
PHYSICAL REVIEW VOLUME 177, NUMBER 4 20 JANUAR Y 1969

Influence of Electromagnetic Interaction on Neutron
Scattering from Nuclei

W. S. HOGAN

Battelle-Columbus Laboratories, Columbus, Ohio

AND

R. G. SEYLER

Ohio State University, Columbus, Ohio 432IO

(Received 26 August 1968)

The inQuence of the interaction between the magnetic moment of a neutron and the Coulomb field
of a target nucleus is investigated. A formalism is developed whereby the interaction can be treated exactly
in optical-model calculations. Calculations performed at energies of 0.5, 1.0, 7.0, 14.5, and 24 MeV for
Al, Mn, Nb, and Bi indicate that this electromagnetic interaction can be adequately treated in the Born
approximation. Whereas the inQuence on the diBerential cross section is confined to scattering angles
less than 2', the inQuence on the polarization extends to larger angles corresponding to minima in the cross
section.

I. INTRODUCTION

r iHE eRect of the electromagnetic interaction be-.. tween a neutron and a target nucleus can be im-
portant in the interpretation of scattering data. In
this study, the influence of the interaction between
the magnetic moment of the neutron and the Coulomb
field of the target is evaluated. This electromagnetic
term is relatively long range (having a 1/rs dependence)
and is of spin-orbit form. This latter fact indicates
a probable influence on polarization phenomena as
well as on the differential-scattering cross section and,
in the case of neutron-proton scattering, an influence
on many of the measurable double- and triple-scatter-
ing parameters.

The influence of the magnetic-moment —Coulomb-
field interaction on particle scattering was first brought
to general attention by Mott' when he pointed out the
polarizing eRects resulting from electron scattering by
nuclei. The importance of this force in neutron-nuclei
interactions was first pointed out by Schwinger, ' who
calculated in the Born approximation the influence of
this interaction on the elastic scattering cross section
and on the neutron polarization. His results indicate
a rather pronounced eRect for small-angle scattering.
This magnetic-moment —Coulomb-field interaction is
referred to in the literature variously as Mott-Schwinger
scattering, Schwinger scattering, and simply electro-
magnetic scattering. This work will use the first cited
term and abbreviate it as MS scattering. Eriksson'
has pointed out the importance of this electromagnetic
scattering for protons. He calculated the eRect on
polarization for 130-MeV protons scattered from alu-
minum, carbon, and iron by a high-energy limiting
form of the WEB approximation, and concluded that
the effect was noticeable up to scattering angles of 10'.
Heckrotte4 performed a similar calculation for proton-

' N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929).' J. Schwinger, Phys. Rev. 73, 407 (1948).' Y. Eriksson, Nucl. Phys. 2, 91 (1956).' W. Heclrrotte, Phys. Rev. 101, 1406 (1956).

carbon scattering at 300 MeV and obtained results
similar to those of Eriksson. Sample' has treated the
eRect in the neutron-scattering problem by handling
the electromagnetic interaction as a perturbation and
using wave functions obtained from hard-sphere scat-
tering as the zero-order approximation. He gets results
entirely consistent with those of the other investigators
cited. Monahan and Elwyn6 found an influence on
polarization of neutrons with energies less than 1 MeV
that extends to angles as large as 24'. They used an
approach based on a generalized Born approximation
(which allows for the simultaneous evaluation of nu-

clear and electromagnetic effects) and found the in-
clusion of electromagnetic scattering to be necessary
in interpreting the experimental polarization data of
Elwyn et al.' Redmond' pointed out that Monahan and
Elwyn's first-order correction to the Born approxima-
tion can be an overcorrection and proposed a more
accurate approximation using a technique whereby a
phase-shift function is calculated at successive dis-
tances from the origin in a step-wise manner.

The fact that MS scattering can significantly in-
fluence experimental results has been firmly established
in the references cited. In addition, the polarization
produced by MS scattering has been experimentally
demonstrated by Voss and Wilson' in the scattering of
100-MeV neutrons from uranium. In all cases, the
methods which have been used to calculate the eRects
of the MS interaction are approximate ones. In most
cases the Born approximation has been used. It would

seem, therefore, very desirable to develop more accurate
techniques for treatment of the MS force and to eval-
uate systematically the domains of importance for
this interaction.

s J. T. Sample, Can. J. Phys. 34, 36 (1956).
6 J. E. Monahan and A. J. Klwyn, Phys. Rev. 130, B1678

(1964).
7 A. J. Elwyn, R. 0. Lane, A. Langsdorf, Jr., and J. K. Mona-

han, Phys. Rev. 133, 880 (1964).
R. F. Redmond, Phys. Rev. 140, 81267 (1965).

9,R. G. P. Voss and R. Wilson, Phil. Mag. 1, 175 (1956).
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The remainder of this paper is divided into three
sections. Section II deals with the theory of neutron
scattering by spinless targets. There the formalism for
dealing with MS scattering is developed. It is also
shown that it is feasible to develop and use MS wave
functions in optical model calculations in somewhat
the same spirit as Coulomb wave functions are used.
In Sec. III, the results of the formalism are applied to
models to determine the regions of importance of the
MS interaction in a systematic manner. Section IV
contains the summary and conclusions. The treatment
is nonrelativistic in all cases.

A comparison of the equivalent integral equation for y~,

v i(p) =j i(p) —
Li ~(p) «(p') «-(p)i i(p') J

XU('). (')'d', (2)

where j~(p) and n~(p) are the spherical Bessel and
Neuman functions, with a solution of the form

A(p) =Ci(p) j~(p) —S~(p) «(p), (3)

leads to the following pair of coupled integral equations
for C~(p) and S~(p),

II. GENERAL FORMALISM

I'relimiearies. The MS force arises from the inter-
action of the magnetic moment of one particle with
the Coulomb field of the other. In the particular case
being considered, the anomalous magnetic moment of
the neutrori and the Coulomb field of the nucleus are
involved. The general form of the MS potential is'

VMs(r) =const(1 s/r'),

where 1 and s represent the neutron-orbital and spin-
angular momenta, respectively. The constant is

Ze%'p„/rn'c'

where Z is the atomic number of the target nucleus,
p,„ the neutron magnetic moment, and m the neutron
mass; and c, e, and 5 have their usual meanings.

It would, of course, be possible to solve the
Schrodinger equation numerically with such a potential
included. This procedure, however, would result in
considerable numerical work primarily because of the
long-range nature of this force relative to the nuclear
forces. The potential VMS extends to distances com-
parable to electron orbits and, therefore, requires the
range of numerical integration of the radial equation
for a given partial wave to be extended by orders of
magnitude. In addition, the number of partial waves
which is necessary to obtain a satisfactory solution is
greatly increased over the pure nuclear-force problem.

It appears that a superior method exists for the
evaluation of this interaction. The basis for this method
appears in a paper by Calogero, " although he credits
the equations to the earlier fundamental work of
Faxen and Holtsmark. "That part of Calogero's paper
essential to this work is easily developed.

Consider the equation for the radial wave function
in the form

C~(p) =1— «(p') U(p')

«C(p)j(p) S(p) (p)3p dp (4)

Si(p) = — i i(p') U(p')

Xt:Ci(P )jt(p) S&(P ) n&(p ) jp"~p'. (5)

After differentiation, these equations yield two
coupled differential equations,

C&'(p) = U(p) p'«(p) t Cr(p)ji(p) —Si(p)«(p)g (6)

and

S('(p) = —U(p) p'j((p) LCg(p) j((p) —S((p)«(p) ]. (7)

In Calogero's paper, little more is done with these
equations. Instead, a nonlinear equation for tanb~(r)
is derived and its consequences are pursued in detail.

For the present purpose, Eqs. (6) and (7) appear
to be more useful. First, they are linear, and therefore
are more easily dealt with in terms of both analytical
approximations and numerical integration procedures.
Further, C, (p) and S,(p) are better-behaved functions
than tan5&(p) since they are bounded and more slowly
varying. In addition, radial wave functions are ob-
tained through use of (6) and (7), and the effect of
the MS potential can be included in optical-model
calculations in a manner very similar to that used to
account for the Coulomb interaction.

ITse of the MS potential in the expression for U(p)
in Eq. (1) leads to the following equations for C»
and S~;.

C»'(p) = —(&»/p) t:C~ (p) «(p) ji(p) —S»(p) n (p) 3

and

~ &&( ) + ( 1 U( ) D(l+1) / 2]I ( ) 0 (] )
St/(p) = —(~t /p) LC»(p)ji (p) —S»(p) «(p) j~(p) j

where p= (2mB/P)r =kr, and U(p) = (2m/P)LV(r)/lP).

"F. Calogero, Nuovo Cimento 27, 261 (1963)."H. Faxen and J.Holtsmark, Z. Physik 45, 307 (1927') .
X» ——(Ze'

~
p,

~
k/mc') P»,

P»=l for j =l+ '„or —(l+—1) for j =l ~~, and th—e
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other factors have been previously deined. The two
values of Pv are the eigenvalues of the 1 s operator.

It is convenient to introduce the functions fl;(p) and

g;;(p) defined by

(10)

lowing set of equations results:

Fv""(p) = ~—vs P(p)/p]G~~'"(p) «P2l vbl(p) (1&)

Gv""(P) =l v[«'(P)/P]Fv'"(P) expL —2&iA(p)], (1g)

Fl ""(p)= ~l —Li P(p)/p]Gl'"(p) em2&l &l(p) (19)

cl, =gv(p) exprx vbl (p) ],

~v(p)
t~&=tan5~j= hm-C;(.) '

"ji(p')«(p') d,&lP = dp )
p p

(12)

Gv""(p) =~VL«'(p)/p]F t "'(p) expL-»v&i(p)] (2o)

The appropriate asymptotic values are given through
Kqs. {15) and (16), and the expression immediately
following Kq. (12) . They are

p) .(&)~{j Q).(0~0

F, ,(2) y G, .(2) (»)
From Kqs. (10) and (11) and Kqs. (15) and (16),

the tangent of the phase shift $~, can be written

lim fl;(p) =1;
p~cO

lim gl;(p) =1.
pm CO

Fl;"'(p.) exp —2&rA(p. ) —«n~v(p. )Gv"'{P )
fg& =

tan&V(p. )RP'(p. ) —FV"'(P.) exp —2&Vfl(p. )
'

The above limits are chosen for convenience, the only
necessary condition being that the limit of the ratio
f/g be unity. Substitution of these forms into Eqs. (8)
and (9) gives

where tanbl;(p, ) is the phase-shift function

«»l;(P) I:= ~v(p) /Cv(p) ]

(22)

gv(p) =~»(p) Gr~'"(p) +Gv"'(p), (16)

where Fv&'&(p), Fl"&(p) G, &'&(p), and Gl &'&(p) are
independent of t~, .

By using Fqs. {15)and (16) in Eqs. (13) and (14)
and equating cocf6cleIlts of like powcI's of $)p) thc fol-

fv'(P) = (~U/~v) r—j l'(P)/P]gv(P) exp2llv&l(p), (13)

e'(P) =~v~vrP l'(P)/P]fv(p) exPL —»v&~(p)] (14)

Through integration of Kqs. (13) and (14) it is
possible to express fl;(p) and gt;(p) as solutions to the
nonlinear Volterra equation of the second kind. From
these integral equations, it can be shown that one can
express fv(p) and g„(p) as

fv(p) = 1/~»Fv"'(p)+F v'"{p), (15)

evaluated at a radius r, beyond which the nuclear
potential is negligible. The quantity 8v(p, ) is the phase
shift that would result from the r&r, part of the total
potential. The actual phase shift bv(~) will diRer
from 8v(p, ) only because of the MS potential acting
in the region r&r, .

Next, approximate analytical solutions to Eqs. (17)-
(21) are developed and the resulting formula for Eq.
(22) is compared with some approximations in the
literature. A discussion of the exact numerical solutions
of the above equations is postponed until later.

Approxneatc Solgtiolls In orde. r to establish the
basis for the approximate solutions, it is necessary to
consider the behavior of certain integrals which are
involved. Explicit forms for these integrals are given
by Redmond' and are given here for convenience. To
facilitate later reference, the symbols a~(p), and cl(p)
alc 1nt1oduccd:

-j&(p')
&z(p) =

p p

=I 21(l+1)]-'{1—p'I:{1—lp ')jr(p) +jl-l'(p) —2' 'jl(p) jl-l(p) ]I
"jl(P')Nl(p')

p p

p2

{(1 fp )jl(p) Nl(P) +j & l(p) '~&-l(p) Lj-l(P) « l(p) +j l-l(p)-«(P) ]fp 'I

eP(P')

p p

-I:2l(~+1)] '{1—P'r(1 —fp ') «'(P)+«-l'(P) —2' 'ill(p) «-l(p) ]I.
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The p« t limiting forms for the functions ji(p) and then

ni(p), Fv'"(p)=)»«(p). (31)

and

l

lim ji(p)~
1 ~ 3 ~ 5 ~ 7 ~ ~ ~ ~ (2t+1)

(26)
Also, using this result in Eq. (18) and noting LEq.

(23)] that ai(p) ai(0) over most of the range where
at(p) is appreciably different from zero, one gets

1 ~ 3 ~ 5 ~ 7 ~ ~ ~ ~ ~ (2l —1)
lim ni(p) —+-

pl+1

may be used to obtain the behavior of the three func-
tions for small p values,

(28)lim a~1/2t (1+1),

lim bi(p) ~—1/(2t+1) p, (29)
~0
lim ci(p)~L(2/ —1) [t]'/2(t+1) p"+'. (30

The function ai(p) is seen to be constant (for fixed l)
at small p, whereas ci(p) changes rapidly and is singular
at the origin.

For the exponential factors in Eqs. (17)—(20) to
be replaced by unity, it is necessary that 2Xt,"bi(p) «1.
Substituting in this inequality the de6nition of ) &;

following Eq. (9) and the small p approximation to
bi(p) leads to the condition r»3&&10-'4 cm, where r is
the radial distance from the center of the nucleus. As
this quantity (0.3 F) is smaller than a nucleon radius,
one can conclude that for p(l, the exponential factor
can be replaced by unity.

Now if one assumes in Eq. (17) that G»"~ is well

represented by its asymptotic value of unity (numerical
results verify this assumption for p not too small),

G»~2~ (p) r 1—'A(Pat(0) c((p) . (32)

In applying the same kind of approximations to
Eqs. (19) and (20) one finds

P,(2) (p) ~1 (33)

G»"'(p) ~~—«(p) . (34)

The range of validity of these approximations can
be determined by examining the result of substituting
Eqs. (31)—(34) into the differential equations (17)—(20).

In order for Eqs. (31) and (32) to be good approxi-
mations, it can be seen that

~
X»'ai(0) ci(p)

~

&&1

should be true. More explicitly, using Eqs. (29) and
(30) in this inequality, one gets for a necessary condi-
tion

p~i+2&&/~PL(2t —1) I l]2/4t(t+1) 2. (35)

For Eqs. (33) and (34) to be valid, it is necessary
that F~p" be small, or

~
Xi'(jp(p) /p) c, (p) ~

&&1, which
can be expressed through the use of Eq. (30) as

p'»Xi//(2t+1) '2 (1+1). (36)

It is interesting to use these approximate results in
Eq. (22), and to compare the resulting form with other
approximations. The result of Eqs. (31)—(34) substi-
tuted in Eq. (22) gives, after a little rearranging,

tan5»(p ) —X»ai(p ) expL 2A»bi(p.—)]—&»2 tan&»(p. ) ai(0) «(p.)

exp| —2X»bi(p&) ]+tan&»(p. ) & i,«(p.)

For comparison, the plane-wave Born approximation gives

ti;——tang„(p, ) —X»a) (p.),
and Monahan and Elwynv derive

(37)

(38)

t 1+Xijb,(p,)] tanh» (p, ) —X»a& (p.)t);= 39
1—Xb»(( p)+X»(c(p, ) tan5». (p, )

The Monahan and Elwyn result is very much like Eq. (37) and, in fact, they are identical through terms of
the order of X» if X»bi(p) «1. It has already been established that this is a good approximation.

The same approximations give, for the radial wave function outside the nuclear radius,

tanb»(p, ) —X»ai(p, ) —Z»sai(0) c((p,) tanb»(p, )p1 , )~» at 0 ci(p) —X»c&(p j i p1+)i» tanh»(p. ) c((p.)

taunt, (p, ) —)»ai(p. ) —X(Pai(0) c((p,) tanb»(p, )

1+X» tanb»(p, ) ct(p, )

Exact Solutions Equation. s (17)-(20) with the
boundary conditions, Eq. (21), can, of course, be solved
exactly numerically. Inspection shows the two pairs of
coupled equations to be identical. That is, Eqs. (17)
and (18) are identical to Eqs. (19) and (20), so the

same program will solve each set and it is only nec-
essary to apply the appropriate boundary conditions.
For convenience in applying the boundary conditions,
a change of variable was made as s=1/p. Thus, the
asymptotic values of the functions were applied at
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a=0 and the numerical integrations performed out-
ward to a desired value of s on the CDC-6400 digital
computer. The method used was the well-known Runge-
Kutta method as applied to simultaneous equations. "
The inherent error in this method is of the order of
(hs)', or for the cases done here, 10 " or less since
the largest value of As ever used was 10 '.

It is perhaps appropriate to point out here that this
procedure requires much less numerical work than
would direct integration of the Schrodinger equation.
Further, it provides a better physical basis for inter-
preting various approximate methods.

It is clear that the general technique described here
could be applied to the scattering of protons by nuclei.
To make this application it is only necessary to replace
the spherical Bessel functions by the appropriate
Coulomb wave functions. The approximate solutions
are not as useful in this case since the analogs to
Eqs. (23)—(25) are not known. It is perhaps also
true that the effects are not as interesting in the pro-
ton case due to the large small-angle Coulomb scatter-
ing cross section, which wouM tend to obscure the
MS influence on polarization and differential cross
section, both of which are most influenced at small
scattering angles.

Optical 3Iodel. One of the objectives of this study
was to assess the effects of the MS force on neu-
tron scattering. The most straightforward way to do
this seemed to be to compare the results of optical
model calculations with and without the MS term in
the potential. To this end, the optical model program
cr.oUDv, written and used by Cassola and Koshel"
in optical-model studies, was obtained and modified
to include the MS term when desired. The form of the
nuclear potential used for this problem was

V(r) = —V, f(r) i W,g(r) +V„r—'(df/dr) d 1(5/m„c)2

(41)
where f(r) is the Woods-Saxon form

f(r) = {1+expL(r—R)/a, jI '

and g(r) is a surface absorption term of the form

g(») =4 exp[(» R) /an)—{1+exp/(» R) /an J—I
'

(42)

~2 J. B. Scarborough, Xumerical j/Iathematical Analysis (The
Johns Hopkins Press, Baltinmre, 1950), 2nd ed. , p. 302.

"R. L. Cassolg, and R, D, Koshel, Nuovo Cimento 4'7, 303
(t967j.

The usual r ' radial dependence of the MS potential
was employed for r) R (the nuclear radius), and for
r(R the value of the MS potential at the nuclear
radius was assumed which is consistent with the
assumption of a uniform charge density for the nucleus.
This constant MS potential for r(R is completely
negligible in comparison with the nuclear potential,
Eq. (41), in this same region. Thus only in the region

and

u, =0.47 fm,

R= 1.273'I' fm

For neutron energies less than about 5 MeV, the
effects of compound-elastic scattering must be in-
cluded. In the optical model, this contribution is in-
cluded in the reaction cross section. Compound elas-
tically scattered neutrons are unpolarized and have a
different angular distribution than those scattered via
the shape-elastic process, and hence exert an influence
on the experimentally determined polarizations and
cross sections. To account for this effect in the present
calculations, a simple model used by Percy and Buck"
was adopted. In this model, the total compound-
elastic cross section O.~E was taken to be the optical-
model-reaction cross section O.„ less the experimentally
determined nonelastic cross section 0.~. The process
was assumed to be isotropic, and the polarization is
then diluted by the ratio

~~.(e) (d~. (e) acme

4~i '

where do;(8)/dD is the shape-elastic differential cross
section.

The optical-model calculations determine the phase
shifts 8&;(p.) to be used in Eq. (22). That is, by using
the optical-model program to solve the Schrodinger
equation numerically out to p. with the complex po-
tential as described and including the MS potential,
the phase shifts B~;(p,) can be found. This, of course,
is the phase shift that would result if the potential in-
cluded in its determination were the entire potential, or,
in other words, if the MS potential could be neglected
for p&p, . The tangent of the actual phase shift, then
as given by Eq. (22), is the large r limit of the phase-
shift function. The cutoff value p, must only be large
enough to include all effect of the nuclear potential.

Since the interaction is assumed to be independent of
the spin of the target nucleus, it is permissible to treat
the scattering as that from a target of zero spin. The
treatment of scattering of spin-~ particles by spin-zero
targets is well known and the results are readily avail-

'4 F. P. Percy and B.Buck, Nucl. Phys. 32, 353 (1962).

of r between R and r, must one include simultaneously
both the nuclear and MS potentials. No attempt was
made to 6nd optimum optical-model parameters based
on experimental data, but rather, the parameters
chosen were based on the Elwyn et at.7 evaluations of
the nonlocal parameters of Percy and Buck.'4 The basic
parameters used in the calculations were

t/'. =47.20—0.278 MeV,

W, =9.6 MeV,

1/„=7.2 MeV,

ug) ——0.66 fm,
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able in the literature. '~" If the scattering is analyzed
in terms of partial waves, the pertinent results for
scattering of an unpolarized beam can be expressed as

x'
~.= —,g [(i+1) I1 its+—I'+l 11—~l

l=o
(44)

"=—,2 t(i+1)(1-I~+I')+l(1-l~'-I')} (45)
lM

(0 W'lh MS
I+No AS
(0 With MS

l

where

(46)

(n= I,X I,) (47)

d..(»/«= I g(8) I+ I h(8) I',

2 Reg*(8) h(8)

do, (8) /dQ

-55
2

-40
~e uO.I'

-45 I

0 IO PO 50 40 50 60 70 80 90 IOO IIO l20 l50 l40 I50

8e„,degrees

lt(8) =(2h) ' g (rtt+ rtt ) Ptt(—cos8),
l 1

—rtl, t+2/2 earp(228l, l+t/2),

(49)

rtt, l 1/2 e——xp( 2i8lt—t/2)

The observable quantities defined on the left-hand
side of the above equations are 0;—total-scattering
cross section, o;—reaction cross section, do;(8)/dQ—
differential-scattering cross section, and. E(8) is the
neutron polarization after scattering. Further, Re de-

notes the real part of the quantity involved, and
Pl(cos8) and Pl'(cos8) represent Legendrepolynomials
and associated Legendre polynomials, respectively.

The series in Kq. (49) converges slowly when MS
scattering is included. However, the Born approxima-
tion gives accurate results for suKciently large l and
hence can be used to include the eGect of all / above
some appropriate cutoQ value /. . This type of correc-
tion was carried out by Sample. 5 The resulting equa-
tion for h(8) is

2l+1
h(8) =(2h) 'Z (el+ —nt )+ iyk

l(l+1)
XEtt(cos8) —

22(iy) cot-', 8. (50)

In this expression, y is a constant related to the MS
interaction,

p=
I tt,„ I

z(e2/ntc2). (51)

In all other sums, the convergence is rapid, and one
may achieve sufhcient accuracy by truncating the
series with a reasonable value of /, .

"M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964), Chap. 7.

"T. Y. Wu and T. Ohmura, Qgantgm Theory of Scattering
(Prentice-Hall, Inc. , Englewood Clips, N.J., 1962), Chap. 2.

'7 N. F. Mott and H. S.W. Massey, The Theory of Atomic Co0i-
sions (Clarendon Press, Oxford, England, 1965), 3rd ed. , Chap.
10.

g(8) = (2ih) ' g I (i+1)(nl+ —1)+l(lit —1)]Et(cos8),
l~

(48)

Fn. 1. Polarization of 0.5-MeV neutrons scattered by Al.

hMs(8) = 22(iy—) -cot-', 8. (52)

In the application here, tl; was found from Eq. (38)
and the calculations were carried out as in the exact
case.

The p, and /, values suggested by Hodgson" for the
optical model are l, =2 4p/r an.d,p=p /r+7 t4 where

p~ ——AR and R is the nuclear radius. In addition, it
was determined that i00 mesh points within the
nuclear radius gave good results (i.e., changing from
100 to 200 mesh points made only negligible changes in
the results). Actually, in most cases l„p., and the
number of mesh points were chosen substantially
greater than the values given above. It was also found
that moderate variation of the charge radius about the
nuclear radius had no appreciable inhuence on the
results, so the charge radius was taken to be the nu-
clear radius in all cases.

III. RESULTS OF THE CALCULATIONS

Typical results of the optical model calculations are
presented in Figs. i—16. Calculations were done for
Al, Mn, Nb, and Bi at energies of 0.5, i, 7, 14.5, and
24 MeV. Those results which are repetitious, or which
do not show any features of particular interest, have
been omitted. The differential cross sections are com-
pared with experimental data from BNL-400" in some
cases, and with the optical model results of Agee and

"L. Wolfenatein, Ann. Rev. Nttcl. Sci. 6, 43 (1956)."P. E. Hodgson, The Optical Model of Elastic Scattering
(Clarendon Press, Oxford, England, 1963), Chap. 5.

"M. D. Goldberg, V. M. May, and J.R. Stehn, Angmlar Dis-
tributions in Neutron Induced Reac-tions )Hrooicbaven National
Laboratory (BNL-400), 1962], 2nd ed.

In addition to the numerical treatments with and
without MS scattering, it is also of interest for com-
parison purposes to include the results of the Born
approximation. In the Born approximation

I lt tanbt; (——p,) )'l,e—t (p,), (38)

and the MS contribution to the scattering amplitude
hms(8) 1S
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Rosen" in other cases, as noted on the curves. In
general, the agreement is good, the only exception
being Al at 1 MeV (not shown), and Bi at 0.5 (Fig. 8)
and 1 MeV (not shown'). These cases of relatively poor
agreement are probably attributable to the approx-
imate method of treating compound elastic scattering
in the present calculations. The generally good agree-
ment with experiment serves to establish a degree of
conMence in the choice of optical model parameters.
In general, the inclusion of the MS term has very little
influence on do(8)/dQ except at very small angles,
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FxG. 15. Small-angle polarization of 24-MeV neutrons scattered
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Fn. 14. Small-angle polarization of 7-MeV neutrons scattered by
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2' or less. This effect was expected, and is greatest
at low energies and for high Z targets, and was given
in all cases considered, to an accuracy of about 1% or
better by the Born approximation for the phase shifts.
In fact, a somewhat unexpected result of the study
is that use of the Born approximation for the phase
shifts t Eq. (38)] is adequate in all cases for both
do (0)/dQ and I'(8). Polarizations calculated with the
MS effect included exactly and through use of the
Born approximation $Eq. (38)j agree to within 0.5%
in all cases. This result can, be explained qualitatively

"F.P. Agee and L. Rosen, Los Alamos Scientific Laboratory
Report No. LA-3538, 1966 (unpublished) .
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FxG. j.6. Small-angle scattering cross section for 24-MeV neutrons
scattered by Bi.
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on the basis that one expects the Born approximation
to be valid when E&&V, and for the values of p, which
were used, this condition was always satisaed. Further
insight into the validity of the Born approximation is
given from the approximate solutions for the phase
shifts as given in Eq. (37). The Born approximation
is seen to result from Eq. (37) if c&(p,) is small, and
this is the case for p, large. That is, for p, large enough
Eqs. (31)—(34) become

and

F(;&'& (pl xi,a)(p)

G .(2) (p) ~\
F .(2)(p)

G "'(p)=0

(53)

(54)

(55)

(56)

and these results substituted in Eq. (22) give the Born
approximation.

The calculations for P(8) gave results that were not
entirely expected. The small-angle inQuence of the MS
term previously discussed is clearly present in all cases.
This effect, like the small-angle effect on do (8)/dQ, is
generally greatest at low energies and high Z. The
calculation for Nb at 0.5 MeV (Fig. 5) substantiates
the inQuence of the MS force as calculated in Refs.
6 and 7, although there is a general lack of agreement
with the experimental results of Ref. 7 at 56' and 86'.
This "small-angle" effect is seen to exert a significant
influence on P(8) for Bi at 0.5 MeV at angles as large
as 40'—50' (Fig. 7). In all cases, at the low energies
investigated, this inQuence is evident out to 20', and
as 3ust noted, to 50' in the extreme case; however, for
the highest energy (24 MeV) this influence is restricted
to the 10'—15' range. For all isotopes studied, this
small-angle effect is the only one observed at low ener-
gies. However, for the higher Z nuclei and at the higher
energies, the polarization is seen to be inQuenced by
the MS term in a somewhat diferent manner. See, for
example, Mn at '/ MeV in the 50'—60' range (Fig. 3),
and Bi at the higher energies in the 25'—40' range
(Figs. 9, 10, and 12). Indeed, Bi at 7 MeV shows an
effect at 130'—140' (Fig 9). An examination of the
curves indicates that these effects on polarization occur
at angles which correspond to regions near minima in
the cross-section curve.

The general results of the polarization can be ex-
plained qualitatively. At very small angles, the cot-', 8
term Lsee Eq. (50)) dominates the quantity h(8) when
the MS term is included in the potential. As 8 increases,

( h(8)
~

tends to become small relative to
~ g(8) (

and
effects on polarization are not seen, unless

~ g(8) ~
is

near a minimum. That is, at most angles (not too
small)

~ g ~'&&~ h (' and 0~~~ g '. However, at or near
cross-section minima

~ g ~' and h ~' can be of the same
order. Since, also, the inQuence of the MS term is
usually stronger on h(8) than on g(8), the MS effect
on polarization can be expected to be non-negligible

when
~

h ~) ~
g~. At even larger angles, the cot-', 8

contribution to h(8) becomes very small and even
though do/dQ is generally small at these large angles,

g(8) and k(8) are changed so little by the MS term
that little effect on the polarization is noted Dor ex-
ample, Bi at 7 MeV and 60' (Fig. 9)j.

Since the strength of the nuclear spin-orbit term is
not well known, it was varied to study the inQuence it
might have on the calculated polarization curves. At
low energies, moderate variations of V, were found
to exert virtually no inQuence on the polarization
curves. For example, for Nb at 0.5 MeV, the curves
calculated for V, =7.2 MeV and V, =10 MeV were
indistinguishable. This confirms similar findings noted
in Ref. 7. In order to evaluate this eBect at higher
energies, Bi polarizations at 7 MeV and 24 MeV were
examined for V, values of 5 MeV and 10 MeV. In
general, the polarizations were larger for larger V,
magnitudes as expected, but the changes in polariza-
tions due to the MS term were not substantially
eGected.

Figures 14 and 15 show small-angle polarizations
for Bi at 7 and 24 MeV. The finer angular spacing
taken for these calculations shows the polarizations
reach nearly 100% at some angle (less than 1') in
both cases. This means, of course, that the wider
angular spacing used in the other calculations may not
show suflicient detail to give the maximum polariza-
tion in all cases. Figure 16 shows the small-angle
differential-scattering cross section for Bi at 24 MeV.

These large polarizations (Figs. 14 and 15) could be
a useful source of polarized neutrons if one could achieve
sufhcient collimation to separate the unscattered neu-
trons from the highly polarized beam scattered at the
very small angles.

It is perhaps interesting to note that both the scat-
tering cross section and the polarization are increased
at small angles by the MS interaction, whereas one
usually finds small cross sections at angles where the
polarizations are large.

IV. SUMMARY AND CONCLUSIONS

We conclude with a brief summary a,nd a few state-
ments relative to the conclusions which can be inferred.

Optical-model calculations have been performed to
determine the effect of MS scattering on the differ-
ential cross section and on the polarization resulting
when neutrons are scattered by nuclei. The results are

(1) The differential cross section is influenced only
at angles of 2' or less.

(2) The polarization can be influenced at angles
much greater than had been previously considered,
primarily at angles which lie near minima in the cross-
section curve, and at the higher energies considered.

(3) For the energies and nuclei considered, the MS
inQuence tends to be large for large Z and small E,
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although the "large-angle" effect is not present for
8&i MeV.

(4) Use of the Born approximation to compute that
part of the phase shift due to the MS potential is found
to be entirely adequate for all cases considered.

One concludes from this that, since the polarization
influence of MS scattering extends to large angle for Z
not too small, any optical model study which attempts
to 6t polarization data or to make some evaluation of
the nuclear spin-orbit term must include the MS po-
tential. Moderate variations of the nuclear spin-orbit
strength around the Percy and Buck value of 7.2 MeV
do not significantly inRuence this conclusion.

An analysis of the influence of the MS force on n-p
scattering is in progress and will be submitted for
publication in the near future.
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Projected Hartree-Fock Spectrum of "Si Including Effects of
Pairing and Shape Mixing~
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The energy spectrum of "Si has been calculated using the angular-momentum states projected from
the oblate and the prolate Hartree-Fock solutions. The Hartree-Fock solutions chosen by us take into
account all 28 nucleons, and therefore the eftect of the polarization of the "0 core has been incorporated
into our calculations to some extent. The complexity of the projection calculation has been greatly simplified
by suitably using the known symmetries of the Hartree-Fock solutions. The theoretically predicted energy
spectrum is compressed by about a factor of 2 when compared with experiment. The small energy gap
between the oblate and the prolate Hartree-Fock solutions suggested the possibility of admixing the two
solutions by the two-body interaction. The two solutions diGer in the four-particle —four-hole states in the
intrinsic frame, and therefore the admixture was calculated in the projected basis. The mixing, however,
turns out to be too small to acct the spectrum. Another attempt to improve our results was made by
including the corrections due to the T=1 pairing in the Hartree —Fock solutions, and then calculating
the energy spectrum using the states projected from the corrected intrinsic states. The corrections due to
the T= 1 pairing turn out to be of the order of 2% for both the oblate and the prolate Hartree-Fock solutions.
This result is consistent with the earlier Hartree-Fock-Bogolyubov calculations on "Si, which predict no
pairing affects. Because of the small size of the pairing corrections, the projected energy spectrum from
the corrected intrinsic states does not show any significant improvement.

I. INTRODUCTION

N recent years extensive Hartree —Fock (HF) calcu-
. „ lations have been performed for even-even (X=Z)
nuclei in the 2s, id shell. '-' For the nuclei in the
lower half of the 2s, id shell such as "Ne and "Mg,
with more or less well-de6ned rotational properties,
the results of HF calculations are in reasonably good
agreement with the experimental data. It is now be-

*Research sponsored by the Air Force Once of Scientific
Research, Once of Aerospace Research, United States Air Force,
under Grant No. AF-AFOSR 947-65.

f Present address: Lawrence Radiation Laboratory, University
of California, Berkeley, Calif.

f Present address: Physics Department, Oregon State Uni-
versity, Corvallis, Ore.'I. Kelson and C. A. Levinson, Phys. Rev. 134, 269 (1964).' J. Bar-Touv and I. Kelson, Phys. Rev. 138, 1035 (1965).

'M. K. Pal and A. P. Stamp, Phys. Rev. 158, 924 (1967);
A. P. Stamp, Nucl. Phys. A105~ 627 (1967).

lieved that the HF theory together with angular-
momentum projection techniques provides an ex-
tremely satisfactory scheme for carrying out realistic
calculations for energy spectra of nuclei having perma-
nent deformations, i.e., rotational properties. For nuclei
in the upper half of the 2s, id shell such as "Si and "S,
where there is no conspicuous display of rotational
features, the philosophy underlying the HF calculations
is to emphasize the qualitative understanding of nuclear
properties such as shapes and the nature of defor-
mations. Among these nuclei, "Si presents a very
interesting case.

A number of calculations have been performed for
"Si to determine its intrinsic shape and other properties
using phenomenological as well as realistic two-body
forces. ' 4 These calculations predict that "Si has two

' S. Das Gupta and M. Harvey, Nucl. Phys. A94) 602 (1967).


