,s) is bounded for Res(0 by the quantity

If(~s) I
= l»[»(~,s)]l & IIFllllq'(~ s)ll(IIF II/( —Res) '", (7.3&)

which is independent of n.
Let us now observe that by using the identity (3.6)

and the definition (6.3) we may obtain the relation

I f(~;) I

'd'~= l»[FD(k, s)] I
'd'5

f(n, s) =
t—s

2lu —n'I' d'n'

f( ', e) eep(—
t—S g

for Res&Ref. (7.32)

eR'*(&('I Tr[FD(g)] I
'd'g, (7.36)

which for Res&0 implies the inequality

This relation makes it clear that if the function f(n, t) is
well behaved, then so is the function f(a,s) for Res
&Ret.

By performing a similar operation upon Eq. (6.42)
we find that the function f(e(,s) satisfies the differential

equation
8f(n, s) 1 8'f(n, s)

2 Bn8o.~
(7.33)

TrF = f(e(,s)7( 'd'a—(7.34)

which is the differential form of Eq. (7.32).The relations
(7.33) and (7.32) have the same form as the heat-
diffusion equation and its solution. This analogy be-
comes more complete when the operator F is a density
operator; we shall discuss it in that context in the paper
which follows.

From Eq. (6.46) we find that the function f(n,s) is
normalized in the sense that

I f(~,s) I'd'«
I
Tr[FD($)]1'd'k (7 37)

When the operator F is bounded, the integral on the
right-hand side of this equation converges, as is shown

by Eq. (3.16). Thus for all bounded operators F, the
function f(e(,s) is a square-integrable function of n for
Res&0. By comparing Eq. (7.37) with Eq. (3.16), we

find for the norm II f(n, s)II of the function f(n, s), de-

fined by Eq. (3.8), the inequality

llf(~, s)ll&IIFII ««es« (7.38)

We may infer from the relation (7.36) that th«egions
in the s plane in which the functions f(e(,s)
Tr[FD(],s)] are square-integrable are identical and a«
bounded by a straight line on which the real part of
s is constant. Let us denote this line by Res=x(F).
Then for bounded operators F we have x(F)&0 since

the function f(n, s) is in L~ at least for Res&0.
By differentiating both sides of the relation (6.3), we

may express the derivatives of the function f(a,s) as the



K. E. CAHILL AND R. J. GLAUBER

integrals

pi+«+mf(~ s)
+ n m

Bs'Bn"8+*~
XTr[FD(&,s)]e«&* «*sd'&/ir. (7.39)

The moduli of these derivatives are, accordingly,
bounded by the integrals

g 1+«+«,f(& s) ~

& (1)i
I g I

2i+«+~sac. [ t ~

&

slg~ng~+m

X I
T [FD(g)] I

d'q/ (7 40)

which are independent of o.. According to the Schwarz
inequality for functions (3.9), the convergence of these
integrals for Res&0 and for all bounded operators F
is insured by the exponential factor exp(Res

I
)l') and

the square-integrability of the function Tr[FD($)]. A
similar argument' shows that the derivatives (7.39)
exist and are bounded for Res& x(F).

We may conclude, therefore, that for Res&x(F), a
region which includes the half-plane Res&0 if Ii is
bounded, the function f{o.,s) possesses derivatives of
all orders with respect to s, n, and 0.~ and that these
derivatives are bounded by quantities that are inde-
pendent of n. In particular the function f(n, s) is an
analytic function of s for Res&x(F) and its modulus
is bounded by a quantity M(s) which depends upon s
but not upon e, i,e., we have

I f(a,s) I
&M(s) for Res& x(F). (7.41)

It may be shown' that the Taylor series in s, n, and n*
formed with the derivatives (7.39) converges for all n
and all s such that Res&x(F).

Ke recall that the existence of derivatives of all
orders with respect to o. and e* is required if the func-
tion f(n, —s) is to be a generating function for the co-
efficients f, (s) according to the rule (7.10). We also
note that the convergence of the power series for
f(n, —s) guarantees that the function f(n, —s) is well
defined by the correspondence C(s) in the form of Eqs.
{7.5)—(7.7). Finally, since for F bounded and Res&0
the derivatives of f(n, —s) with respect to n and u*
are analytic functions of s, our earher observation that
for F bounded and Res)0 the coefficients f, (s) are
analytic is confirmed.

As the parameter s crosses the line Res=0, the
class of operators F for which the function f(n, s)
=Tr[FT(n,s)] is bounded shrinks dramatically. We
have seen in Eq. (7.35) that this function is bounded for
all bounded operators when Res&0. Let us now note
that the function f(u, s) is bounded even for all finite
operators for Res&0. According to Eq. (6.32) the oper-
ator T(n,s) is in the trace class for Res&0. It follows,
therefore, from the inequality (3.39) that if the operator
»s 6»«with norm IIFII»» «6ned by Eq. (3.33),

then the modulus of the function f(n, s) is bounded for

Res&0 by the quantity

I f(~,s)
I

= l»[FT(~,s)] I
& IIFllilfT(~, s) ll2

&2IIFlli/(I1 —sl —I1+sl), (742)

which is independent of o..
On the line Res=0, however, the operator T(n,s) is

finite but not bounded and the function f(n, s) is not
necessarily bounded for finite operators or even for
bounded operators. It is in general necessary for the
operator I" to be a trace-class operator if the function

f(u, s) is to be bounded for Res=0. In this case, by using

the inequality (3.39) and the estimate (6.31) for the

Ilorm IIT(Q,s)lli, defined iil Eq. (3.33), we may obtaiii
for the function f(n, s) the upper bound

If(~ s)
I

= f»[FT(~,s)] I
& IIFII IIT( s)lli

&2IIFII2/I1 —sl fo«es&o (74»

where IIFII2 is the trace-class norm of the operator F,
a, norm which we defined in Eq. {3.37). For Res) 0 the
function f(n,s) is not in general bounded even for trace-
class operators.

We have seen that for all bounded operators Ii the
function f(n,s) possesses derivatives of all orders with

respect to the variables s, n, and o.* for Res&0. For
Res=0, however, the function f(n, s) is not even a con-

tinuous function of 0. for all bounded operators. It is
in general necessary for the operator F to be a trace-
class operator for the function f(n, s) to be continuous
on the line Res=0, where it may be shown' to be uni-

forQlly continuous.
For Res) 0 the operator T(n,s) is not a hnite operator

and the three norms IIT{ap)ll~ IIT(~ s)II» IIT{as)ll»
which are defined by Eqs. (3.15), {3.33), and (3.37),
are all infinite. At s=1 all of the eigenvalues e„(s) of
the operator T(n,s) are infinite as may be seen from Eq.
(6.28). For these reasons the function

f(~,s) =Tr[FT((g,s)]

typically develops singularities of some type at one or
more points in the half-plane Res& 0. Since the function

f(n, s) is bounded, square-integrable, and infinitely dif-

ferentiable for Res&x(F), this singularity must occur
at a value of s=so for which Reso) x(F). The useful

properties that we have attributed to the function

f(n, s) cease to hold if not at the line Res=x(F) then

certainly at the appearance of the first singularity. For
larger values of Res the function f(n, s) is simply too
singular to be used either as a weight function for the

operator F in the expansion (7.1) or as a, generating func-

tion for the coeScients of its s-ordered power-series

expansion. A further discussion of this problem in terms

of distribution theory is given in Ref. 2, where it is

shown that the function f(n, s) lies outside the space of
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tempered distributions" for Res) Reso where so is the
first singular point.

The locations of the line Res= x(F) and of the singu-
larities of the function f(n, s) vary considerably from
one operator to another. As our example in Sec. VIII
will show, the quantities Resp and x(F) may be arbi-
trarily small even when the operator F is in the trace
class.

VIII. ILLUSTRATION OF OPERATOR-
FUNCTION CORRESPONDENCES

We shall now illustrate the results of Secs. VI and
VII on the representation of operators by considering
a simple example in some detail. This example will
show how the weight functions f(n,s)= Tr[FT(n,s)],
which are extremely well behaved for Res&0, can de-
velop singularities for Res) 0 even when the operator
F is both bounded and in the trace class. As we men-
tioned earlier, these singularities reflect the fact that
T(n, s) is a finite operator only for Res&0.

Let us consider again the example provided by the
operator F(X)=X t'. Since the operator F(X) may be
written, according to Eq. (6.22), as

F(X)=-,'(1—~)T(O, t), (8.1)
with

in Sec. VII, is given by

1. X

x[F(X)]=Res, =Re
1—)

= (1-
l
&

l
')/

l
1-&

l
'. (8.7)

Let us recall that the operator F(X) is both bounded
and in the trace class for

l
X

l
(1, that it is finite but not

bounded for X =1, and that it is neither finite nor
bounded for X )1.From Eq. (8.7) we see that the
parameter x is positive for

l
X

l
(1,zero for

l
X

l

= 1, and
negative for lX l

)1. The region Res& x, in which the
function f„(a,s) is well behaved, therefore includes the
half-plane Res& 0 when and only when the operator
F(X) is both bounded and in the trace class. Under the
transformation (8.6), the location sp of the singularity in
the function f&, (pp, s) assumes every value in the half-

plane Res) 0 as the parameter X ranges over the disk

l
X

l
(1.Thus there are values of X for which the operator

F(X) is in the trace class but for which the line Res= x,
on which the singular point so falls, lies arbitrarily close
to the imaginary axis Res=0.

According to Eq. (6.11) the operator F(),) may be
expanded in the form

t= (X+1)/(X —1),
we may write the function

f~(n, s) =Tr[F (lI.)T(n,s)]
in the form

(8.2) F( ) =X~t~

f~(n, s)T(n, s)pr —'d'a, —

f,(~,s) = expl
t+s E t+s I

I'2(~ —1) l~l'
expl . (8.5)

1+X —s+sX (1+ii,—s+sX

The function fi(a,s) is an analytic function of s except
for an essential singularity at

s = sp ——(1+lb.)/(1 —lI.) . (8.6)

As a function of u, it is for Res&Reso a Gaussian func-
tion with its maximum at n=0 The fun. ction f&,(n, s)
is accordingly a bounded, square-integrable, and infi-

nitely differentiable function of o. for Res&Reso. Thus,
for the operator F(X) the quantity x[F(X)], introduced

"Tempered distributions form a class of continuous linear
functionals which includes the 8 function and its derivatives. A
distribution is said to be tempered if it can be expressed as a de-
rivative of 6nite order of a continuous function that is bounded by
a polynomial. See, e.g., I. M. Gel'Fand and G. K. Shilov, General-
ized Fz~nctzons, translated by E. Saletan (Academic Press Inc. ,
New York, 1964), Vol. I.

f~(cx,s) =-', (1—t) Tr[T(0,t)T(n,s)]. (8.4)

The trace may be evaluated by means of Eq. (6.39),
which yields

where the weight function fz(n, —s), which is given by
Fq. (8.5), is the one associated with the operator F(X)
by the correspondence C(s). By comparing Eq. (8.5),
after substituting —s for s, with the s-ordered power-
series expansion for the operator F(X), Eq. (5.27), we

may verify that the association of the weight function

f&,(n, —s) with the operator F(X) is in accordance with
the rules (7.5) and (7.6) of the correspondence C(s).

We see from Eq. (8.5) that for Res) Resp the function

fr, (n, s) increases for large values of
l
n

l
as an exponential

function of
l
a

l

'. For this reason the function fq(a, s) is a
tempered distribution only for Res&Reso. '6 Now we

have seen that as the parameter X ranges over the disk

l
X

l
(1 in which the operator FP.) is both bounded and

in the trace class, the singularity at sp ——(1+X)(1—X) '
ranges over the half-plane Res) 0. From this counter-
example we may conclude that for no value of Res&0
do the operators T(n,s) afford a basis for the integral
representation (6.11) of an arbitrary bounded operator
F even if the whole class of tempered distributions is
admitted as weight functions. Thus, the operators T(n, s)
for Res&0 contrast sharply with the displacement
operators D(n) in terms of which every bounded oper-
ator may be expanded with a square-integrable weight
function. In this sense the operators T(n,s) for Res&0
must be regarded as undercomplete.
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%c may mention that it is not difBcult to shower' that
the weight function f(n, —s) may, for all values of s
and all bounded operators P„be interpreted as a member
of the space'~ of ultradistributions Z'. In order to ac-
commodate such vreight functions, hovrever, the struc-
ture of the representation (6.11) must be changed in a
major @ray. When the operator Ii is in the trace class,
the additional terms required to regularize the repre-
sentation (6.11) may be found by generalizing a pro-
cedure formulated" for the case of the I' representation
of the density operator, Eqs. (7.21) and (7.22).

APPENDIX 8
We shall noir express the matrix elements of the dis-

placernent operator D(n) in the n-quantum representa-
tion in terms of the associated I aguerre polynomials
I-„i i(x). We first note that if In) is a coheren~ s~a~e
then, by using Eqs. (2.19) and (2.20), we may write

D(5) I~)=D(k)D(~) Io)
=D(~+-) Io&-r L!(~-*-e)j
=

I 5+~& expP($~*—P~)j.

s-'f(s-'y) = f(e) exp(n'y —sInI')~r-'/f'n,

Res)0, (A1) Another expression for this same matrix element also
follows from Eq. (2.23):

which holds for all entire functions f(a) subject to ap-
propriate conditions on the convergence of the integral.
We evaluate Grst the integral E: &~ID(k) I

&=~ ~
~'» 2 &~ID(k)l~& (82)

m=0 (yg!)i»

Thus, by using Eq. (2.23), we find that

Our object here is to derive the useful integral &~ID(k)Ia&=(~') '"(5+&) exp'($&*—Pa)
identity'

= (~!) '"(t+~)- exp( —k I
kl' —-'I~I'

—F ) (81)

p('x —
I

I') -'d' If we now combine Eqs. (81) and (82) and put y= $ 'a,
me arrive at the relation

X& ID(OI-»-. (83)

f(n)= P c.n"

The left-hand side of this equation is a generating func-
tion for the associated Laguerre polynomials 1.„&"i(x)
according to the identity"

(1+@)mg
—xp —Q I (m-ni(z)ym

m=0
(84)

e "" '~ ~*f(a)s-'/f'e= P c E
which holds for

I y I
(1.Thus by comparing Eqs. (83)

and (84) we obtain the expression
=s 'f(s 'X),

&~ID(5) I~&=(~!i ')'/2t"-"~~'~"'1. '"-"'(Ikl'). (85)
which is Eq. (Ai), provided that the integral may be
done term by term. In particular, if we let f(a) =exp(nx), APPENXHX C
then Eq. (A1) becomes

Our definition (5.6) of the s-ordered product was as
the der Ivat1ve

s-' exp(s-'xy) = exp(nx+e*y —s I a I
')s-'d'o. , (A2)

provided Re2'& 0.

'" The space Z' of ultradistributions is a class of generalized
functions which includes but is much larger than the space of
tempered distributions. It is discussed in the work by Gel'Pand
and Shill (Ref. 26).

'~ K. E. Cahiil (to be imbiished).

By using Eq. (5.1) we may write the operator D(a,s)
as a t'-ordered exponential

D(z &) D(~ t)~(~ol~l'/2

=(expLnat —a*a+-,'(s—t) InI'j}g. (C2)
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We note the following equivalent expansions:

c 2'm

ektv+zz+vtzz P (p+V~)me)ttv
m-o m!

= P —()+vs)nenz.
-o n!

(C3b)
which is noted in Eq. (5.12).

trav {(gt)n—kgm —k} (C7)

spond to the explicit expansion

&n, m) )~~ )mq /&
—s

C3 ) {(g')""}.= Z

Z
e) tz+ttz+vtzz P ~n+m nVn—I (m n) (

—) +/V)
n, m=o m!

(C4a)

By using the identity (B4),we may write these expan-
sion in the forms

APPENDIX D

By expanding the coherent states ~P) and (P ~

of Eq.
(6.36) in terms of the n-quantum states, we find

e~e~'(p[T(nts)~p)= p (e!m!) '"(P*)npm(N[T(nts)~m)
o

—sm), " v I &" m)( —Xp/v). (C4b)
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Let us make the identifications

w=nt X=g t v= g(s 3) t

If we now make use of the expansion (C4a) with the
identifications

w=P~, X= 2n/(1 —s), v= —(1+s)/(1—s),
s=P a=2 */(1—s)

S=Q ) p=G)

in Eqs. (C4a) and (C4b) and specify t ordering of both
sides of these equations. Then according to Eq. (C2)
we have found the t-ordered form for the displacement
operator D(n, s). By carrying out the differentiations in-
dicated in Eq. (C1) we find from the expansion (C4a)
the result

then we Gnd - (-p*)"p"
exp
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5 2 s—t g Hence we have

which is useful for m&n, and from (C4b)
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which is useful for n&m. These two expressions corre- which is Eq. (6.51).


