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The expansion of operators as ordered power series in the annihilation and creation operators a and ot
is examined. It is found that normally ordered power series exist and converge quite generally, but that
for the case of antinormal ordering the required c-number coefficients are infinite for important classes of
operators. A parametric ordering convention is introduced according to which normal, symmetric, and
antinormal ordering correspond to the values s=-1, 0, —1, respectively, of an order parameter s. In
terms of this convention it is shown that for bounded operators the coefficients are finite when s>0, and
the series are convergent when s>3. For each value of the order parameter s, a correspondence between
operators and ¢-number functions is defined. Each correspondence is one-to-one and has the property that
the function f(a) associated with a given operator F is the one which results when the operators ¢ and af
occurring in the ordered power series for F are replaced by their complex eigenvalues « and o*. The corre-
spondence which is realized for symmetric ordering is the Weyl correspondence. The operators associated
by each correspondence with the set of 8 functions on the complex plane are discussed in detail. They are
shown to furnish, for each ordering, an operator basis for an integral representation for arbitrary operators.
The weight functions in these representations are simply the functions that correspond to the operators
being expanded. The representation distinguished by antinormal ordering expresses operators as integrals
of projection operators upon the coherent states, which is the form taken by the P representation for the
particular case of the density operator. The properties of the full set of representations are discussed and
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are shown to vary markedly with the order parameter s.

I. INTRODUCTION

MBIGUITIES in the ordering of operator products
were among the earliest questions to occur in the
development of quantum mechanics. In more recent
years we have come to understand a close relationship
between particular types of measurements and the oper-
ator orderings best suited to describing them. In many
quantum-mechanical problems, such as those of quan-
tum optics, we are now concerned with the ordering of
general operator functions rather than simple operator
products.

In the present paper we shall discuss the representa-
tion of arbitrary operators that refer to a system which
we choose, for simplicity, to have only a single degree
of freedom. We shall describe this system in terms of a
pair of complex operators, ¢ and af, which we refer to
as the annihilation and creation operators. These oper-
ators, which obey the commutation relation [a,e1]=1,
play a fundamental role in descriptions of systems of
harmonic oscillators and quantized fields. Operators
with the same algebraic properties may be defined for
a broad class of different dynamical systems by form-
ing complex linear combinations of pairs of observables
¢ and p that are canonically conjugate, [¢,p]=1%.

Because of ordering problems which arise from the
noncommutativity of the operators ¢ and af, the repre-
sentation of operators is a considerably richer subject
than the representation of ¢-number functions. We
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examine several aspects of this structure in the present
paper with particular emphasis upon the types of order-
ing that are most useful in the description of physical
experiments. In the paper which follows, we shall apply
this analysis to the closely related problem of expressing
quantum-mechanical ensemble averages in forms that
offer, as much as possible, the simplicity of classical
ensemble averages. The present discussion of operator
ordering will provide the basis for our discussion there
of the P representation, the Wigner distribution, and
other ways of representing density operators.

It is conventional to distinguish the products (at)"a™
and e™(at)” by calling the first normally ordered and the
second antinormally ordered. In general an operator is
said to be normally (antinormally) ordered if the oper-
ator ¢ stands always to the right (left) of the operator
at. It is clear that any polynomial in the operators a
and at may be cast into normally or antinormally
ordered form by using the commutation relation a
finite number of times.

A problem we discuss in detail is that of expanding an
arbitrary operator as an ordered power series in the
operators @ and of. We show that virtually every opera-
tor of interest possesses a convergent power-series ex-
pansion in the normally ordered products (a')ram™.
Power-series expansions in the antinormally ordered
products a™(at)" are, however, of considerably less gen-
erality. We show that for many well-behaved operators,
ones that are bounded and of finite trace, the required
c-number coefficients are infinite.

These two varieties of ordering have been discussed
recently in a number of references and some discussion
1857
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has also been given of other varieties of ordering.!~%
The emphasis of the work published to date has been
principally upon the development of formal expressions
for ordered operators rather than upon their explicit
meaning. Since those meanings are not in all cases self-
evident and we want in any case to understand their
limitations, we have found it necessary to exercise some
mathematical care in the development of our arguments.

In order to examine more closely the role of operator
ordering in power-series expansions and to be able to
interpolate between normal and antinormal ordering,
we have been led to introduce a parametrized ordering
convention. This convention associates with every com-
plex number s a unique way of ordering all products of
the operators ¢ and e!. Normal ordering, antinormal
ordering, and a type of ordering that is symmetric in
the operators ¢ and a! correspond to the values s=+1,
—1, and 0, respectively, of the order parameter s. We
are not attempting by introducing this continuum of
orderings to deal with all possible forms of ordering nor
do we know of any physical applications for arbitrarily
ordered operator functions. We shall continue to center
our attention on the three principal forms of ordering.
By embedding them in a continuum of orderings, we
provide for them a natural context for viewing their
differences and interrelationships.

Our parametrized ordering convention enables us to
consider the existence of ordered power-series expan-
sions for intermediate orderings. We show that for
bounded operators the required ¢-number series coeffi-
cients are finite whenever the ordering is closer to
normal ordering then to antinormal ordering, i.e., for
Res>0. We show as well that for such operators the
power series converge, in a sense which we make pre-
cise in Sec. IV, when the ordering is closer to normal
than to symmetric ordering, or, more precisely, for
Res>1+41(Ims)2

These ordered power-series expansions and the as-
sociated formulas for the c-number coefficients afford
for every value of the order parameter s a relatively
direct type of correspondence between operators and
c-number functions. The rule characterizing each cor-
respondence is to replace the s-ordered products
{(ah)"a™}; in the power-series expansion of a given
operator by the monomials (a*)"a™ The properties of
these correspondences, which are one to one, depend
markedly upon the order parameter s. The classes of
operators for which they are appropriate and the types
of functions which they associate with different classes
of operators are discussed in Sec. VII. The correspond-

1W. H. Louisell, Radiation and Noise in Quantum Electronics
(McGraw-Hill Book Co., New York, 1965), pp. 104-119.

2K. E. Cahill, thesis, Harvard University, 1967 (University
Microfilms, Ann Arbor) (unpublished). Many of the results of the
present paper are presented there.

3 M. Lax and W. H. Louisell, J. Quantum Electron. QE3, 47
(1967).

4 M. Lax, Phys. Rev. 172, 350 (1968).

5 G. S. Agarwal and E. Wolf, Phys. Letters 26A, 485 (1968).
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ence specified by s=0 and associated with symmetric
ordering may be identified with a correspondence in-
troduced by Weyl.®

Our main interest in these correspondences is the
possibility of using the function associated with a given
operator as a weight function in an integral representa-
tion of that operator. This possibility is realized in
Secs. VI and VII, where for each correspondence we
introduce a set of operators that forms a basis for such
an integral representation. We discuss the properties
of these representations and of their weight functions
in Secs. VI-VIIL.

We begin with two introductory sections. Section 1T
summarizes the useful properties of the coherent states
and of the displacement operators exp(aaf—a*a). In
Sec. III we discuss the properties of an integral repre-
sentation for arbitrary operators that is based upon the
displacement operators. This expansion, which is due to
Weyl,® provides the basis for much of our subsequent
analysis.

II. COHERENT STATES AND DISPLACEMENT
OPERATORS

An important part of our discussion will be based
upon the use of a particular set of quantum states. If
the system being studied is the electromagnetic field,
these are the states that describe completely coherent
fields. The systematic use of such coherent states has
been found particularly well suited to the solution of a
number of quantum-electrodynamical problems and
problems of other types involving harmonic-oscillator
degrees of freedom. In this section we shall indicate
how states of a corresponding type may be defined for
a broad range of physical systems. This extension of the
definition of coherent states furnishes the opportunity
to review their properties briefly.

Let us consider for simplicity a dynamical system
that is described by a single pair of Hermitian observ-
ables ¢ and p which are canonically conjugate, [g,5]
=1#%, and have eigenvalues which range continuously
from minus infinity to plus infinity. The operators we
shall use in defining the coherent states are complex
linear combinations of ¢ and p. Corresponding to any
real parameter \, different from zero, we may form the
combinations

a=(2h)712(\g+iX"1p),
at=(2h)12(\g—iN"1p).

(2.1)
(2.2)
These operators satisfy the familiar commutation
relation

[a,ei]=1

and therefore possess the same algebraic properties as
the operators associated with the complex amplitude of

(2.3)

SH. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc., New York, 1950), pp. 272-276.
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a harmonic oscillator or the photon annihilation and
creation operators of quantum electrodynamics.

The operator ¢ possesses, as we shall see, a two-
dimensional continuum of eigenstates. Let us first note
that it has a particularly simple eigenstate correspond-
ing to the eigenvalue zero. If we denote this state by
|0), then its defining equation

a|0)=0 (2.4)

may be written in the representation in which ¢ is

diagonal as
(N*q'+hd/dg'){q'|0)=0.

The wave function for this state is therefore a Gaus-
sian function which takes the normalized form

(¢'10y= (\*/z#)!1* exp[— (q')*/24].

This state, incidentally, is one for which the uncertainty
product AgAp assumes its minimum value of 3% with
the ratio Ap/Ag=2\2

It is clear from the algebraic properties of the oper-
ators ¢ and af that we may construct, just as in the case
of the harmonic oscillator, a sequence of states for the
system which correspond to integer eigenvalues for the
product ala. These states, which we label as | ), satisfy
the equation

(2.5)

(2.6)

(2.7

for n=0, 1, 2,---. They may be generated from the
state |0) by the rule

|n)= (n1)~12(at)"|0).

The wave functions (¢’ |#) which represent these states
are easily seen to take the same form as the familiar
stationary-state wave functions for the harmonic oscil-
lator. They are the Hermite functions which form a
complete basis for the expansion of any quadratically
integrable function. These states |#) therefore form a
complete set.

It may be noted that no specification has been made
of the Hamiltonian of the system that we are discuss-
ing. Since the system may have arbitrary dynamical
behavior, the states [#) will not in general be energy
eigenstates. Only when the Hamiltonian is a function
of the operator

ata= (2h) " (\-2p*+ 22— 1)

ata|ny=mn|n)

(2.8)

(2.9)

will the states |#) be stationary. The Hamiltonian of a
harmonic oscillator of mass 7 and angular frequency
wis

H=(2m)~ (p*+m*w?q?).
The states |#) become the stationary states of this
Hamiltonian when the arbitrary parameter X\ is given
the value (mw)!/2. A normal mode of the electromag-
netic field in a dielectric possesses a Hamiltonian of the
form of Eq. (2.9) with A=4+/(ew), where €is the dielectric
constant. In this case the state |#) is an #-photon state.

(2.10)
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Let us now define for each complex number « the
exponential operator?

D(a)=-exp(aat—a*a), (2.11)
which is unitary and obeys the relation
Di(a)=D"(a)=D(~a). (2.12)

These operators, which were introduced by Weyl,® are
easily written in forms in which the operator @ appears
exclusively to the right or to the left of the operator at.
By means of the identity?

expd expB=exp(4d+B+3[4,B]), (2.13)

which holds whenever the commutator [4,B] com-
mutes with both 4 and B, we find as the normally
ordered form

D((X) — e—lalzl‘zeaaTe—a*u (2 14)
and as the antinormally ordered form
D(0)=el*I*/2g—a*agaat (2.15)

By differentiating these two ordered forms of the
operators D(a) with respect to —a*, we find®

—3/30*D(e) = D(a)(a+30)

=(a—%a)D(a), (2.16)
which implies the relation
DY (a)aD(a)=a+a (2.17)
and its adjoint
DY(a)atD(a)=alt+a*. (2.18)

Because of their property of displacing the operators
a and a' in a conjugate fashion, the operators D(a) have
been called displacement operators.

It is evident from their definition that the displace-
ment operators obey a simple multiplication law. By
applying the identity (2.13) we find

D(e)D(8)= D(a+B) exp[$(af*—a*8)]. (2.19)

Thus, apart from unimodular phase factors, the dis-
placement operators form an Abelian group.
For each complex number « the coherent state |a)
is defined by”
|a)=D(e)|0). (2.20)

From Egs. (2.4) and (2.17) it is clear that the state
|@) is an eigenstate of the operator @ with eigenvalue o,

(2.21)

The displacement transformation (2.20) leaves the
variances of the coordinate and momentum variables
unaltered so that they have for all coherent states the

a|a)=c|a).

7R. J. Glauber, Phys. Rev. 131, 2766 (1963).

8 A. Messiah, Quantum Mechanics (North-Holland Publishing
Co., Amsterdam, 1961), Vol. I, p. 442.

®In this and in all subsequent differentiations with respect to
conjugate complex variables we observe the convention dc/da*
=0da*/da=0.
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values

(Ap)*=N(Ag)*=3N\A, (2.22)

which are characteristic of the ground state (2.6).
By using Egs. (2.4), (2.8), (2.14), and (2.20), we may
relate the coherent states to the states |#):

|a}y=D(a)|0)

=e—la|2/2eaa1‘e—a"‘al 0)

=e-[a|2/2eaa,1'l 0>

=¢lal?2 37 (p))~1/2gn|n), (2.23)
=0

This expansion and the orthonormality of the basis
states |n) allow us to write the scalar product {8|a)
in the form

(Ble)=exp(—3|a|?—}]B|*+B%),

which shows that no two coherent states are orthogonal.
The extent to which they overlap

|(8la) 2= riosr

is, however, negligibly small when the states are macro-
scopically distinguishable, i.e., when |a—g8|>1.

The coherent states provide a convenient representa-
tion for the unit or identity operator 1. Let us define
as a real element of area in the complex « plane

(2.24)

(2.25)

7 d%a=7"'d(Rea)d(Ima), (2.26)
which, by writing
da=(2h)~12(\dq'+iN"1dp')

we may recognize as the familiar differential element of
phase space,
m d%a=h"dg'dp’ .

Then on using the expansion (2.23) and integrating over
the complex plane, we find

[ 1e)alridza= £
=1, (2.27)
which illustrates the completeness of the coherent states.

This relation affords for the trace of an arbitrary oper-
ator F the simple expression

-1 ol

= /(a] Fla)r1d%. (2.28)
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III. COMPLETENESS OF DISPLACEMENT
OPERATORS

The displacement operators D(e), which were defined
in Sec. II, possess a number of simple properties which
will be particularly useful in the analysis which follows.
Principal among these is the representation that they
afford for a certain class of operators as weighted inte-
grals with square-integrable weight functions. In this
representation, as we shall see, they play a role very
much analogous to that of the unimodular exponential
functions in the Fourier integral representation of
square-integrable functions. Although the completeness
property has only recently been formulated rigor-
ously,>1% the displacement operators have often been
discussed in the literature.®:7-1*~16 Because our analysis
is cast in terms of the complex operators ¢ and af, as
opposed to their real parts ¢ and p, we shall need a
notation for the Fourier transform that is more suited
to complex numbers than to pairs of real numbers. If
g(%) is a function of the complex variable £, then we
define its complex Fourier transform f(a) by the relation

fa)= ] ettty B, 3.0

where the integration is over the whole £ plane, and the
element d2¢is defined by Eq. (2.26). By letting a=x+1y
and £=wu-1iv, we may write f(a) in the form

f(x—}-iy):f f e¥ W= g(y+iv)n—du dv, (3.2)

from which it is evident that f(«) differs from the usual
Fourier transform only by a scale change of its argu-
ments Rea and Ima.

By recalling the familiar formula for the Fourier
integral representation of the product of two é-functions

@)= [ [ e B
x = Al )
g /_w /_w (2r)?

we may express the two-dimensional §-function

8@ (a)=8(Rea)d(Ima)

in the more convenient form

8 (a)= / gabt—atip =22t 3.3)

10§, C. T. Pool, J. Math. Phys. 7, 66 (1966).

1 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1948).

12 M. S. Bartlett and J. E. Moyal, Proc. Cambridge Phil. Soc.
45, 545 (1949).

13U, Fano, Rev. Mod. Phys. 29, 74 (1957).

14 7. Schwinger, Proc. Nat. Acad. Sci. (U.S.) 46, 883 (1960).
( 15 SA) E. Glassgold and D. Holliday, Phys. Rev. 139, A1717
1965).

16 T, R, Klauder, J. McKenna, and D. G. Currie, J. Math. Phys.
6, 743 (1965).
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In the present notation the processes of Fourier trans-
formation and Fourier inversion are completely sym-
metrical. For, as is easily demonstrated with the aid of
Eq. (3.3), if the functions f(e) and g(e) stand in the
relationship

f(a)=/e“5*‘°‘*fg(2)7r‘1d2£, (3.4)
then the inverse relationship is
g(a)=/e“f*—“*5f($)7r“1d2£. (3.5)

Thus, if f(e) is the complex Fourier transform of g(«),
then g(a) is the complex Fourier transform of f(e)

The form which other familiar relations assume in
this notation may be similarly derived through the use
of the definition (3.1) and Eq. (3.3). If the functions
fi(e) and fa(e) are the complex Fourier transforms
of the functions g1(£) and g2(£), then we have

/ £10) falo)dPa= / e OnOPE,  (3.6)

and

/ £1(@) fale)da= f aOn(—DPE.  (37)

Let us digress for a moment and remind ourselves
of the class of functions to which the definition (3.1)
and the relations (3.4)—(3.7) apply. This class, which is
known as the Lebesgue class L, consists of all ordinary
(i.e., measureable) functions f(a) for which the norm

|||l defined by

= 1)

is finite.1”+18 (For our purposes the term measurable may
be largely ignored, and the terms L; and square-integra-
ble used interchangeably.) Under the operation of
Fourier transformation the class of L. functions is
mapped onto itself in a one-to-one fashion. If in Eq.
(3.4) the function g(¥) is in Ly, so is f(«), and the inverse
relation (3.5) is valid. If in Egs. (3.6) and (3.7) the
functions g1(£) and g2(£) are in L, then so are the func-
tions fi(a) and fs(e) and Egs. (3.6) and (3.7) hold.
For L, functions the Schwarz inequality takes the form

(3.8)

< / | f(@ela) | 1da
<l lel. 3:9)

YW, Rudin, Principles of Mathematical Analysis (McGraw-
Hill Book Co., New York, 1953). In Chap. 10 the Lebesgue theory
is discussed in elementary terms.

18S. Bochner and K. Chandrasekharan, Fourier Transforms
(CI;rinceton University Press, Princeton, New Jersey, 1949),

ap. 4.

l / fle)gla)r=d%
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The notation that we have introduced may be used
to derive a useful property of the traces of the displace-
ment operators. By using the trace relation (2.28) we
may write the trace of the operator D(a) in the form

Tr[D(a)]= /(E | D(a) | £)n—1d2% .

If we now write the displacement operator in its nor-
mally ordered form (2.14) and employ the eigenvalue
property of the coherent states, we find

TrED(a):|=e—lalzl2[<£leaa1‘e—a*a| E)?l'—ld%

—laitr2 / eot—etr1g2;

By referring to the §-function formula (3.3), we recog-
nize this as

Tr[D(a) ]=me1=l*/25® (a)
or, since the exponential is unity at a=0,
Tr[D(e)]=76?(a).

From this relation and the multiplication law (2.19),
we find

(3.10)

Tr D(e) D7(8)]=m8® (a—B) 3.11)

which may be viewed as a species of orthogonality rule
for the displacement operators.'®

Before presenting a derivation of the completeness
property of the displacement operators, we shall use
their orthogonality to suggest the main features of their
completeness. Let us suppose that the operator F and
the function f(£) stand in the relation

r= [ s, (3.12)
Then we may write

T{FD()]= / 19 THLD©) D) Jrdor,

which, by virtue of the orthogonality rule (3.10), implies

that
fle)=Tr[FD(a)]. (3.13)

To see whether this solution is well behaved, we write

T FF]= / f(&) Tr[F'D-1(§) Jn~'d%

= / | f(&)|2r 12, (3.14)
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which implies that the function f(£) is square-integrable
when the trace Tr[F1F] is finite. This trace is closely
related to the Hilbert-Schmidt norm ||F|| for the oper-
ator F which is defined by

|1F||=[Tr(FtF)]\2. (3.15)
We shall say that an operator is bounded if this norm
is finite. With this terminology, we may draw from Egs.
(3.12)—(3.14) the conclusion that if a bounded operator
F possesses the expansion (3.12), then the weight func-
tion f(¢) is given by Eq. (3.13), is unique, is in L,
and has the same norm as the operator F, i.e.,

A= 1£1

We shall now derive the expansion (3.12) and several
other identities. Our method will utilize the properties
of the matrix elements of the displacement operators
between coherent states. Let us denote by the symbol
I(a,B,v,0) the integral

(3.16)

Iabm,d)= / 61D || D(— &) | oy, (3.17)

We note that by writing the displacement operators in
their normally ordered form (2.14) and using the eigen-
value property of the coherent states, we may write
this integral in the form

HaBom,0) = Bla)r| o)
X / expLE(B—)*— £ (a—b)— | €| Tr1d%.

The Gaussian integral which occurs here occurs in a
number of other places in the course of this paper; it is
evaluated explicitly in Appendix A, Eq. (A2). By apply-
ing that result we find

I(OL,B,‘Y,&) = <ﬂ [ O!)(‘)’ [ 6) exp[(ﬂ—')')*(ﬁ_ a)] .

If we simplify this expression by using formula (2.24)
for the scalar product of two coherent states, we find

I(e,8,7,8)= (v [)(B]3)

and so obtain the integral identity

()61 9)= / (81 D))y (=) | ya-1a%, (3.18)

which holds for all complex numbers «, 8, v, and 4.
Let us now recall that a matrix element identity of
the form (8| F|c)=(b|G|c), if it holds for a complete
set of states |4), |¢),* - -, is equivalent to the correspond-
ing operator equation F=G. Thus, since the coherent
states form a complete set of states as shown by Eq.
(2.27), we see that the integral identity (3.18) implies
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the operator identities

(8] = [ 61D®))D(-ra%  (3.09)

and

y|ay= / D(®) || D(—r—'a%,  (3.20)

where 1 is the identity operator.

We now note that by using twice the resolution (2.27)
of the identity operator we may express an arbitrary
bounded operator F as an integral over the coherent-
state dyadics |@)(8| in the form

Fe / |8 (ol FlByr—dtadts.  (321)

Thus if we substitute in this integral the expression
(3.19) for the dyadic |a){8|, we arrive at the expansion

P~ [ @lF18)31D(®) lD(~ g’
and by using Egs. (2.27) and (2.28) we find

F= f (@l FD(®) | ) D(— )n—2d*6d%

= / TrLFD(§) 1D(— &)n~1d%, (3.22)

which is the expansion (3.12). This argument concludes
our derivation of the completeness property of the dis-
placement operators.

Let us now observe that by multiplying both sides of
expansion (3.22) by an arbitrary bounded operator G
and forming the trace, we obtain the identity

T FG]= / Tr[FD(£)] Tr[GD(— &) Jr—1d2. (3.23)

When the operators F and G are both bounded, the left-
hand side of this equation is finite because of the
Schwarz inequality

| Te(FG) | <|IFI |Gl (3.24)

By referring to the inequality (3.9) and Egs. (3.13) and
(3.16), we may impose the same upper bound upon the
right-hand side of Eq. (3.23).

If we multiply both sides of the identity (3.20) by
the coherent-state matrix element {a|F|y) of an arbi-
trary operator /' and integrate over a and v by using
Eqgs. (2.27) and (2.28), then we arrive at the identity

1 Te[F]= / DFD-Y(®)r'd2%.  (3.25)
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By multiplying both sides of this equation by an arbi-
trary operator G, we may obtain the relations

GTr[F]=/GD(£)FD‘1(£)7r‘1d2E (3.26)
and

T G] Ti[F]= / Ti[GD(H)FD-(t) ]r—d2t. (3.27)

Let us now observe that if some set of states |a),
|8), |c),- - - forms a complete orthonormal set, then the
matrix elements {a|D(£)|d)- - - form a complete ortho-
normal set of functions. For if we let F= |c){(d| and
G=|b){(a| then Eq. (3.27) becomes

o 1ei= / (a] D) | )@| D) | Byntdg

- / (a| D) |6 D® | d¥rid, (3.28)

which verifies the orthonormality property. The state-
ment of completeness follows from Eq. (3.11), which,
when two factors of the identity operator in the form

1=Zala’><a"

are inserted, becomes
2 a{a| D(§) [b)a| D(E) o) =ms @ (E—¢).

As we show in Appendix B, when the orthonormal states
are the basis states |#), the matrix elements {(m| D(£) | %)
assume the form

(3.29)

nl 1/2

<m|D<s>|n>=<_') gL, (], (330)
m!

where L,”(x) is an associated Laguerre polynomial.’®

Let us now return to the expansion (3.12) which, as
we have seen, affords a one-to-one correspondence

Fo f(§)=Tr FD(£)] (3.31)

between the class of all bounded operators F and the
class L, of all square-integrable functions f(£). In view
of Eq. (3.16) this correspondence is norm-preserving in
the sense that the L; norm || f|| of the weight function
F(®) is equal to the Hilbert-Schmidt norm ||F|| of the
operator F being expanded.

If we write the expansion (3.12) in the form

F= f exp(at*—a't) TH[FD(§) Jr—d%, (3.32)

19 W. Magnus and F. Oberhettinger, Formulas and T heorems for
the Functions of Mathematical Physics (Chelsea Publishing Co.,
New York, 1954), p. 85.
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then we may draw several parallels between it and the
complex Fourier transform expansion (3.1) of an L,
function f(a). We may observe that the operators a
and af in Eq. (3.32) correspond to the variables «
and o* in Eq. (3.1) and that the unitary operator
exp(a&*—atf) in Eq. (3.32) plays the role of the uni-
modular function exp(at*—o*£) in Eq. (3.1). The weight
function Tr[FD(%)] corresponds to the function g(§)
and may therefore be thought of as a species of Fourier
transform for the operator F. Just as the ordinary
Fourier-transform expansion (3.1) induces a one-to-one
correspondence f(a) <> g(£) from Ly onto itself that is
norm-preserving, ||f]|=|g||, so too the correspondence
(3.31), between L, and the class of all bounded operators
is one-to-one and norm-preserving.

So far we have been talking about the expansion of
operators that are bounded. In the remainder of this
section we shall say a few things about the expansion
of other types of operators.

We have been using, and shall continue to use, the
term bounded to denote operators for which the Hilbert-
Schmidt norm ||F||=[Tr(F'F)J¥? is finite. Another
operator norm which is frequently used and which we
shall denote by ||F||1 is the least upper bound (L.u.b.),
taken over all states |¢) of unit norm (Y |¢)=1, of the
quantity (¢|F'F|y), i.e.,

|Flli= Lub. 4| F'F|¢). (3.33)
Wiy)=1

It is, loosely speaking, the largest eigenvalue of the oper-
ator FiF. Operators for which the norm ||F||; is finite
are often called bounded, but we shall call them finite.
All bounded operators are finite, and we have ||F||;
<||F]|. The most important unbounded but finite oper-
ators are the unitary operators for which ||U|;=1.

The displacement operator expansion (3.12) is not in
general suited to the expansion of unbounded operators,
even those that are finite. When the operator F is un-
bounded, the appropriate weight function Tr[FD(£)],
which must according to Eq. (3.14) lack square-in-
tegrability, is often singular. If, for example, we take
as the operator F the displacement operator D(a),
which being unitary is finite, then the weight function
f(§) is given by Eq. (3.11) as 76®(a+ £). For this reason
we shall not in this paper attempt a careful formulation
of the representation of unbounded operators.

We may observe, however, that the coherent-state
expansion (3.21) affords a representation for a broad
class of unbounded operators. In this representation,
as in the one afforded by the displacement operators,
we find quadratic integrability linked with boundedness.
For by using Eq. (3.21) to form the Hilbert-Schmidt
norm of the operator F, we secure the result

”FH2=Tr[FTF]=/I(a]FIB)Pw‘?d?adzﬁ. (3.34)
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The weight function {(a|F|B) of the representation
(3.21) has no singularities in the finite a, 8 planes unless
the operator F is particularly pathological.” Moreover,
when F is a finite operator the modulus of {(a|F|B) is
bounded by ||F]|s,

|| P18 <I|Fll1,

as may be seen from the definition (3.33).

For an arbitrary bounded operator F the weight
function Tr[FD(£)] need not be bounded or contin-
uous. There is, however, a smaller class of operators for
which both of these conditions are met. This is the
trace class, also called the class of nuclear operators.
The derivations of the statements that we shall now
make about trace-class operators may be found in Refs.
2 and 20.

Every trace-class operator F may be factored uniquely
into the product of unitary operator U and an operator
B which is positive-definite and of finite trace,

F=UB.

(3.35)

(3.36)

In terms of this decomposition, the trace-class norm is
defined as :
|F]|e=TrB. (3.37)

Every density operator p is a member of the trace class
with [|p]|s=1.
Every trace-class operator is bounded, as is shown by
the inequality®
[FlL<ZEI<[IE] (3.38)

for the three norms which we have mentioned. The
product of a finite operator G and a trace-class operator
F is a trace-class operator and we have the inequality??

| TrFG| <[ F|l3]|G]]s. (3.39)

From this relation it follows, since the displacement
operators are finite with ||D(§)[1=1, that for every
trace-class operator F the weight function Tr[FD(¢)]
is uniformly bounded by the trace-class norm || F||;

| TrLED(E) ]| <I|F]|2. (3.40)

It may also be shown? that for every trace-class operator
F the weight function Tr[FD(£)] is a (uniformly) con-
tinuous function of £.

IV. ORDERED POWER-SERIES EXPANSIONS

The completeness property of the displacement oper-
ators, which we discussed in Sec. III, affords a con-
venient framework for examining various ways in which
bounded operators may be represented. In this section
and in Sec. V, we discuss the problem of expanding a
bounded operator as an ordered power series in the

2T, M. Gel'’Fand and N. Ya. Vilenkin, Generalized Functions,
translated by A. Feinstein (Academic Press Inc., New York, 1964),
Vol. 4. Chap. 1, Sec. 2, is a detailed and readable account of the
properties of trace-class operators and of Hilbert-Schmidt
operators.
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operators ¢ and a'. The cases of normal ordering, of
antinormal ordering, and of a type of ordering that
is symmetric in the creation and annihilation operators
occupy most of the present section. For these orderings
we obtain closed integral expressions for the coefficients
of the power-series expansions of an arbitrary bounded
operator. It will become evident that there is a marked
contrast between the properties of normally and anti-
normally ordered power-series expansions. We show that
normally ordered power-series expansions exist and con-
verge in a well-defined sense for a very broad class of
operators. Antinormally ordered power series, however,
do not afford a completely satisfactory representation
for all bounded operators; we show that the appropriate
coefficients are singular for large classes of bounded
operators. We also consider briefly the expansion of
bounded operators as ordered power series in the opera-
tors g and p. Because these operators are Hermitian, the
series coefficients, as we shall see, tend not to develop
singularites.

To begin with, let us consider the possibility of ex-
panding an arbitrary bounded operator F as a normally
ordered power series, i.e., in the form

F= 3 cam(a)ram,

n,m=0

(4.1)

where the coefficients ¢,,» are complex numbers. Since
the operator F is assumed to be bounded, it possesses
the expansion (3.12),

F= f TLFDOID- O, (42)

where the weight function Tr[FD(¢)] is square-in-
tegrable. We may formally generate the expansion (4.1)
by writing the operator D~1(£) in its normally ordered
form (2.14),

F= / Tr[FD(§)Je 1122~ tatgt*an—1q2¢ - (4.3)

and then expanding the exponentials in powers of a
and a' so that we have

F= f (aM)ra

n,m=0

[ rtEp@en
X (= (E)ma1d2.

nlm!
(4.4)

We may therefore identify the coefficients ¢, ,, with the
integrals

Cn,m= (nlm!)™1 / Tr[FD(§) Je1€12/2(— £)»
X (E¥)ma—1d2t.  (4.5)

By using the inequality (3.9) and the relation (3.16),
we find that for every bounded operator F the coeffici-
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ents ¢,,, are finite and are bounded by the quantities
[enm| < (nlm )7 [(nt-m) 2| Fl, (4.6)

where ||F|| is the Hilbert-Schmidt norm (3.15).

The presence of the factor e~!¢1*/2 in the integral (4.5)
for the coefficients ¢, suggests that normally ordered
expansions may be appropriate for a larger class of
operators than the one being considered. We shall take
up this matter, as well as the question of the conver-
gence of the series (4.1), after we have considered the
cases of antinormal and symmetric order.

The coefficients d,,» of the antinormally ordered
expansion

F= Y dunam(a)"

n,m=0

4.7)

of an arbitrary bounded operator F may be identified
by an argument entirely similar to that of Eqgs. (4.1)-
(4.5). If we write the operator D~'(§) in Eq. (4.1) in
its antinormally ordered form (2.15), we have

F= / Tr[FD(§)Jelt*/ 2%t ag—batr~142¢ . (4.8)

and, by expanding the exponentials in powers of ¢ and
a’, we find

pm= (n!m!)—I/ Tr[FD(£)Je!¢1*/2(— £)n

X (£)mr=1d2.  (4.9)

This expression differs from the corresponding one
(4.5) for the coefficients ¢,,» of the normally ordered
series in that the exponential ¢~!¢1*/2 has been replaced
by e*1€1*/2, Since for the class of bounded operators F the
weight functions Tr[ FD(¢)] form exactly the class Ly
of square-integrable functions, it is evident that the co-
efficients d,,» can become singular for certain classes of
bounded operators. Examples of such operators are dis-
cussed at the end of this section.

So far we have made use of the normally and anti-
normally ordered expansions

= (aa")" (—a*a)™

D(a)=elei*2 3 (4.10)
nm=0 ! m!
and
= (—a*a)™ (aa)"
D(a)=ele*? 3 —— (4.11)
n,m=0 m! n!
Let us now examine the expansion
D(a)=exp(aat—a*a)
=Y ()Y aet—a*a)", (4.12)

n=0

in which the operators a and a' are on an equal footing
with respect to order. There are (n+m)!/n!m! different
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ways of ordering the product of # factors of &t and m
factors of a. Let us denote by the symbol {a'"a™} the
average of these (n-+m)!/nm! differently ordered oper-
ator products.

Two examples of this average product, which we shall
refer to as the symmetrically ordered product,?2!:22 are

{ata}=1%(a’a+aa’)
and
{afa?} =1(a'a’+aa'a+alat).

In this notation we have

n n!
(aa"’_a*a)n —_ Z ar(__a*) n—r
r=0 7l(n—r)!

X{(ayarr}, (4.13)
so that we may write the expansion (4.12) for the dis-
placement operator as

o a®(— *)m
D(a)= Y, ——{(a")ram}. (4.14)
nm=0  nim!
By differentiating these relations we find for the oper-

ator {(a")"a™} the expression

an+mD(a)
{(a")re"}=——-—| | (4.15)
3amd(—a*)"| 4o
which may be simplified to the form
an-f-m (xaf+ya)n+m
{(a") am}= , (4.16)
dxmoy™  (n+m)!

Z==y =0

where the variables x and y are set equal to zero after
the differentiation.

We may now proceed as in the cases of normal and
antinormal order to construct for an arbitrary bounded
operator F its symmetrically ordered power-series
expansion,

F= % Bun{(a)an.

n,m=0

(4.17)

When the expansion (4.14) is inserted into the general
representation (4.2), we find

F= zw: {(a’)”a’"}(n!m!)‘lf Tr[FD(¢)]

n,m=0
X (=Hm(E)ma—d*,

which implies that the coefficients b, are given by the

(4.18)

21 B, R. Mollow, Phys. Rev. 162, 1256 (1967).

2R, J. Glauber, in Proceedings of the Second International
Summer School on Fundamental Problems of Statistical M echanics,
Noordwijk-aan-Zee, The Netherlands, 1967, edited by E. G. D.
Cohen (North-Holland Publishing Co., Amsterdam, 1968).
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integrals

P f THLFDE (£ (8 ndze.  (4.19)

The class of bounded operators F for which these
integrals converge consists therefore of those whose
weight functions Tr[FD(%)] possess finite moments,
While this is not the entire class of bounded operators,
it is a much broader class than the class of operators
for which the coefficients d.,» of the antinormally
ordered expansions are finite. Speaking loosely, we might
say that the coefficients b, tend to be finite for
bounded operators.

Let us now return to the case of normal ordering and
take up the question of convergence. A sequence of
operators A4, is said to converge weakly to the operator
A if for every pair of normalized states |f) and |g)
the sequence (f| A— A4.|g) converges to zero. This type
of convergence is clearly inappropriate as a definition
for the convergence of power-series expansions. The
state |g),

6 » 1
]g>=y_ Z _—In>y

T n=0n

for example, is normalized; but the quantities
(g|(a¥)ram™|g) are all infinite, except when n+m<2.
Thus, the power-series expansions that we have discussed
do not converge weakly unless they terminate.

We shall adopt for simplicity the following criterion?
for the convergence of ordered power-series expansions.
The power series

F= i . Snm{ (a)"a™}ora,

sym=

(4.20)

where the symbol {(a')"a™},;q denotes an arbitrarily
ordered product, will be said to converge if for every
pair of coherent states |@) and |B) we have

|Fla= lim 5 5 (8] frm{ (@) 0 omal ). (421)

M-+ n=0 m=0

In effect this is weak convergence over the set of co-
herent states. Since the coherent states form a complete
set, an operator is defined uniquely by its power-series
expansion if that expansion converges.

In terms of this criterion the question of the conver-
gence of the normally ordered power series (4.1) is a
simple one. Our task is to show that the sequence (4.21)
converges to the matrix element (8| F|a). The series in
question is

(8| F|a)=(8]a) ioc,.,m«s*)nam.

n,me=

(4.22)

We note that this series converges if and only if the
function {8|F|a)/{8|a) is an entire function of the
variables 8* and a.
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In order to examine the analyticity of this function,
let us use Eq. (2.23) to write it in the form

GIFla)_ . = GlFm
@l =¢F ,.,z:':-o (n!m!)”z(ﬁ Yram.

This series converges and defines an entire function of
B* and « for an extremely broad class of operators. This
is the case, for example, when for some M, Ry, R,, and
€>0 the inequalities

[{n|F|m)| <MRy"Ry™(nlm!)1 12— (4.23)
are satisfied. Finite operators fulfill these conditions
with Ry=Ry=1, e=%, and M =||F||:.

We have shown that an operator F possesses a con-
vergent normally ordered power-series expansion when
the series (4.22) converges and that the latter series
converges when the operator F satisfies the condition
(4.23). The very general condition (4.23) is therefore a
sufficient one for the convergence of the normally
ordered power series (4.1).

It is easy to adapt the methods of this section to the
expansion of bounded operators as power series in the
Hermitian operators ¢ and p. To begin with, we must
write the displacement operator D(e) in forms in which
the operators ¢ and p appear in definite orders. By using
Egs. (2.1), (2.2) and (2.13), and writing o= (27%)"!
X(\g'+ir1p"), we find, after putting %=1,

D(¢',p)=Dlo) =¢iar=20)
= gtar g—ird’ g—id ' [2

=g~ glar’pid' v’ 2

(4.24)

If we now write Eq. (4.2) if the form
F= / Tr[FD(¢',p") Je—#(a?'~2)(2x)~1dg’dp’, (4.25)

then we may derive in analogy with Eqs. (4.4), (4.9)
and (4.18) three expansions for an arbitrary bounded
operator F. These are what we may call the p-ordered
power-series expansion

F= 3 gpialmi)t / TLED,p)](—ip')"

n,m=0
X (ig")yme=i'?’(2r)~1dq'dp’, (4.26)
the g-ordered expansion
P= 5 gt [ TLEDG Iy
X (ig")yrmeia'?’ 2mw)~tdg'dp’, (4.27)
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and the g-p-symmetric expansion

F= 5 (g (uim))t [ THLED( p) Y(—ip')"

n,m=0

X (ig"y™(2m)~'dg'dp’, (4.28)

where the g-p-symmetric product is defined by analogy
with Eq. (4.15) as
__avmD(g,p")
() =ir

— 7 4.29)
a(p")"a(g™ (

g’ =p'=0

Because the commutator [¢,p]=14 is purely imagi-
nary, the integrals defining the coefficients of these
expansions differ from one another only by unimodular
factors in their integrands. A bounded operator that
possesses one of the expansions (4.26)-(4.28) is there-
fore very likely to possess the other two. This class of
operators is approximately the same as the class for
which the symmetrically ordered expansion (4.17) is
appropriate.

Let us now illustrate some of the results of this section
by considering some simple examples. Our first one will
serve to answer a question which was not raised in the
foregoing discussion, namely, whether antinormally
ordered expansions are suitable for trace-class operators
(defined in Sec. I11). The operator |a){(8|, which is the
outer product of two coherent states, is both bounded
and in the trace class. By using Egs. (2.14) and (2.21),
we find as its weight function the exponential

Tr[D(&) |a)(B| ]=(8|a) exp(—3| £[*+ £6*— £*a) . (4.30)

Reference to Egs. (4.5), (4.9) and (4.19) reveals that
the coefficients of the normally and symmetrically
ordered expansions are finite, while those of the anti-
normally ordered expansion are singluar.

Another operator which is in the trace class is the
outer product |z){m| of two states with fixed numbers
of quanta. The appropriate weight function is

Trl [ n){m| D(8) 1= (m|D(8) [n),

and from the explicit formula (3.30) for this function
and Egs. (4.5), (4.9) and (4.19) it is evident that the
coefficients ¢,,m and by, are finite, while the d,, . are
singular. We conclude from these two examples that
trace-class operators do not necessarily possess anti-
normally ordered power-series expansions.

As a more useful example let us consider the operator

F(\)=Mete=exp(a’a In)) (4.31)

which depends analtyically upon the complex parameter
\ since the operator afe has integer eigenvalues. This
operator is finite for |\| <1 and is both bounded and in
the trace class for |A| <1. The operator F(\) has many
applications in thermal equilibrium statistics where we
usually have A =exp(— #iw/kT) <1, where k is the Boltz-
mann constant and T is the temperature.
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We may find directly the normally ordered power
series for F(\) by differentiating it with respect to A:

dF(N)
=gtanote-1, (4.32)
d\
Then since for any function f we have
af(ata)= f(ata+1)a, (4.33)
we may write
dF(\)/d\=a"\Teq
=a'F(\)a. (4.34)

The operator F(\) thus satisfies a differential equation
whose solution is a normally ordered exponential func-
tion of a'a. The initial condition F(1)=1 is satisfied by
the solution

F(\) = e®-Vata; (4.35)

where the symbol : : means that the exponential is in
normally ordered form.
The coefficients ¢, » of this expansion are given by

Cnm= 0 m(m) 1A= 1)". (4.36)

They are entire functions of X. Since the operator F(\)
as is easily shown, satisfies the conditions (4.23), its
normally ordered expansion (4.35) converges for all \.

By using Eq. (2.15), (2.28) and (4.35), we may write
the weight function for F(A) in the form

Tr[F(\)D(¢)]=¢!¥*2 Tr[et*TF(\)e—¢"]

=e|£|ﬂ/2f expléa*— E*a+(\—1) |a|?]
Xa~ld%, (4.37)

an integral whose value is given by the general expres-

sion (A2) as . RIRRT
Tr[F(ND(§) ]=—— eXp(—z_(l:;)—

. (438
T )

According to Eq. (4.19) the coefficients b4, of the sym-
metrically ordered power series for F(\) are given by
the integrals

On,m (1+N)| £2
b"'"‘(x)_(m)z(l—)\)/ eXp(_ 2(1—)) )

X(—[¢[)rrid%,

which converge whenever F(\) is bounded, i.e., for
[A]| <1, and yield

200,m [ A—1\"
bom(N)= (2—) .
nlA1)\ A1
These coefficients are analytic functions of A and may be
continued outside the region in which the integrals de-

fining them converge. They all have a pole at A= —1,
where the operator F()) is finite but not bounded. Using

(4.39)
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the symbol { } once more to denote symmetric ordering,
we may express the symmetrically ordered series for
F(\) in the closed form

2 A—1
F\)=—- { exp(Za‘“a———) } .
A1 A1

Turning now to the case of antinormal ordering, we
find from Eq. (4.9) the result

(4.40)

NHE

1-x

On,m

i ] =l
=::(1*%>n'

These coefficients all have poles at A =0 for which value
the operator F(\) is the projection operator |0){0],
which is both bounded and in the trace class. If we
denote antinormal ordering by the symbol { }4, then

we may express the antinormally ordered series in the
closed form

FQ\)=XxYexp[(1—Ax"Ya'a]}a. (4.42)
It may be shown? that the antinormally ordered series

for F(\) converges only for |1—\~1| <1 or equivalently
for Rex>3.

dnm(N)=

)(— || )nmtang

(4.41)

V. S-ORDERED POWER-SERIES
EXPANSIONS

Section IV contains some elementary observations
about ordered power-series expansions. It was shown
that normally ordered power series converge for virtu-
ally all operators of interest but that the coefficients of
antinormally ordered expansions are singular even for
some trace-class operators. In order to shed more light
on this matter we introduce in this section a param-
etrized ordering convention according to which normal,
symmetric, and antinormal ordering are distinguished
by three distinct values of a continuous order parameter.
By means of this convention we are able to vary the
type of ordering in a continuous way from antinormal
order to normal order and to see when the coefficients
of the expansions become finite and when the expan-
sions themselves become convergent. We show that for
all bounded operators the coefficients are finite when
the ordering is closer to normal than to antinormal
ordering and that the series converge when the ordering
is closer to normal than to symmetric ordering.

In introducing this ordering convention we do not
suggest that the new types of orderings it defines have
direct physical significance. It is intended instead as a
useful device for understanding the problems associated
with the three useful orderings—normal, symmetric, and
antinormal ordering. Our main use of the ordering
convention will be in connection with a parametrized
integral representation which we introduce in Sec. VI.
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It will be helpful there to observe the way the structure
of this representation changes with variations of the
order parameter.

We have seen in Eqgs. (2.11)-(2.15) how to express
the displacement operators in various ordered forms.
Let us define the s-ordered displacement operator
D(e,s) by the relation

D(a,s)=D(a)eslel®2 (5.1)

where s is a complex number. For the three discrete
values of s=+1, 0, —1, the operator D(a,s) can be
written as an exponential which is, respectively, nor-
mally ordered

D(a,1) =exate—a*e (5.2)
symmetrically ordered
D(e,0) = eaat—a*e (5.3)
and antinormally ordered
D(a, —1)=¢*ogaat, (5.4)

Proceeding as in our description of symmetric order-
ing, Egs. (4.12)-(4.16), we define the s-ordered product
{(a")"a™}, by means of the Taylor series

D(a,s)= Y, {(a")a™},(nlm!)"la*(—a*)™ (5.5)
n,m=0
or, equivalently, as the derivative
vt D(a,s)

at)ragm =
{(a")ram} pyervare
evaluated at a=0.

By applying this differential relation to the ordered
exponentials (5.2)-(5.4), we find that the orderings

specified by s=+1, 0, —1 are, respectively, normal,

(5.6)

{(a")"am} 1= (a)mam™, 5.7
symmetric in the sense of Eqs. (4.12)-(4.16),
{(a")am}o={(a")"am}, (5.8)
and antinormal,
{(@)"a™}_1=a™(a’)". (5.9

The s-ordered products can be simply expressed in
terms of normally ordered products. Thus, for example,
by writing

D(a,s)=eD1el?2D(q,1)

we find for the simplest nontrivial s-ordered product
{ata},

(5.10)

a‘l
{d'a},= poy *)3(3—l)|a[2/26aa1”6—a*al o
ao\—a

<]
=—Te*"a+3(1—s)ae*"]| amo
Ja

=atat+i(1—s).
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Similarly, for the s-ordered product {a'a?}, we find
{a’a?},=data®+ (1—s)a.

It is not difficult to express an arbitrary s-ordered
product as a polynomial in the f-ordered products,
where ¢ is also arbitrary. By writing

D(a,5)=els=0lel*2D(q,f)

and differentiating, we find

oo )Y e
(5.12)

where the symbol (n,m) denotes the smaller of the
integers # and 7 and where

(5.11)

(:)E”[k!(r—k) 1T

is a binomial coefficient. These relations may be put
more succinctly in terms of the associated Laguerre
polynomials.'® As we show in Appendix C, we have for
n>m,

t—s\™ 2ata
{(a*)"am}3=m1(——) [(a’f)"—mLm(”—'")(—-—>} (5.13)
2 s—1 t
and for m>n

{<a+>nam}s=nz(‘_;f)"{am—nL,,<m~m(2‘”“)] L

s—1

where the polynomials within the curly brackets are in
t-ordered form.

We are now in a position to consider the expansion of
a bounded operator F as the s-ordered power series

F= f: Sam(s){(aD)am}s,

n,m=0

(5.15)

where the coefficients fa,.(s) are complex numbers.
We may identify the coefficients fa,.(s) by substituting
in the general expansion (3.22) the expression

DY g =et2D(—¢, 5)

so that we have
F= / TH FD(£)Je-*1622D(— ¢, s)r—1d2%,  (5.16)

which we may expand in powers of ¢ and a' according
to Eq. (5.5):

F= 3 (@) e (uim) / THLED(, —s)]

n,m=0
X(=Em(E)ma—1d.

In this way we obtain the coefficients f, (s) as the

(5.17)
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integrals

Fam(s)=(alml) / THFD(E, — (="
X (E)mr—142¢,  (5.18)

The parametrized relations (5.16)—(5.18) compactly
express the previously derived results for normal, sym-
metric and antinormal ordering. We recover Eqgs. (4.5),
(4.19), and (4.9) by setting s=+41, 0, and —1, respec-
tively.

By applying the inequality (3.9) and the relation
(3.16) to the integral (5.18), we find that for all bounded
operators F the coefficients are finite when Res>0 and
are bounded by the quantities?

Cotmyi e |7
nim! [Res:](n+m+1)/2’

where ||F|| is the Hilbert-Schmidt norm (3.15). This
inequality generalizes the upper bound (4.6), which was
obtained for normal ordering, s=1, to those orderings
specified by Res>0, i.e., to those which may be thought
of as closer to normal than to antinormal order.

We recall from Sec. IV that the coefficients f,,.(0),
corresponding to symmetric order, are singular for cer-
tain bounded operators. We may therefore say that the
coefficients fa,.(s) are finite for all bounded operators
F if and only if Res>0.

Before turning to the question of the convergence of
the series (5.15), we may note? that if the operator F
is bounded then the coefficients f,,~(s) are all analytic
functions of the order parameter s throughout the half-
plane Res>0. This analyticity is intuitively clear from
the structure of the integrals (5.18) and from the square-
integrability of the weight functions Tr[FD(£)] be-
longing to bounded operators.

We defined a type of convergence that is suited to
ordered power-series expansions in Sec. IV, Eqs. (4.20)
and (4.21). We shall now show that for bounded oper-
ators F the series (5.15) converges according to this
definition when Res>2+3[Ims 2.

The series (5.17) is the limit of the sequence of oper-
ators Fy,

(5.19)

[ fom(s)| <

Fy= 5 fum(S){(@) e,

n,m=0

(5.20)

of which the coherent state matrix elements are

6| Fyla)= 3 Fun] (@70 ]

n,m=
n+m

= n,m(8)——————B| D({,8) &) | y=0
I, o BIDE N

N —&\n E* m
=2 Tr[FD(E,—S)]( o &
n,m=0 n! m!
88| D(¢,5)| )
———— ——— g%, (3.
( o a(—¢*)m ) G2

§=0
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The sequence (3| Fx| ) therefore, converges to (8| F|a)
when in this expression the limits of summation and
integration may be interchanged. The relevant sequence
of functions is
)
=0

N — &\n (£¥)ym grtm D , o
N G G G A
ml \ na(—pym

n,m=0 n '
which converges to

e(§)=(B| D(— & 5)|)
= (8] ) exp[5(s—1) | |2 —B*E+at].

It is not difficult to show that for all V the functions
on(£) are dominated in accordance with the inequality

len())| <M (&)= |(8la)|exp[}[s—1]|&[?
+(81+[aD]E]. (5.22)

Thus, according to the Lebesgue dominated conver-
gence theorem,'” the interchange of limits is permissible
when the integral

/ M| TFDE —)]|n-a (5.23)

converges. Now for an arbitrary bounded operator F
this integral converges when Res> |s—1]|, or, equiv-
alently, when s lies in the parabolic region

Res>3+3[Ims . (5.24)

This condition is therefore sufficient for the series (5.15)
to converge for every bounded operator F. In particular,
all bounded operators possess convergent s-ordered
power series for s>1, i.e., when the ordering is closer
to normal than to symmetric.

The example considred in Sec. IV,

F(\)=xete,

provides a simple illustration of some of the results that
we have derived. By using Eq. (4.38), we find that the
integrals (5.18) for the coefficients f, .(s) assume the
form

fr,m(s) =m / exp[(l;-l-;é'l') €] 2]

&2
X(=Hn(E)m—
™
bum (15 1 )—<n+1>
= {7 ,
AO—D\ 2 A—1

where we have used a series expansion of the formula
(A2) to do the integral. The coefficients fn (s) are
analytic functions of s except for poles located at

s=(O+1)/(—1). (5.26)

This relation is a familiar one; it maps the interior of the
unit circle |\| <1 onto the left half-plane Res<0. Thus,

(5.25)
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the location of the singularities of the coefficients fy,m(s)
ranges over the half-plane Res<0 as the parameter A
ranges over the region in which the operator F(\) is
bounded. On summing the s-ordered power series for
F(\), we obtain the expression

2 2(\—1)ata
‘exp( )} . (5.27)
1+s+A—s\ 14+s+N—s\/ ],

By examining the convergence of the integral (5.23),
we find, taking s real for simplicity, that the s-ordered
power series for F(\) converges when

F()=)\ete=

(5.28)

Thus, when A=0 and F(A\)=]0){(0|, for example, the
series (5.27) converges for s> 0.

As a final illustration let us note that we may write
the s-ordered displacement operator D(a,s) in the form

D(a,s)=e*«*2D(q)
={exp(aat—a*a)},
={D(x)}s, (5.29)

which justifies our calling it the s-ordered displacement
operator.

VI. INTEGRAL EXPANSIONS FOR
OPERATORS

The representation of operators as integrals over the
displacement operators is in many respects analogous
to the representation of functions as Fourier integrals.
The displacement-operator expansion

F= /eaE*—aT Ef(g),n.— ldzs
differs from the Fourier expansion

o) = / ettt (D)rid

because of the noncommutativity that distinguishes
the variables ¢ and a' from their counterparts o and o*.
Distinctions in operator ordering lend an interesting
structure to the Fourier representation of operators.
We consider some elementary aspects of this structure
in the present section. For each value of the order
parameter s, we define a set of operators 7'(a,s) that
forms a basis for an integral representation for arbitrary
operators. Each of these representations has the desir-
able property that the associated weight function bears
a particularly direct relationship to the operator being
expanded.

These new representations are interesting from a
number of standpoints. In particular, for the case of
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antinormal ordering the new expansion expresses oper-
ators as integrals over projection operators upon the
coherent states. For the case in which the operator being
expanded is a density operator, this expansion takes the
form of the P representation,”?*2¢ which has been
widely discussed in connection with problems in quan-
tum optics. When the ordering is symmetric and the
operator being expanded is a density operator, the
weight function in the expansion is the one introduced
by Wigner® as a quantum-mechanical analog of the
classical phase-space density function. We shall make
a detailed application of the present formalism to the
case of the density operator in the paper which follows.

Let us recall that according to Eq. (3.23) the trace of
the product of any two bounded operators can be
written as the integral

Ti[FG]= / Ti[FD()] TH[GD(— &) J-—1d2E, (6.1)

in which the functions Tr[FD(§)] and Tr[GD(—§)]
are both square-integrable functions. By using the
definition (5.1) of the operator D(,s),

D(gs)=e'l#*2D(8)

we may trivially reexpress this trace in the form

TH[FG]= / TH[FD(E, —s)] TH[GD(—¢, 5)]

1%, (6.2)
Now if both of the traces appearing in this integral are
square-integrable functions, then they possess the com-
plex Fourier transforms

fla, —s5)= / explat*—a*8) THLFD(E, —s)]

Xa1d2t  (6.3)
and

o) = f exp(at*—a*f) THGD(E) %, (6.4)

which are also square-integrable, and we may apply the
identity (3.7) to secure the result

TFG]= / fla, —)gla,s)r1d2%.  (6.5)

The condition that the traces Tr[FD(¢, —s)] and
Tr[GD(%,5)] both be square-integrable is clearly satis-
fied for all bounded operators F and G when Res=0.
The relation (6.5) is consequently for Res=0 an iden-
tity holding for all bounded operators. It is likewise
true that for every value of s one of the traces,

. J. Glauber, Phys. Rev. Letters 10, 84 (1963).
. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963),
. P. Wigner, Phys. Rev. 40, 749 (1932),
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Tr[FD(¢, —s)] or Tr[GD(—%, )], will be square-
integrable given that both operators are bounded. Be-
cause these traces depend upon the parameter s through
the factors exp(==3s] £[2), their mathematical properties
depend primarily upon the real part of s. We shall
discuss the occurrence of singularities in Egs. (6.3)-(6.5)
at a later point; we may infer for the present that for
every two bounded operators F and G there will, in
general, be a strip x1<Res<w, about the imaginary
axis of the s plane in which Egs. (6.3)-(6.5) are valid.

Let us define the operator T'(a,s) as the complex
Fourier transform of the s-ordered displacement oper-
ator D(¢,s),

T(a,s)= / et oD (& s)r1d2. (6.6)

This notation allows us to express Egs. (6.3)-(6.5) in
the more compact form

f(a7 —s)=Tr[:FT(a, _S)])
£(e,8)=Tr[GT(,5) ],

6.7

(6.8)
and

Ti[FG]= / T FT(a, —s)] TI[GT (a,5) Jr—d%. (6.9)

When the operator G in Eq. (6.9) is taken to be the
outer product of two states |¢) and | ¢), we have

(| Fl9)= f THLFT (0, —5)Ne| T(as) | ¥)r-1de

- / flay =)o Ta) | ¥n—ida.  (6.10)

If for some value of s this relation holds for all normal-
izable states | ) and |¢), then we may say that the
operator F possesses the representation

F=/f(a, —8)T(a,5)7~d%:

=/ T FT (e, —5) 1T (,5)7~'d%: (6.11)

for that value of s.

There are, of course, many senses in which an oper-
ator F can be said to possess this representation for a
particular value of s. We might, for example, require
only that Eq. (6.10) hold for some complete set of states.
A stronger condition would be that Eq. (6.9) be true
for all bounded operators G. Alternatively, by inter-
preting Eqgs. (6.9)-(6.11) in terms of limiting processes
or in terms of generalized functions,? it is possible to set
down conditions that are so broad as to include all
bounded operators F and all values of s,
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By using Egs. (5.29) and (3.3) we may express the
operator 7'(a,s) in the suggestive forms

T(ays)= { / expl(a— )"~ (@*—aNETd%}  (6.12)

L]

=7{6?P(a—a)},. (6.13)

In terms of this notation we may write the representa-
tion (6.11) in the form

F= / fla, — ) {62 (a—a)} . (6.14)

The classical analog of this representation is therefore
the trivial identity

gla)= f g8 (a—a')d%/ (6.15)

in which the relationship between the function being
expanded and its weight function is one of identity.
The considerably more interesting structure of the
representation (6.14) arises, of course, from the non-
commutativity of the operators ¢ and af.

On the basis of the analogy between Egs. (6.14) and
(6.15), we may reasonably expect to find a close relation-
ship between the weight function f(a, —s) and the oper-
ator F in Eq. (6.14). We shall describe this relationship
and other properties of these representations in Sec.
VII. The remainder of the present section is devoted to
the properties of the operators T'(a,s).

By using the definition (6.6) to form the Hermitian
adjoint

THa,s)= /D(— £, 5%) exp(a*t—af*)r1d%

and replacing £ by — £, we find
T (a,5) = T(a,s%). (6.16)

Thus for real values of the order parameter s, the oper-
ator T'(a,s) is Hermitian,

T(a,s)=T7(a,s) for s real.
From the multiplication law (2.19), we find
D(a)D(¢,5) D) = D(£,5) exp(at*—a*),
which, when substituted into the definition (6.6), yields

6.17)

T(ays) = f D(@)D(8,5) D (a)rd%%

=D()T(0,5)D-a). (6.18)

Thus, the « dependence of the operator T'(a,s) is gov-
erned by the unitary transformation induced by the
operator D(). On using Eq. (2.19) once again we find

T(a,5) = D(a—B)TB,5)D"a—p).  (6.19)
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To find the s dependence of the operator T'(a,s) we
note that the operator 7°(0,s) is defined by Eq. (6.6)
as the integral

T(O,s)=/D‘1($)e"“2/27r_1d2£. (6.20)

This is a displacement operator expansion of the form
of Eq. (3.22) with weight function

Tr[T(0,5)D(§)]=eslé1*/2, (6.21)

We encountered a similar weight function in our dis-
cussion of the operator F(A\)=\ste and, if we compare
Eqgs. (6.20) and (6.21) with Eq. (4.38) and make the
identification

then, since the correspondence F <> Tr[FD(£)] is one-
to-one, we secure the result

2 /51yt
o= ()"

(6.22)
1—s\s—1

By using Eq. (6.18) and the displacement property
(2.17) and (2.18) of the unitary operators D(e;), we ob-
tain for the operator 7'(a,s) the following expressions:

2 s+1\4te
T(a,5)=—D(a) (-———) D Y(a) (6.23)
1—s s—
2 /s+1 (at—a*) (a—a)
=___<__) (6.24)
1—s\s—1
2 s+1
=— expl:(a’f—a*) (a—a) ln(————):l . (6.25)
1—s s—1

The expansion of T'(a,s) in terms of the eigenstates |7)
of the operator a'a is, from Eq. (6.23),
2 © s+ 1\
Ta=— % D@n(—) 61D'@. (620
s—

—_38 n=0

The states D()|#) thus form a complete orthornormal
set of eigenstates of the operator T'(q,s),

2 /s+1\"
T(a,s>D<a>ln>=;(—l) D@)|n), (6.27)

with eigenvalues

en(s)= —Z—(fj——l)n

(6.28)
_ 1—s\s—1
which are independent of a.
We note in particular that for all values of « all the
eigenvalues e,(s) of the operator T'(e,s) are infinite at
s=1. At s=—1, on the other hand, the series (6.26)
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terminates after the first term and the operator T'(a,— 1)
is simply the projection operator on the coherent state
|a)=D(a) l 0),

T(a, —1)=|a){a]|. (6.29)

Let us now consider to what classes of operators the
operator T'(a,s) belongs for different values of s. The
three norms that we defined in Sec. III are invariant
under unitary transformations and do not, therefore,
for the case of the operator T'(a,s) depend upon the
parameter a. By using Egs. (3.13)-(3.15) and (6.21),
we may express the Hilbert-Schmidt norm ||7(e,s)||
in terms of the integral

1T (e,s)]2= / |estee) i

zfeRea IEI21I'—1d2E,
so that we have

|17 (e,5)|[=1/(—Res)!2 for Res<0. (6.30)

The operator T'(a,s) is therefore a bounded operator
only for Res<0. When Res<0 the operator T(q,s) is a
finite operator, and by using Eq. (6.26) we find for its
norm || T'(a,s)||1, defined by Eq. (3.33), the value

2
17 (a,)||1= 'I—— for Res<0.

—Ss

(6.31)

For Res<0 the operator 7'(a,s) is not only bounded
but also in the trace class. By using Eq. (6.26) we obtain
for its trace class norm (3.37) the series

s+1

s—1

5
|1—5]| =0

=2/(|1—s|—]|14s]) for Res<O.

1T (a,5)ll2=

(6.32)

Thus, for Res <0 the operator T'(,s) is a member of all
three classes of operators, for Res>0 it is in none of
them, and on the line Res=0 it is in only the largest
class, the class of finite operators.

By referring to the relation (4.35) between the oper-
ator F(\) and its normally ordered form we find

T(a,s)= I~2~—s: exp[(s%i)(af—a*) (a-—-a)]: (6.33)
ol )l
X exp(?ii) , (6.34)

where the colons denote normal ordering. From Eq.
(6.33) there follow easily for the coherent-state matrix
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elements the relations

2
81 T(@s) |7)= iﬂm

;:XPR;_Z—l)(ﬁ*—a*)(v—a)] (6:35)
and M

2
<mT<a,s>|a>=i—;—sexp(— ) (6.36)

-3

from which, by taking the limit as s approaches unity
from smaller real values, we find

B[ T(,1)|8)=7®(a—p). (6.37)

By using Egs. (6.36) and (2.28), we may express the
trace of the operator T'(a,s) as the integral

Tr[T(e,s) ]= [(ﬂ | T(e,s) | B)m—1d%3

2 ( 2|a——ﬁ|2>d2ﬂ
= —— exp —_——

1—s 1—s T

=1 for Res<1. (6.38)

That the operator 7T'(a,s) is of unit trace can also be
seen by summing its eigenvalues e,(s) which are given
by Eq. (6.28). The procedure given above is a rearrange-
ment of the series Ze,(s) which for Res>0 lies outside
its radius of convergence but can still be summed to
unity.

Another trace which will be useful in what follows is
Tr[T(e,s)T(B,8)]. By using the definition (6.6) and the
orthogonality rule (3.11) we find that

T[T e T(8,)]= / TeD(E)D(,)]

X exp(a*—o*t-+B5*—p%)
Xr—2d2td%
= / exp[ (a—B)E*— (a—B)*¢
+3(s+0) [ £ In1d%
-2 (2[a——5|2>
=—expl —
s+t s+¢
for Re(s+£) <0, (6.39)

where we have used the formula (A2) to do the integral,
which converges only for Re(s+£) <0. By letting ¢ ap-
proach —s from below we find

Tr{ T () T8, —9)]=76®(a—p),  (6.40)

which is the counterpart for the operators 7'(a,s) to the
orthogonality rule (3.11) for the operators D(§,s).
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If we now apply the expansion (6.11) to the operator
T(a,s), we find, using the trace relation (6.39),

T(ays)= / T(8,) Te[T(@,5)T(8, —)Jr'd%8

2 —2|a—pB]? &
=— exp(M)T(ﬂ,l)_f
¢ ™

t—s

for Ret>Res. (6.41)

This Gaussian convolution is the complex Fourier
transform of the product exp[3(s—?)|£|2]D(£,8). The
differential form of this integral relation can be found
by differentiating both sides of Eq. (6.6); it is

T (a,5) 1 927 (e,s)

as 2 dada™ '

(6.42)

By further differentiation of Eq. (6.6), we obtain the
relations

vt T (a,s)

NN
o | [peaeEr-om=. s

If we use Egs. (3.4) and (3.5) to invert Eq. (6.6), we
find that

D(¢,5)= / T(a,s) exp(éa*— EFa)r1d%  (6.44)

and, by expanding both sides in powers of £ and £* and
using the definition (5.6), we may express the s-ordered
products as the integrals

{(a)"am}) = / T(a,s)(a*)"amr~1d%:.  (6.45)

The fact that under integration the operator T'(a,s)
turns the monomial (a*)"e™ into the s-ordered product
{(a")"a™}, illustrates again the sense in which it is an
s-ordered operator analog of the & function. As in the
use of singular functions, some discrimination is called
for in the application of this relation, particularly for
Res>0, where T'(a,s) is not a finite operator and at
s=1 where it is explicitly singular.
When n=m=0 Eq. (6.45) becomes

1= / T (a,8)m %, (6.46)
which for s=—1 is the completeness relation (2.27)

1= / |a)(a|r %

for the coherent states.
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By applying the orthogonality rule for the T operators
(6.40) to Eq. (6.45), we obtain the relation

Tr[{(a")"am}oT (@, —5)]

- f T T8, T, —5)](8")8mn—1d8

=/ (8%)"8"6®(a—B)d%8

= (a*)"a™, (6.47)
which is the inverse of the relation (6.45).

From the relation (6.18) with « infinitesimal we find
that

dT(a,s)=[a'da—ada*, T(a,s)] (6.48)
or, equivalently,
T (a,s)/0a=[a’,T(a,s)] (6.49)
and
9T (a,s)/da*=—"[a,T(a,s)], (6.50)

which are the complex Fourier transforms of the com-
mutation relations implicit in Eqgs. (2.17) and (2.18).
From Eq. (6.36) by a process of differentiation we
may obtain the matrix elements (n|7T(a,s)|m). As we
show in Appendix D, the result of that calculation is

araim=(2) () () e

2|al? 4]al?
o 2o
1—s 1

), (6.51)
2
where L, ™ (x) is an associated Laguerre polynomial.'®

—$

VII. CORRESPONDENCES BETWEEN
OPERATORS AND FUNCTIONS

In Sec. VI we introduced the operators T'(e,s) which
form, for each value of the order parameter s, a basis
for the expansion of operators as weighted integrals.
In this section we show that each of these integral repre-
sentations maintains a close relationship between the
operator being expanded and its weight function. We
show that the mathematical properties of the weight
functions change substantially as the order parameter
is varied from s= — 1, antinormal order, to s=1, normal
order.

We have seen that, at least in the vicinity of the line
Res=0, every bounded operator F possesses the
representation

F=/f(a, —5)T(a,5)m d%, (7.1)

where the weight function f(e, —s) is given by the trace
fla, —s)=Tr[FT(a, —s)]. (7.2)
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Let us note that when the expansion is in terms of the
operators T'(a,s) the parameter s appears in the weight
function f(e, —s) with a minus sign.

We now observe that the trace (7.2) is the unique
weight function for the operator F in the expansion
(7.1). For if the operator F and the function g(a) stand
in the relationship

F=/g(a')T(a',s)7r‘ld2a', (7.3)

then by using the trace relation (6.40) we find that

Tt[FT(a, —s)]= / o(o) TH[T(o,5) T (ay —$) Tr—d%/

=/g(a')5(2)(a—-a/)d2a'

=g(a). (7.4)

We may regard Eqs. (7.1) and (7.2) as defining, for
every value of s, a correspondence F <> f(a, —s) be-
tween operators and their weight functions. Since the
weight function corresponding to a given operator is
unique, these correspondences are one-to-one.

It is in terms of power-series expansions that the cor-
respondences, which we have just introduced, take their
simplest form. If we assume that the operator F
possesses the s-ordered power-series expansion

F= S fun(®){(@)am),,

n,m=0

(7.5)

where the coefficients are given by Eq. (5.18), then by
using Eq. (6.47) we may secure for the weight function
f(a, —s) the power-series expansion

fla, —s)=Tr[FT(a, —s)]

= T fun(®) TL{@) e} T, —5)]

= 3 fumls)(@®)am,

n,m=0

(7.6)

with the same coefficients fn,n(s). Conversely, if we
assume for the function f(e, —s) this series expansion,
then by using Eq. (6.45) we may obtain the operator F
in the form

F=/f(oz, —8)T(a,s)wd%:

Il

S ) [ (@) e T(as)rida

n,m=0

> fan({(@) am,.

n,m=0

(1.7)
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Thus, for every complex number s the operator-function
correspondence

F o fla, —s)=Ti[FT(a, —5)] (7.8)
involves simply the interchange
{(@)ram}, > (@¥)"am, (7.9)

which is affected by the reciprocal relations (6.45) and
(6.47).

We shall refer to this correspondence as the cor-
respondence C(s) or, when it is clear which value of the
order parameter is meant, as the s-correspondence.
Another way of expressing the correspondence C(s) is
to say that the weight function f(a, —s) is a generating
function for the coefficients fnm(s) of the s-ordered
power-series expansion for F according to the rule

an—{-mf(a’ - S)

903 (a®)™ om0

=nlm! fa,n(s). (7.10)

The consistency of this prescription for the coefficients
fum(s) with the earlier one (5.18) follows from Eq.
(6.43). Two simple examples of the correspondence C(s)
are

D(gs) > ebe=t"a (7.11)

and

T(¢,5) < T8 (a—§). (7.12)

There are two ways in which singularities can occur
in the representation (7.1). For Res>0 the operator
T(a,s) is not a finite operator and when we form a
matrix element (¢|F|y¥) of the representation (7.1)
singularities can arise in the function (¢| T(a,s) |
which appears in the integral (6.10). On the other hand,
when Res<0 the weight function f(e, —s) can become
singular because the operator T'(a, —s) in the trace
f(a, —s)=Tr[FT(a, —s)] is not a finite operator. Such
behavior on the part of the weight function f(e, —s)
for Res<0 is of course related via Eq. (7.10) to singu-
larities in the coefficients fnm(s), the occurrence of
which we discussed in Secs. IV and V.

The trace relation

Tr[FG]=/f(a, —5)g(a,s)md%

=/ Tr[FT(a, —s)] Tr[GT(a,5) Jr % (7.13)

illustrates the need for caution in departing far from
the line Res= 0since both operators 7'(e,s) and T'(e;, —s)
appear explicitly. We note that the functions f(a, —s)
and g(a,s) are associated with the operators F and G
by the correspondences C(s) and C(—s), respectively.
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Only for s=0, symmetric order, do the two correspond-
ences coincide.

The correspondence C(1) associated with normal
ordering, s= 1, is particularly simple. As we have shown
in Sec. IV, virtually every operator F possesses a con-
vergent normally ordered power-series expansion

F='% fun(D)(a)mam,

(7.14)
n,m=0
The corresponding function
flo, =1)=Tr[FT(a, —1)] (7.15)

is, according to Eq. (6.29), just the diagonal coherent-
state matrix element

fla, —1)=(a| F|a). (7.16)

Although the correspondence C(1) is well defined for an
extremely broad class of operators, at s=1 the integral
expansion (7.1),

F=/(a|F|a)T(a,1)r‘ld2a, (7.17)

is of decidedly less generality since it involves the oper-
ator T'(a,1), all of whose eigenvalues are infinite, as
shown by Eq. (6.28). In fact, it may be shown? that for
no states |¢) and | ¢) is the matrix element {¢| T(a,1)|¥)
a square-integrable function of a.

For the case of antinormal ordering, s= —1, the cor-
respondence C(—1) associates with an operator F the
function

f(aa1)=Tr[FT(a;1)]7 (7.18)

which is clearly not in general free of singularities. These
singularities are intimately related to those which occur
in the coefficients of the antinormally ordered expansion

F= 5 fum(—=1)an(a)".

n,m=0

(7.19)

For only when the function f(e,1) is infinitely differ-
entiable at =0 are the coefficients f,,(—1) finite, as
is shown by Eq. (7.10). When, however, the function
f(a,1) is well behaved, then according to Eq. (6.29) the
expansion (7.1) assumes the simple form

F= / fle,)T (@, — 1)r1d%

=/ fla1) [a)a| 7% (7.20)

For the case of the density operator p, this is the P
representation?3:7.24

o= / P(o)|a)a] &%, (7.21)
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where the weight function P(a) is given by??
Pla)=m"1Tr[pT(e,1)]. (7.22)

Applications of the present results to the representation
of density operators and to P representation in partic-
ular are discussed in the following paper.

There are no serious problems in the correspondence
C(0) associated with symmetric order, s=0. The func-
tion f(e,0) associated with the operator F,

f@,0)=TH{FT(0)], (7.23)
is the weight function for the expansion
F= /f(a,O)T(a,O)w‘lan. (7.24)

The operator T'(e,0) appearing in these relations is
finite, though not bounded; and, as we observed in Sec.
VI, the function f(e,0) isin L, (i.e., is square-integrable)
when the operator F is bounded.

We recall, from Egs. (3.12)-(3.16) that the corre-
spondence F <> Tr[FD(§)] is one-to-one between L.
and the class of all bounded operators and, from Egs.
(3.4)-(3.6), that the Fourier transform maps L, onto
L, in a one to one fashion. Thus, since we defined the
weight function f(,0) as the complex Fourier transform
(6.3) of the function Tr[FD(£)], it follows that the sym-
metric correspondence C(0) maps L, onto the class of
all bounded operators in a one-to-one fashion. The cor-
respondence C(0) is also, in view of Egs. (3.6) and (3.16),
norm-preserving in that the L; norm (3.8) of the weight
function f(,0) is equal to the Hilbert-Schmidt norm
(3.15) of the associated operator F; i.e., we have

[l fe,0) ][ =IE]]. (7.25)

In terms of power-series expansions, the symmetric
correspondence C(0) associates the operator

F= 3 funOf@ya)s (126
with the function
@)= 3 fon@@yar, (120

where, as we have seen in Secs. IV and V, the coeffici-
ents fn»(0) are finite for most though not all bounded
operators F.

The correspondence C(s) can easily be written in
terms of complex Fourier transforms. By using Egs.
(3.7) and (6.6), we see that the correspondence C(s)
associates the operator

F= ff(a, —8)T(a,s)7d%:

- f o, —)D(— g i (1.28)



177

with the function

flay —$)=Te[FT(a, —s)]
- / o6, —5) explai—a*Hrd%. (7.29)

By setting s=0 and using Eq. (2.1) and (2.2) to write
these relations in real rather than complex notation,
we may express the symmetric correspondence C(0) in
the form in which it was introduced by Weyl®:

F=/g(q’,p’)e‘i(qp’“Pq'>(27r)“1dq'dp’, (7.30)

fa)= f og' ) e 2y dgldy’, (1.31)

where we have set #=1.

It is a straightforward matter to derive a number of
the properties of the weight functions f(a, —s) by using
the analysis of the operators T'(e,s) which was presented
in Sec. VI. To avoid unnecessary minus signs we shall
discuss the function f(a,s) rather than the weight func-
tion f(a, —s) of the expansion (7.1).

By multiplying both sides of Eq. (6.41) by the opera-
tor F and forming the trace of the resulting relation, we
find that for different values of the order parameter s
the functions f(a,s) are related by the simple Gaussian
convolution

2 2|a—a’|2\d%/
f (a,3)=;—s / ) CXP(——*‘“—)—“

t—s T

for Res<Ret. (7.32)
This relation makes it clear that if the function f(a,f) is
well behaved, then so is the function f(a,s) for Res
<Ret.

By performing a similar operation upon Eq. (6.42)
we find that the function f(a,s) satisfies the differential
equation

9f(as)

s 2 dade®

1 92f(a,s)

(7.33)

which is the differential form of Eq. (7.32). The relations
(7.33) and (7.32) have the same form as the heat-
diffusion equation and its solution. This analogy be-
comes more complete when the operator F is a density
operator; we shall discuss it in that context in the paper
which follows.

From Eq. (6.46) we find that the function f(a,s) is
normalized in the sense that

TrF=/f(a,s)7r"ld2a, (7.34)
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subject to the existence of the trace and the convergence
of the integral. This expression for the trace of an oper-
ator is a generalization of the earlier one (2.28) which
may be recovered by putting s=—1.

Let us now use the properties of the operator T'(a,s)
which were discussed in Sec. VI to characterize the be-
havior of the function f(a,s)=Tr[FT(a,s)] as a func-
tion of the order parameter s. We first focus our at-
tention primarily upon the left half-plane Res<0 where,
as we shall show, the function f(a,s) is a bounded,
square-integrable, and infinitely differentiable function
of a for all bounded operators F. We shall then examine
the changes in the properties of the function f(a,s) as the
real part of s becomes positive.

We have noted earlier that the operator T'(a,s) is
bounded for Res<0, as is shown by the estimate (6.30)
for its Hilbert-Schmidt norm [T'(a,s)||. It follows,
therefore, from the inequality (3.24) that if the operator
F is bounded with norm ||F||, then the modulus of the
function f(a,s) is bounded for Res<0 by the quantity

| fles) | = | Tt[FT(es) ]| | FI[[| T(,s) |

<IIF|l/(—Res)**, (7.35)

which is independent of a.
Let us now observe that by using the identity (3.6)
and the definition (6.3) we may obtain the relation

f | feys) | / | THCFD ()] %

= [ mgrp@e, 130
which for Res<0 implies the inequality
[ saes [11trp@1we. 050

When the operator F is bounded, the integral on the
right-hand side of this equation converges, as is shown
by Eq. (3.16). Thus for all bounded operators F, the
function f(a,s) is a square-integrable function of & for
Res<0. By comparing Eq. (7.37) with Eq. (3.16), we
find for the norm || f(a,s)| of the function f(a,s), de-
fined by Eq. (3.8), the inequality

I fe)I< ]| for Res<0. (7.38)

We may infer from the relation (7.36) that the regions
in the s plane in which the functions f(a,s) and
Tr[FD(&,s)] are square-integrable are identical and are
bounded by a straight line on which the real part of
s is constant. Let us denote this line by Res=ux(F).
Then for bounded operators F we have x(F)>0 since
the function f(a,s) is in L, at least for Res<0.

By differentiating both sides of the relation (6.3), we
may express the derivatives of the function f(e,s) as the



1878

integrals

artmtm f(q 5)

9sldamda*™

- / 3£ (= o

XTI FD(&,5) Jest*-*¢d2t/r.  (7.39)

The moduli of these derivatives are, accordingly,
bounded by the integrals

8l+"+mf(0[,3)

Jstdamda*™

S(%)lf | E[ 2l+n+mgRes | £]2

X|Tr[FD(§)]|d*/m, (7.40)
which are independent of . According to the Schwarz
inequality for functions (3.9), the convergence of these
integrals for Res<0 and for all bounded operators F
is insured by the exponential factor exp(Res |£|2) and
the square-integrability of the function Tr[FD(§)]. A
similar argument? shows that the derivatives (7.39)
exist and are bounded for Res<x(F).

We may conclude, therefore, that for Res<x(F), a
region which includes the half-plane Res<0 if F is
bounded, the function f(a,s) possesses derivatives of
all orders with respect to s, @, and o* and that these
derivatives are bounded by quantities that are inde-
pendent of a. In particular the function f(a,s) is an
analytic function of s for Res<x(F) and its modulus
is bounded by a quantity M (s) which depends upon s
but not upon «; i.e., we have

| f(a,s)| <M(s) for Res<x(F). (7.41)

It may be shown? that the Taylor series in s, @, and o*
formed with the derivatives (7.39) converges for all «
and all s such that Res<x(F).

We recall that the existence of derivatives of all
orders with respect to a and o* is required if the func-
tion f(a, —s) is to be a generating function for the co-
efficients f, .(s) according to the rule (7.10). We also
note that the convergence of the power series for
f(a, —s) guarantees that the function f(a, —s) is well
defined by the correspondence C(s) in the form of Egs.
(7.5)~(7.7). Finally, since for F bounded and Res<0
the derivatives of f(e, —s) with respect to a and o*
are analytic functions of s, our earlier observation that
for F bounded and Res>0 the coefficients f,,n(s) are
analytic is confirmed.

As the parameter s crosses the line Res=0, the
class of operators F for which the function f(a,s)
=Tr[FT(a,s)] is bounded shrinks dramatically. We
have seen in Eq. (7.35) that this function is bounded for
all bounded operators when Res<0. Let us now note
that the function f(a,s) is bounded even for all finite
operators for Res<0. According to Eq. (6.32) the oper-
ator T'(a,s) is in the trace class for Res<<0. It follows,
therefore, from the inequality (3.39) that if the operator
F is finite with norm ||F||;, as defined by Eq. (3.33),
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then the modulus of the function f(a,s) is bounded for
Res<0 by the quantity

| flays) | = | TP T ()T < FI T
<2YFl/(|1—s|—|1+s]), (7.42)

which is independent of a.

On the line Res=0, however, the operator T'(a,s) is
finite but not bounded and the function f(a,s) is not
necessarily bounded for finite operators or even for
bounded operators. It is in general necessary for the
operator F to be a trace-class operator if the function
f(a,s) is to be bounded for Res=0. In this case, by using
the inequality (3.39) and the estimate (6.31) for the
norm ||7(a,s)||1, defined in Eq. (3.33), we may obtain
for the function f(e,s) the upper bound

| flays)| = | Tr[FT(e,)]| <I|Fl2]| Ta5)l] 1

<2||F|ls/|1—s| for Res<0, (7.43)
where ||F||; is the trace-class norm of the operator F,
a norm which we defined in Eq. (3.37). For Res>0 the
function f(a,s) is not in general bounded even for trace-
class operators.

We have seen that for all bounded operators F the
function f(a,s) possesses derivatives of all orders with
respect to the variables s, o, and o* for Res<0. For
Res=0, however, the function f(a,s) is not even a con-
tinuous function of & for all bounded operators. It is
in general necessary for the operator F to be a trace-
class operator for the function f(a,s) to be continuous
on the line Res=0, where it may be shown? to be uni-
formly continuous.

For Res> 0 the operator T'(a,s) is not a finite operator
and the three norms ||T(a,s)|, ||T(a,8)|l1, [|7(ct,5)]l2,
which are defined by Egs. (3.15), (3.33), and (3.37),
are all infinite. At s=1 all of the eigenvalues e.(s) of
the operator T'(a,s) are infinite as may be seen from Eq.
(6.28). For these reasons the function

f(a,s) = Tr[FT(a,s)]

typically develops singularities of some type at one or
more points in the half-plane Res>0. Since the function
f(a,s) is bounded, square-integrable, and infinitely dif-
ferentiable for Res<x(F), this singularity must occur
at a value of s=so for which Res,>x(F). The useful
properties that we have attributed to the function
f(a,s) cease to hold if not at the line Res=x(F) then
certainly at the appearance of the first singularity. For
larger values of Res the function f(e,s) is simply too
singular to be used either as a weight function for the
operator F in the expansion (7.1) or as a generating func-
tion for the coefficients of its s-ordered power-series
expansion. A further discussion of this problem in terms
of distribution theory is given in Ref. 2, where it is
shown that the function f(e,s) lies outside the space of
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tempered distributions?® for Res> Resy where s is the
first singular point.

The locations of the line Res=x(F) and of the singu-
larities of the function f(a,s) vary considerably from
one operator to another. As our example in Sec. VIII
will show, the quantities Reso and x(F) may be arbi-
trarily small even when the operator F is in the trace
class.

VIII. ILLUSTRATION OF OPERATOR-
FUNCTION CORRESPONDENCES

We shall now illustrate the results of Secs. VI and
VII on the representation of operators by considering
a simple example in some detail. This example will
show how the weight functions f(a,s)=Tr[FT(a,s)],
which are extremely well behaved for Res<O0, can de-
velop singularities for Res>0 even when the operator
F is both bounded and in the trace class. As we men-
tioned earlier, these singularities reflect the fact that
T(a,s) is a finite operator only for Res<0.

Let us consider again the example provided by the
operator F(\)=\¢te, Since the operator F(\) may be
written, according to Eq. (6.22), as

with
t=(+1)/(\—1), 8.2)
we may write the function
fr(e,$)=Tr[F(\)T(a,5)] (8.3)

in the form
ile,s)=3(1—10) Tr[T(0,)T(a,s)].

The trace may be evaluated by means of Eq. (6.39),
which yields

(s) —1 (2]a|2>
Plas —H_sexp t+s

2 200—1)|a|?
= exp( > (8.5)
14+N—s+sA 14+A—s+sA

(8.4)

The function f\(e,s) is an analytic function of s except
for an essential singularity at

s=s0=(14N)/(1=\).

As a function of a, it is for Res<Res, a Gaussian func-
tion with its maximum at a=0. The function f\(a,s)
is accordingly a bounded, square-integrable, and infi-
nitely differentiable function of a for Res<Res,. Thus,
for the operator F(\) the quantity [ F(\)], introduced

(8.6)

26 Tempered distributions form a class of continuous linear
functionals which includes the § function and its derivatives. A
distribution is said to be tempered if it can be expressed as a de-
rivative of finite order of a continuous function that is bounded by
a polynomial. See, e.g., I. M. Gel’Fand and G. E. Shilov, General-
ized Functions, translated by E. Saletan (Academic Press Inc.,
New York, 1964), Vol. 1.
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in Sec. VII, is given by

A[F(\)]=Reso= ReC—ti)

— (1= [\|9/ 17| (8.7)

Let us recall that the operator F() is both bounded
and in the trace class for |\| <1, that it is finite but not
bounded for |[A\|=1, and that it is neither finite nor
bounded for |A\|>1. From Eq. (8.7) we see that the
parameter « is positive for |A| <1, zero for |A\|=1, and
negative for |[\|>1. The region Res<x, in which the
function fi(a,s) is well behaved, therefore includes the
half-plane Res<0 when and only when the operator
F()\) is both bounded and in the trace class. Under the
transformation (8.6), the location s, of the singularity in
the function fa(a,s) assumes every value in the half-
plane Res>0 as the parameter A ranges over the disk
[\] < 1. Thus there are values of A for which the operator
F()) is in the trace class but for which the line Res=x,
on which the singular point s, falls, lies arbitrarily close
to the imaginary axis Res=0.

According to Eq. (6.11) the operator F(A\) may be
expanded in the form

F(\)=)ete

=/f>‘(a, —85)T(e,s)7 " 1d%:, (8.8)

where the weight function f\(a, —s), which is given by
Eq. (8.5), is the one associated with the operator F(\)
by the correspondence C(s). By comparing Eq. (8.5),
after substituting —s for s, with the s-ordered power-
series expansion for the operator F(\), Eq. (5.27), we
may verify that the association of the weight function
fa(e, —s) with the operator F(A) is in accordance with
the rules (7.5) and (7.6) of the correspondence C(s).

We see from Eq. (8.5) that for Res> Reso the function
#(a,s) increases for large values of |a| as an exponential
function of |a|2 For this reason the function fi(a,s)is a
tempered distribution only for Res<Res,.28 Now we
have seen that as the parameter X ranges over the disk
[A| <1 in which the operator F()) is both bounded and
in the trace class, the singularity at so= (14X)(1—x)"?
ranges over the half-plane Res>0. From this counter-
example we may conclude that for no value of Res<0
do the operators T'(a,s) afford a basis for the integral
representation (6.11) of an arbitrary bounded operator
F even if the whole class of tempered distributions is
admitted as weight functions. Thus, the operators 7'(a,s)
for Res<O contrast sharply with the displacement
operators D(a) in terms of which every bounded oper-
ator may be expanded with a square-integrable weight
function. In this sense the operators T'(a,s) for Res<0
must be regarded as undercomplete.
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We may mention that it is not difficult to show? that
the weight function f(a, —s) may, for all values of s
and all bounded operators F, be interpreted as a member
of the space?” of ultradistributions Z’. In order to ac-
commodate such weight functions, however, the struc-
ture of the representation (6.11) must be changed in a
major way. When the operator F is in the trace class,
the additional terms required to regularize the repre-
sentation (6.11) may be found by generalizing a pro-
cedure formulated?® for the case of the P representation
of the density operator, Egs. (7.21) and (7.22).

APPENDIX A

. Our object here is to derive the useful integral

identity?

Z—lf(z—ly)= / f(a) exp(a*y—-z] alz)w"ldza,
Rez>0, (Al)

which holds for all entire functions f(e) subject to ap-
propriate conditions on the convergence of the integral.
We evaluate first the integral K,:

Kn=/oz" exp(a*y—z|a|)r 4%

— (nl)—lynf lal 2ne~zlal27r—1d2a
=z (77"
Then by writing

f@)=3 cra®

- n=0

we find that

/e“*”"’lalzf(a)r*’dza-—- > caKa

n=0

=gz71f(z"1),

which is Eq. (A1), provided that the integral may be
done term by term. In particular,if we let f(a)=exp(ax),
then Eq. (A1) becomes

z7lexp(z~lxy) = f exp(axv+a*y—z|a|)r~1d%, (A2)'

provided Rez>0.

27 The space Z’ of ultradistributions is a class of generalized
functions which includes but is much larger than the space of
tempered distributions. It is discussed in the work by Gel’Fand
and Shilov (Ref. 26).

28 K. E. Cahill (to be published).
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APPENDIX B

We shall now express the matrix elements of the dis-
placement operator D() in the #-quantum representa-
tion in terms of the associated Laguerre polynomials
L, (x). We first note that if |a) is a coherent state
then, by using Egs. (2.19) and (2.20), we may write

D() |a)=D(£)D(e) | 0)
=D(t+0a) | 0) exp[5 (ko — £¥a) ]
= |&+a) exp[3(ta*—£a) .

Thus, by using Eq. (2.23), we find that

{m| D(&) | )= (m!)~M2(¢+ )™ exp[F (b — £¥a)
—3|&+al?]
= ()12 (g-+ )™ exp(—3 | £[ =3 o
—t*a).
Another expression for this same matrix element also
follows from Eq. (2.23):

(B1)

an

(m| D() |a)=ela2 3

m=0 ()12

(m|D(E)|n). (B2)

If we now combine Egs. (B1) and (B2) and put y=£"q,
we arrive at the relation

o I\ 1/2
(1+y)me—ylflz=elflzl2 > (ﬁ) gn—m

n=0 \ 5!
X{m|D(&)|n)y". (B3)
The left-hand side of this equation is a generating func-

tion for the associated Laguerre polynomials L, ™ (x)
according to the identity!®

()= 3 Loy, (B

which holds for |y| <1. Thus by comparing Egs. (B3)
and (B4) we obtain the expression

(m| D(§) |m)=(n!/m1)}/2gm—ne-16*2L, m=m) (| £]2).  (BS)

APPENDIX C

Our definition (5.6) of the s-ordered product was as
the derivative

n+mD a,
{(yramy D)

30 d(—a®)™| quo

(C1)

By using Eq. (5.1) we may write the operator D(e,s)
as a t-ordered exponential

D(a,s)= D(ayt)ete=01a1%2

= {exp[aa'—a*a+3(s—0)|al*T}e.  (C2)
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We note the following equivalent expansions:

w gm

eMvtpztrwz — Z __(”_.{_uw)me)\w (Csa)
m=0 7!
= Z ——()\—f—vz)”e“ (C3b)

n=0 1'1,

By using the identity (B4) ,we may write these expan-
sion in the forms

w0 g™

e vtuztrws — Z _—"ZE)",U,m—"V"Ln(m_”)(‘—)\/.L/V) (C4a)
n,m=0 ¢!
) w™

= X —am\mmLamm(=M/r). (C4b)
n,m=0 9!

Let us make the identifications
A=adl,

un=a,

w=a, v=—3%(s—1),

z=a*,
in Egs. (C4a) and (C4b) and specify ¢ ordering of both
sides of these equations. Then according to Eq. (C2)
we have found the ¢-ordered form for the displacement
operator D(a,s). By carrying out the differentiations in-

dicated in Eq. (C1) we find from the expansion (C4a)
the result

—\" 24t
{(aT)nam}s=n1(Lf) [am—nLn(m—n)< aa,>} (Cs)
2 s—i/),

which is useful for m>#, and from (C4b)

) L

which is useful for #>m. These two expressions corre-
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spond to the explicit expansion

e E )

X{(a")*am+},,  (CT)

which is noted in Eq. (5.12).

APPENDIX D

By expanding the coherent states |8) and (8| of Eq.
(6.36) in terms of the #-quantum states, we find

98| T(es)|8)= 3 . X (nlml)~12(B*)"8m(n | T(a,s) | m)

»m

(i)

If we now make use of the expansion (C4a) with the
identifications

w=8* A=2a/(1—s),
z=ﬂ, u=2a*/(1—'8),
then we find

e8| T(a,s) | B)= P exp(

~ e |
Hence we have ( ) < > o )(1—s2)
rem= 2 (Y e

2|a]2) (4[&‘2)
L, m=n) ,
1—s 1—s?

v=—~1+s)/(1-53),

ZIaP) f ﬂ*)”ﬂ"‘

Xexp(—
which is Eq. (6.51).



