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It is shown that information about the nuclear electromagnetic-transition vertex derived
from experimental inelastic-scattering cross sections for electrons may be used to evaluate
the nuclear-polarization (dispersion) corrections to the levels of muonic atoms. A model-
independent result is obtained for the contributions of discrete nuclear states. The most
important systematic features of nuclear-excitation spectra, the giant-dipole resonance
and the quasielastic peak, are considered in detail. The Goldhaber- Teller model is used
for the former, and a simple-harmonic-oscillator shell model for the latter. Numerical
estimates are obtained for total level shifts of low-lying muon states in nuclei with closed
(harmonic-oscillator) proton shells, using closure approximation for the muon. The muon
closure energies are considered in detail. It is felt that the results obtained are probably
accurate to a factor of 2.. The shifts are estimated to be several keV for the 1s state in
heavy nuclei, and somewhat less (a few tenths to about 1 keV) for the 2s and 2p states.
These shifts are significant in comparison to the present accuracy of measurement of
muonic x-ray spectra, and should be considered in calculations to fit nuclear-charge dis-
tributions.

1. INTRODUCTION

In 1949, soon after the properties of the muon
began to be understood, it was realized that this
particle could b' very useful as a probe in measur-
ing the electromagnetic properties of nuclei. ' The
muon has no strong interactions; in fact, except
for the weak interactions permitted by its 200
times greater mass, it seems just a heavy elec-
tron. In particular, muonic atoms can be formed
in exact analogy with electronic atoms. Because
of the mass ratio, the muonic Bohr orbit is ~
that for an electron, so that for heavy nuclei such
as lead (Z= 82) a 1s muon spends about one-half
its time inside the nucleus, which is quite trans-
parent to it. This makes the energy levels, and
therefore the transition energies (which are in the
x-ray range), very sensitive to the nuclear-charge
distribution; for example, the binding energy of a
18 muon in lead is reduced by almost half from the
point-Coulomb value by the finite size of the nucle-
us.

A few years later the x-ray spectra of several
muonic atoms from titanium (Z =22) to lead (Z =82)
were measured by Fitch and Rainwater. ' These
were analyzed to find the radii of the nuclear-
charge distributions, and gave 8 = 1.2A't" F—
markedly smaller than the then accepted R= 1.4
—1.5&'~SF. A companion paper by Cooper and
Henley' showed that this difference was almost
certainly not the result of any neglected effects.
There had been earlier suggestions of an electro-
magnetic radius of about this size, ' and the elec-
tron-scattering experiments of Hofstadter et al. '
gave rapid confirmation.

These two methods, muonic x-ray spectra and
elastic electron scattering, have become the
standard tools in measurements of nuclear-charge
distributions.

With subsequent improvements in experiment and
theory (in particular, inclusion of vacuum-polariza-
tion effects corresponding to excitation of virtual
electron-positron pairs) agreement between the

two methods has become extremely good, and de-
tailed enough to fit several parameters of the
nuclear- charge distribution. The most familiar
form used is the Fermi distribution

p(r) = p,(1+exp[(r- c)/a]]-',

with c = 1.12''~' F, a = 0.5 F. (1.2)

Occasionally muon and electron experiments give
results which appear to differ outside of experi-
mental error. There seem to be two possible ex-
planations:

(1) The two experiments are sensitive to differ-
ent aspects of the charge distribution, and we may
be fitting a distribution which is not really appro-
priate. As Elton said at W'illiamsburg "The
Fermi distribution is not God given, it isn't even
Fermi given, "and quite good fits can also be
gotten with shorter-tailed distributions such as
that generated using the shell model in a Saxon-
Woods potential. ' Such a distribution is clearly
more reasonable physically than the simple Fermi
shape.

(2) The two experiments are really measuring
different distributions, because the electromag-
netic fields of the muon or the electron distort
the nucleus —presumably differently. These ef-
fects are referred to as "nuclear-polarization
corrections, "and have been called by Ravenhall'
"the largest contribution to the uncertainty in the
theoretical predictions. "

Before we can draw any conclusions about (1) we
mux" put some limits on (2).

Nuclear polarization was one ef the possible ef-
fects considered by Fitch and Rainwater. ' They
estimated that the effects were less than 1.2, 13,
and 60 keV for the ls states of aluminum (Z = 13),
copper (Z = 39), and lead (Z= 82), respectively.
These estimates were deliberately rather high,
and more recent calculations have reduced them
considerably, to something like 1 to 10 keV for
the 1s state of lead or bismuth. Contributions
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have been estimated for the nuclear core and col-
lective excitations, '~" and for valence nucleons
such as the odd proton in bismuth 209." Until
about 1964 these effects were totally negligible:
the NaI scintillation detectors then in use had res-
olutions no better than a few hundred keV. With
the introduction of the Ge(Li) detector, resolutions
have been improved by two orders of magnitude,
producing a considerable revival of interest in
muonic x-ray spectra. Transition energies may
now be measured with a precision of 1 keV or bet-
ter so that nuclear-polarization effects, while
small, should still be observable and must be con-
sidered if we are to benefit from the full accuracy
of the experiments.

One case in which the effect is much larger is
the so-called "dynamic quadrupole effect" in nu-
clei with low-lying rotational bands of energy com-
parable to muonic fine structure. "~' In this case
the levels are strongly mixed, and a large quadru-
pole splitting (100 keV or more in favorable cases)
can be observed, even in nuclei with no ground
state electric-quadrupole moment.

Our aim will be to estimate the remaining nucle-
ar-polarization shifts —particularly core effects-
for the ground state and for excited states as gen-
erally as possible. W'e attempt to evaluate the
most important contributions in what is in principle
a model-independent way, by observing that the on-
ly unknown quantity in the problem is the nuclear
electromagnetic vertex, about which a great deal
is already known from inelastic electron scattering.
The actual calculations will be somewhat schemat-
ic, using typical average properties of nuclei
rather than those appropriate to some particular
nuclei. The results are still approximate enough
(probably at best a factor of 2) so that more detail
seems unjustified, and the use of average param-
eters is intended to aid interpolation to intermediate
nuclei. A preliminary version of part of this work
has been published previously. "

As an aid to visualizing the situation, we give
in Table I some approximate values of sizes and
energies for muonie atoms, and their relations to
electronic atoms.

2. THEORY

An exact solution of the muonic-atom problem would require diagonalization of the total Hamiltonian of
the coupled system of muon and nucleus

(2.1)

A A

H = —e fd xj (x)A" (x) =-- e fd z(p P-j ~ A) . (2.2)
A A

Aa = (A, @) is the electromagnetic potential of the nucleus. It is convenient to work in the Coulomb gauge,
V ~ X = 0, separating the three vector J into longitudinal and transverse parts, defined in general by

(2.3)

HON+ t +H
ON p, em '

where HON is the total nuclear Hamiltonian, t~ is the muon kinetic energy, and Hem is the electromagnetic
interaction of muon and nucleus. This interaction is given by"

Then the potential is related to the nuclear current by

f = —ep~, CIA= —eJ (2.4)

TABLE I. Sizes and energies of muonic atoms.

Quantity

(~2) f/2~ (mZ)-|
1s

Nuclear radius
Binding energy

, ocmZ1s'
Fine structure,

2p, fx: mZ
Hyperfine M1 splitting ~ m Z

Hyperfine E2 splitting ~ m3Z3

Vacuum polarization, (1s), c)c Z4m

a
m /m =200.

p e

Ratio to a
electronic atom

(200)-'

200

200

(200)~

(200)'

200

260 F

F
3 keV

0.01 eV

Point
nucleus

F

-20 MeV

Z -80
Extended
charge

150-200 keV

-2 keV

-10-100 keV
(deformed)-80 keV
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H 0-&0lH
l 0&,

where l 0& is the nuclear ground state. The most important part of Hem0 is a spherically symmetric
Coulomb well

(2.5)

This assumes R local nuclear current, but does not further restrict its form. What has been done is to
separate the electromagnetic interaction into an instantaneous Coulomb part and a retarded transverse part.

In lowest order, we may replace the nuclear current by its ground-state expectation to get

Vc = —a!fd'x p (x)(4m) ' fdQ fd'y [(olpN(y)I0&~lx-yl] . (2.6)

There may also be nonzero (even) electric- and (odd) magnetic-nuclear-moment terms, but we will neglect
these for simplicity, imagining them to be treated if necessary by a separate perturbation calculation.

We can now write, in anticipation of a perturbation expansion,

H=H +H', H =H0„+t +V, H'=H -(olH lo).

H is simply the coupling to the nuclear transition current, and is responsible for the nuclear polariza-
tion. It has diagonal matrix elements equal to zero, "and off-diagonal elements equal to those of Hem,
since (Ol Hemi 0) is a nuclear c number.

(2.S)

H, does not couple nuclear and muon coordinates (V~ is a nuclear c number), and the unperturbed solu-
tions are therefore direct-product states l »M&lnfjm&, where

H0NlrI&=& Il»& (f +v~)l«jm&=~
f l«j~&.yI '

p, C nlj (2.9)

We should really consider states of total angular momentum F =T+ j [this is the lowest-order effect of the
nuclear-moment terms omitted in (2.5)j,

I~I ~fj'FIvIQ = ~ (II~jml~jFM )lr&~&l«fm&.
Mrn

For simplicity we will average matrix elements of any operator in the coupled system over hyperfine struc-
ture by taking (2I+ 1)-'(2j+ l) 'Ql;(2F! l). The orthogonality of the Clebsch-Gordan coefficients shows
this to be equivalent to individually averaging over nuclear and muon orientations by taking (2I+ l) 'L~(2j
+ l) 'Q in the uncoupled basis.

SinceVhe diagonal matrix elements of 8' are zero, the first contribution to the energy comes in second
order in II . The retRrded nature of the interaction makes it natural to use Feynman perturbRtion theory'
the two graphs which contribute are shown in Fig, 1, where the nuclear vertex is understood to have no
diagonal matrix elements. (The analysis may be performed in time-ordered perturbation —with the same
results —,but it is necessary to treat Fig. 1 as fourth order in the interaction of the currents with the
electromagnetic field, and allow intermediate states to contain real photons. There are clearly many
time-ordered processes. )

The energy shift is just the real part of the diagonal matrix element of the transition matrix T, which
is related to the scattering matrix S by

S = ~ - 2~zr(Z Z)T- (2.lo)

Syi may be written down directly from Fig. 1 using the Feynman rules for an external fieM representation"
RS

(4,.)'Jd'. , '. d'. d'. [D ( —.)D (.,—.,).D„(.,-',)D, ( 4
—.,)~

(2.ll)

Here 4 is a nuclear wave function, and Q is a, muon wave function. SFe is the external-field Feynman
propagator and Do!p the electromagnetic propagator. I"

&
is the nuclear-transition vertex (equal to the

total vertex but with diagonal matrix elements equal to zero).
Since the muonic atom is not very relativistic, we will use the nonrelativistic limit of the Feynman

propagators

iSF (x, x') =Z y (x)y +(x')S(f t'), -—iE t
q (x) =q (x)e

n n
(2.l2)

for both the muon and the nucleus. This is "nonrelativistic" in the sense of omitting particle-antiparticle
pairs in time-ordered perturbation theory, where they are high-energy excitations (twice a particle mass)
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FIG. 1. Diagrams contributing to nuclear polarization
in lowest order.

and correspondingly unimportant.
We will also separate the electromagnetic propagator into Coulomb and transverse parts

D(x) =u (x)+D (x),T (2.i3)

where the nonzero components are
4 iqx 4 iqx . q q.

C( ) l
d q 8 D T( )

d q e ~
i

) (2m)4 q2 —iq' &i (2m)' q2-irI &i q''

Use of the Fourier transform of the 8 function
0

e(t) = (2mi) f ds e /(s —in) (2.i5)

allows us to do the time integrals in Spl, getting a 5 function for each. The spatial integrals all have the
form

~W

fd xy2(x)y qi(x}e '~'"=Z
(q)2i

and pe —qiq&/l ql in D just projects out the transverse parts of both currents. We then identify

T =- (4mo) Z
2 ~ g dsq .

I dq d(d i
(2w)'J (2w)' 2mi aZ+&a —in

&& f(ae —co-ia) [p (q') p (-q'). /q' —z (q') j (-q'). /(q' (o —iq)]—

(2.16}

x [p (q) p (-q) ./q —J (q) ~ j (-q') /(q —~ —iq)]

+(&e+(u —io. ) [p (q') p (-q') ./q' —J (q') ~ j (-q') ./(q' —~ —ip)]

x [p (q) p ( q), /q Z (q) ~ j (-ci}. /(q —&u —ill'I, (2.17)

where ~E=E~- Eo and &e= en —&i ~

It is convenient to make a multipole expansion of the Fourier transform of the currents into angular-
momentum components, using the Coulomb and transverse-multipole operators defined by"

SS (q) =i fd xj~(qx)i' (& )P(x),

(q)=i q Jd xi&[j (qx)&~ @(& )] Z(x),
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(q) = g, J'd xf (q'x)YKK1 (~

fKQei, and tKQm g similarly defined for the muon. Here

(KMlm
I
K1K'Q) 1"KM(fl )e (2.19)

(2.20)

(2. 21)

K+Jf-
J (q) .= Z (-)

KQ

and the e~ are related to an orthogonal right-hand triple of unit vectors e~, ey, ez =q/I q I by

=+2 '~'(e +ie ) .
0 -' +1 x y

The multipole operators .'n (2.18) are irreducible-tensor operators of rank K. In terms of them, we have
for the currents

K+J —M t/ f ih
p(q);= ~ (-)

I
«1'K (fl )&fllMK(q&ll f&,'

KQ (-M QM,

x [2m(2K+1)]'"&f II fK (q) —~~K (q)Ill& ~

pre can now substitute these expressions into TII and average over hyperfine structure by taking (2I, + 1)
x+M(2j + 1) Q~, since T is evaluated in an uncoupled basis. The sums on magnetic quantum numbers
m, M and m' M' (of n and N) eliminate the three-j symbols, and the integrals over the angles of q and q'
can then be done using the orthogonalities of the F's and of the 's. Use is made of the following relations

j~-j.+E
p(- q) .= p(q), &f IIMK(q)l[f& =(-& ' &fllMK(q)llf&,

(2.22)

j (-q) =j (q). , &fll& (q)llf) =(-) &fllT (q)llf&.

The co integral can also be done an@-its real part taken to give the energy shift. "
.
2

. =-(«o)' 2 . 5+ s' —f dq&NIIMK(q)llo&&~ll~ (q) ll«j&

+
1

I

—'

dq' q &NIIT" (q')llo&*&vllF (q')llnfj&*-f, dq&NIIM (q&llo&&~II+K(q)ll«j&+'' I

(q' + ~)(q' + ) K m
O

q q AE«}
+— dQ' — dg'— AE b+c q+q++ +

(q'+ m)(q'+ «)(q+ nE)(q+ «) 6E+«q+q

(2.24)

(2.26)

The two components of the cross section may be separated by the different angular dependences of VL and

V~, allowing experimental measurement of two response functions

R (q, u) = [4v/(2IO+ 1)]Z~SKI &NIIMK(q) llo&
I &(EN —Eo —")

R (q, (o) = [4m/(2IO+ 1)]Q SKI &N II TK(q) llo& I n(EN Eo- ~}. -
(2.27)

x &N II T (q') ll 0& & ~ II i (q') ll «j& &N II TK(q) IIo&& ~ II fK(q) II «j& (2.22)

Here p denotes the Cauchy principal value of any improper integral (the q and q' integrals may be improper
«& O). pre have also employed a shorthand

el- el - mag- mag
K

A

No confusion can arise as TKe and TK ag have opposite parities.
The unpolarized double-differential cross section for inelastic scattering of an electron from (k„e,) to

(k e ) through angle e may be expressed in terms of the multipole operators as"

gQs(E -E +~2- el)[V~(e) I&NIIMK(q&llo&I + VT(e) I&NII TK(q&IIO&l ]

where q =(k —k, 6 —E ), V (8) =-'(q ~/q~)[(e —e )'-q'], V (8) =4Ik —k I'-2(k '-0 ')'/q'+2q
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(2.28)

W'e see that since the reduced matrix elements are large where the cross section is large, the same nu-
clear excitations which are important in inelastic electron scattering will be important in nuclear polariza-
tion.

For the case of a discrete excitation with angular momentum K of a spin-zero nucleus, only one multipole
contributes to the cross section and to the nuclear polarization. We can then make the replacements

&&III~&q&llo& I 4 I &z &q, &&l'", +&I&i &q&llo& ( 4+ ) &a &rz, &&] ", &a.28&

in (2.23) and integrate &u over the line width. Here i is el or mag as the parity of the excitation is + (-)+,
and we are to take tE'~ for the muon. In principle we can evaluate the energy shift due to this excitation
without resorting to any nuclear model. The muon matrix elements are known (the muon wavefunctions
are just solutions of the Dirac equation), and the nuclear matrix elements may be determined from experi-
mentally determined scattering cross sections (the response functions will have to be extrapolated into the
region 0 &q«u using the known threshold behavior since q' ~v' for physical electron scattering). The
square root is unambiguous: the phases of the reduced matrix elements in R and R& are known by time
reversal 's

Even for low-lying states, the cross sections are not really known with sufficient accuracy to use Eq.
(2.28), and for higher states or for nuclei with nonzero spin, the contributions of the various multipoles
cannot be resolved at all, so we must use other methods to actually estimate the energy shifts. We may
still make use of the relation to electron scattering by computing the nuclear matrix elements in (2.23}
using models which have proved good for electron scattering and including in the sum the states which are
important in scattering.

A typical double-differential cross section is shown in Fig. 2, reproduced from deForest and Walecka. "
We see an elastic peak (at ~ = 0) which is not relevant to the polarization problem, various low-lying states
and resonances among which the giant dipole (GD) is outstanding, and a quasielastic (QE) peak at ur = q'/2M.
The rising cross section above ~ =mz represents pion production which is of little interest to us since the
excitation energy is so large. The GD and QE peaks are systematic features while the other low-lying
peaks vary from nucleus to nucleus.

We will attempt to estimate the contributions to nuclear polarization of these systematic features of the
excitation spectrum, the GD resonance and the high-lying excitations responsible for the QE peak, keeping
only the Coulomb part of the interaction. The transverse contribution will be shown to be much smaller.
A calculation of this type, separating out the GD contribution, has been quite successful in muon capture. '0

A great simplification may be effected in our estimate of the energy shift by employing closure approxi-
mation for the muon: taking an average muon excitation energy outside the sum on intermediate muon
states and observing that Z pl v)(vl = 1. This also aids in demonstrating the relative importance of Coulomb
and transverse terms.

It is convenient to work with the muon operators explicitly in coordinate representation. Since the muon is
a spin-& point particle

p(x) = 5(x- z) .
The current operator is, in general

j(x)=j (x)+Vx p(x) . (2.30)
A IA

Here l
c is the convection part, j = m lp with p the momentum density, and V x g is the (divergenceless}

magnetization part with g he magnetization density (divided by e), and in coordinate representation,

2
I d &&

M
dQ& dip

2
y = k cosOa a 28

M y p

FIG. 2. Typical double-differential cross section for
inelastic electron scattering, from deForest and Walecka,
Ref. 18.

k~
q

PM
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j (x) =(im) [ft(x- z)V ]

l/, (x) =5(x- z)(2m) 'o,
where cr is a Pauli matrix.

Then

(vip(q)li&= fd xe + q (x)q.(x),

and if we denote by T the tensor which projects out transverse parts in a Fourier transform,

7 =~,, -qq /lql,

we have
&ac )fc

(vl I (q)
l

i& = fd xe [&p (2im) V&p —&p.(2im) V&p + V &«p (2m) o &p.] ' T

or, after integrating by parts,

(v j (q)li)= fd xe
'

&p [(im) v+iq&&(2m) &T]&p. T.
Then, after using closure in the form Qv&p v (x')&p (x) = 5(x —x'), we have

Z &vip(q')li& &vip(q) i&= fd xe'q

The cross term is

~ &vl p(q') li&*&vl j (q)
I

i& = fd xe' &p.*[(im) v+ iqx(2m) o] &p.

and thetransverse- transverse term

(q')li& &vli (q)li&= fd xe'q

(2.31)

(2.32)

(2.33)

(2.s4)

(2.s5)

(2.s6)

(2.37)

(2.38)

T' (- (im) V&p 8 iq'X&P .*(2m) g)((im) V&P . + i q x(2m) &y&P .)T (2.39)
2 Z

%'e are to average over fine and hyperfine structure by taking

2 '(2l+1) 'Q. which is the same as (2l+1) 'Q 2 'Q nonrelativistically.
2m 7Xf I

S
Any term linear in 0 will go to zero because the trace of o is zero.

Then, dropping the T s and estimating the magnitude of the tensor j i by taking its trace, the three terms
(2.37)-(2.39) become

(ilppli&= fd xe'q q "&p. &p., (ilpj li&=(-i/m) fd xe'q q "x x&p. (a/ax)&p. ,

Tr&ilII" li&=m fd xe'q q
'

(v&p. v&p +-'q' qq. &p.) .
Nuclear- current conservation q ~ J(q) = «/p(q) implies that

l
J'(q) l, - (&&/q)p(q), .

and a partial integration of the magnetization term gives

lvx p, (q)l .-qgp(q) .-(q z/2M~)l J (q)l

(2.40)

(2.41)

(2.42)

Here we have used

i& =X/2M,
where X = 5 is the isovector moment of the nucleon and Mits mass.

If R is the nuclear radius and (r & the mean square radius of the muon orbit, we would expect the im-
portant range of momentum transfers to be between about min(R-', (x'& '/') and at most a few times B '.
Outside these limits the matrix elements are small.

Rough values for large and small nuclei are
—1

&Q&
—1/2 g- 1

I3 ~S
(MeV) (MeV) (NieV)

6 6 50
60 30 30

(2.4s)

~min
(MeV)

6
30

Z=8
Z- 80

m - 100 MeV, M- 1000 MeV, and a typical ~ is - 10-20 MeV.
Using these values, and estimating I V&I/il by (x'& '/'Pi, we see that for the important ranges of q and q',

the convection part of the nuclear current dominates and that q'q/m' is a fair bound on the muon jg term.
Then the three contributions to (2.23) are in the ratio
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2 -i12 aZ 2 qq'

(q+ m)(q+(«&) ~ (q'+ ~)(q'+(«&)(q+ ~)(q+(«&)

(2.44)

(2.46)

(2.47)

(2.48)

Here (x&, x) ) = (x, z). X is chosen to give (2.47) the correct value so that it is just

~ ~«~-E0",—~„fj) 'l&~l&&IIf~'10&l«j&l'
NWO v

N40 v

whereII~ is the Kth multipole component of the interaction. E is a typical nuclear excitation energy.
(e&ff I is the "average" muon excitation and (2.49) serves to define the appropriate average. In the sum

K, n/j

g (E -z e — f.)- l&~l&xlaz. 'lo&

the nuc]ear matrix element is just Zff(z)Y~(&z) in coordinate representationfor the moun. If we make anon-
relativistic reductionfor the muon, separating spin from orbital angular momentum, the Coulomb inter-
action does not affectthe muon spin. We may simply drop the spin andlabel states by nl rather than nlj, or
alternatively use the reduction for a tensor operator operating only on one part 1 of a coupled scheme
1+s = j. The radial wave functions are complete (in z) for each value of l' permitting us to take angular
matrix elements first and then use closure approximation sepatately for each I'. This allows us to define
a different closure energy for each. The angular matrix elements are just

(2.49)

x [(~+&«&+q')(~ +&«&+q) +~&«& (&E+&«&)/(q+q')l

where (.. .) denotes some average value for q and q' both in the range from (Q& 'I' to a, few times p
Both (.. .) terms are less than or equal to I for any q and q' in this range and any reasonable ~ and (~).
The quantity 2(r'& '"/m& 0.6, and is smaller for small nuclei, and for a+& 20 Mev' (~/m)'& 0.06.
(«& may be negative, but certainly l(«&l'& Zo.(H& '~'/2, so that the singularities in q and q' are well out-
side the important ranges. The importance of the singularity is usually further reduced by cancellation
in taking the principal values of the integrals, but there may be exceptional cases where the effect is large.
Note that the existence of nearly degenerate nuclear and muon excitations, making (AE+ Ae) ' very large
for the upper muon state, does not affect the ratio of Coulomb to transverse contributions much. It does
make the Coulomb and cross terms large, and such excitations should really be included in the initial di-
agonalization of the Hamiltonian as has been done with the dynamic quadrupole effect, using the methods
of nearly degenerate perturbation theory.

Our estimates have been crude, but we have tried to overestimate the transverse current at every point.
Thus, despite the uncertainties of,making approximations in oscillating integrals, and the fact that (2.44)
is not really a rigorous upper bound, we feel that our estimates are realistic, and that the transverse cur-
rent probably contributes at most half as much to the energy shift as the Coulomb interaction (although
there may be exceptional cases, particularly if (e& is negative). The transverse interaction can probably
be neglected in a calculation of this accuracy, and we will do so. This result is not surprising since in
the interaction with the ground-state nuclear current the transverse interaction (magnetic hyperfine struc-
ture) istypically much smaller than the Coulomb (electric hyperfine structure).

Expressing muon closure for the Coulomb term in (2.23) in terms of reduced matrix elements

(2j+ I) 2 (&II&&ll«j& &&IIII ll«j& =2 5 (&l& l«j) & ~lfl l«j) =Z &«jl& 8 lnfj&, (2.46)

and then using

Z I'~ I~ =(2m+I)/4~

we have

(2j + I) & &&II~~(q')ll«j& &&II~~(q)ll«j& =[(2If+ I)/4~] Jd xj (q'x)j (qx)&nfjl p(x)lnfj&.

We can then write the energy shift in a particularly simple form by separating the muon closure energy
out in a "closure factor" X as

.& Ijl v

where in coordinate representation

, ~(~)=-~ 2z, l ~ E E4&l „f «&-(q~)&&IIM~(q)llo&

P Ngp N P

I (2l'+l)(2K+ l)(2l+ 1) 'I'
~

l'Kf
K 4m «00 0

(2.50)
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so that each permitted value of /' contributes a fraction

of Vpol ~ and (2.49) is replaced by

f. -g(2l'+1)
0 0 0 l

x l' l''
where

(2.51)

Z Z (E E0+-,,-~,.)-' &nf'l&~ ff lo&lnfj&l' z

- & ) ' &o'f'I &+I If 'I 0&
I «j& I' &+&'&

X40 v
E E n/g I'

(e& ~ nfj f~ is now the "average" muon excitation energy for multipole K to excited states with angular
momentum f'. Averaging (2.51), (2.52) over l' restores (2.49), but we will find later that the variation of
XIf nfj f~((e&If, nfj-f') with l' is often quite significant, particularly whenthereis an available interme-

diate muon state of lower energy than nlj (in these cases (e&nfj f& may be negative)

QKXIf „f Vpol If can be interpreted as the change in the spherically symmetric part of the nuclear
Coulomb potentta'1 caused by the distortion (polarization) of the nucleus by the Coulomb field of a muon in
the state ~lj.

The second form of (2.48) is exactly what one would derive more directly by treating the instantaneous
C oulomb interaction

H '= —Qfd'xfd'y[p~(x) —(0 p (x) 0)]p (y)/lx —y

in simple second-order perturbation theory, and ignoring the possibility of hyperfine structure (the reduced
matr~ elements for the nucleus would come from a simple average over its possible orientations).

(2.52)

(2.5s)

(s.2)

3. DIPOLE EXCITATIONS IN GOLDHABER-TELLER MODEL

The first contribution to be considered is that of the GD resonance. Rather than attempt to use de-
tailed experimental cross sections, we will use the familiar Goldhaber- Teller (GT) model. This model
has the virtue of being extremely simple while still providing a reasonable fit to experiment. "

We assume for this model that the protons move together, and oscillate against the neutrons (also moving
together) with a harmonic restoring force. The Hamiltonian for the relative motion is

a= (2p) 'P'+-'p~'R', (s.l)
cA A,

where R and P are the relative displacement and momentum operators, p = (EZ/A)M the reduced mass,
and + the energy.

We quantize the system in the usual way, using the creation and destruction operators 8 and firn(m =0,
s 1), where

[a~,a, ]=6 „a l0&=0

(s.4)

(s.e)

and 8 =(2p&u) [a +(—) a ], I' =i (p&/2) [a —(-) a ]. (s.s)

The protons are displaced by (X/A)R relative to the nuclear center of mass so that

p (x)=p0(lx- (x/A)Rl).

The GT state corresponds to the lowest dipole excitation (1P) of the system I GT, m& =a~ l 0&, and is
coupled to the ground state only by the dipole operator. Then

A

(q) = fd'xj (qx)1'1~(fl )p (l.x-—Rl)=-AR fd'xj (qx)1' (fl )x ' x —p (x) (s.5)

keeping only the lowest order in R, which is assumed to be small. %e can do the angular integral at once,
and then integrate by parts to find

(q) = (iV/A)q(pc)'"ff~ f dxx'p0(x)j0(qx) .
Then the reduced matrix element is

&GTIIM~(q) 110& = s'"&GT M = o
l
~~o(q) l

0& = (&IA)q(4v!2 p ~)'I'f dxx'p, (xj),(qx) . (s.7)

We substitute this into the first part of (2.48) and do the integral on q observing that j (qa) — q-1(d/d ) ( )
and

(2/~) f, dqi0(qab0(qa) =r& ', (r&, r&) =(x, z) .
The x integral is then simply

—f dxx'p0(x)r& '--(4~o.')- V (a)

(s.s)

(s.9)
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and —V
1 G (z) =(224MEGD') g s—VC(z)~ (3.10)

This has been derived as if I,=O, but is„true in general if we average over the orientation of the ground
state. The crucial observation is that P and therefore t)(x), operates only on the collective part of the
motion, and does not change the relative motion responsible for I,.

The intuitive interpretation of (3.10) is simple. The transition charge is the derivative of the ground-
state charge (just a factor of q in the Fourier transform), so that the transition potential is the derivative
of the ground-state potential Vp. The nuclear-polarization potential can be easily evaluated in this model
for any ground- state charge distribution.

4. EXCITATIONS IN SHELL MODEL

The second systematic feature of inelastic-scattering cross sections is the quasielastic peak. Here the
interaction approximates scattering from individual quasifree nucleons, "~"and leads to intermediate
nuclear states where one nucleon has been raised to a higher energy level. For the polarization correc-
tions we expect the same states to be important. At the higher excitation energies, one nucleon is struck
hard enough that the. second interaction must be with the same nucleon to get a reasonable overlap with the
ground- state.

We would therefore expect a simple independent-particle shell model to give a reasonable description of
the relevant states. Such a model has been found to work reasonably well for electron scattering, with
even the simple harmonic-oscillator model giving a fairly good over-all fit although it fails in details.
This is also the model used by Foldy and Walecka" for nondipole excitations in muon capture.

We will restrict our attention to nuclei with closed proton shells for which the single-particle levels are
filled up to some Fermi energy. Excited states for the polarization problem correspond to excitation of
a single particle out of the Fermi sphere (7 is taken as a sum of single-particle operators, and cannot
excite more than one particle at a time), and will be denoted by ] N, L,,M2(N, I.,M, )) for a particle excited
from N,L,M, to N,L,M, .

The Coulomb transition potential of the nucleus is

V (z) =(N2L2M2(N1L1M1)l —n fd'x[p (x)/'tx- z[]l 0}=Q '0 (g)V (n ),

where use of p(x) =Qf 125(x- x&) gives

( )
4m&

( )M, (2L, +1)(2L,+1)(2K+1) 'I' L, K I, I, If I,
ZQ 2K+ 1 4m 0 0 0 M2 Q —M2

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

x f dxx RN L (~)(r& /r) )RN L (x) .
2 2 1 1

Here RNL is the radial part of the single-particle wave function and (r&, r&) =(x, z). The contributions
to Vpo] of the nuclear excitations degenerate in M, and M2 must be summed with a factor of 2 for spins.
A final summation over possible N„L, , N„and L, gives

V ()ZZ 2 "" I . ()i,pol &NL NL E, —E, (2%+1)~ N,L„N,L„K
2 2 ]. 1

2

where CG{I„I.„I )= (2I., +1)(2I,+1)(2I., +I) (2'

and I (z) =- f dxx R (x)(r /~
+

)R (x) .
2 2& 1 ly 2 2 1 1

For simplicity we will use a simple-harmonic-oscillator model with oscillator parameter b defined by

II = (a /2m}(- V'+ b r')-
for which the level spacing is

ur, =(Mb2) '.
The eigenfunctions are well known, and are

L l
PNLM(r) =RNLb)YLg~ ), RNL(r) =CNL(r/b) e LN 1

'(r /b ),

(4.8)

(4.7)

N=1, 2, 3, . . . , I =0, 1, 2, . . . 2 (4.8)

(4.9)

(4.10)

with energies EN = (2N+L, —1)&u

referred to the lowest (1s) level. The I are generalized Laguerre polynomials, and are explicitly
n

I„(.)=Y (-)-("„")*, .
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CNL is a normalizing constant,

[2Ã+I. + 1N) /(2N 2~ 1) t t]1/2( 1/2~3)-1/2
(

1/2 3)-l/2 (4.11)

S
N'L', NL; S~

The product of two Laguerre polynomials is a polynomial whose coefficients we will denote by a,
N +N-2

S=O
(4.12)

If we let z = fb, we have that

()= 2„„~ S=O

1 L'+I +K+2S+3 2
NL'S K 1 2

,&K~ r.'+Z-K+2S+3
2 (4.13)

In this equation, y and I' are the incomplete gamma function and its conjugate defined by

y(v, x)=r(v)-F(v, x)= J dye ~y (4.14)

We note that 1 '+I, +K must be even [otherwise CG(I, ', I,K) =0], so that the first argument of the I' is al-
ways integer and that of the y always half-integer. These incomplete gamma functions may be computed
from the recursion relation

y(a+1, x) =ay(a, x) —x e (4.15)

starting from

y (l, & ) = «rf(l), &( 1( ) = e
2 1/2 2 —P (4.15)

and recursing downward.
This model errs in that the nucleon coordinates are referred to a fixed center of potential rather than to

the center of mass. This gives rise to spurious states in which the center of mass is itself excited.
These spurious states have been included in Eq. (4.3) and should be subtracted out. Their contributions
may be evaluated as shown in Appendix A, and we find that only one spurious state is important; the rest
in aggregate produce a correction of only a percent or two.

The significant state has the center of mass in a 1P state with internal coordinates of the ground state.
The charge distribution for this state is like the Goldhaber-Teller state, but the reduced mass is AM
rather than (ÃZ/A)M and the charge is displaced by the full oscillator coordinate rather than N/A of it.
Thus we must subtract the spurious dipole contribution

v, (z) = —v „(~)=-(2A~~ ')-'~
d, & (~)

~

which will be almost half of the uncorrected dipole distortion. (This is rigorously derived in Appendix A. )
The contributions to the various multipole terms in Vool(z) from excitations of different energies are

shown in Fig. 3 with the closure factor [defined by (2.40), (2.51), and (2.52)]
J,

(4.18)

where erf(x) is the error function. For small x the recursion involves repeated subtraction of nearly equal
numbers with attendant loss of accuracy. This may be avoided by starting with an approximation for large
a, such as a few terms in the expansion

(4.17)
0 Pa+n+ 1)

3:=E/(E+(e&) (4.19)

containing the muon closure energy separated out. They have been evaluated using a computer program
based on the method outlined above, for a nucleus with Z = 20 (calcium), A =43, and 5 = 2.055 F corre-
sponding to auniform sphere radius of 4.60 F. %e see that convergence as a function of excitation energy
s(4)p ls quite rapid, particular ly outside the nuc leus.

S. MUON WAVE FUNCTIONS

In the nonrelativistic approximation, the muon wave functions are solutions of the Schrodinger equation

(5.1)
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FIG. 3. Contributions to the nuclear-polarization po-
tential in shell model labeled by n, and nero is the exci-
tation energy. "Total" is the suan through n= 10.
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If we approximate VC(z) by the Coulomb potential of a uniform spherical charge distribution of radius R
(R will be chosen to give the right value for (x')), we have

g&R.
VC(z) = —(Zo.'/2R)[3 —(z/R)2], z - R,

=- (Zo. /z),
(5.2)

This potential is just a harmonic oscillator inside the nucleus and a point Coulomb field outside. The solu-
tions may be given in closed form for each region in terms of confluent hypergeometric functions as

q, (z)=R 1(z)I, (& ),

R l(z)=z e M(-,'-[2l+3+t'~'(ty —3)], I+z, f x ), z ~Rl —f'~'x'/2. .. -2 3 1/2 2

= z e U(l + 1 —y, 2l + 2, 2tx/y),
I -fx/y z~R

(5.3)

where f =R/aB =mnZR (aR is the Bohr radius), x=z/R, and y is the "effective quantum number" defined
by

e (Zo()'m/=2y' . (5.4)

Note that y reduces to n in the hydrogenic (point Coulomb, f-0) limit, and that we can use this n to label
the solutions.

Inside the nucleus, R„~ can be easily computed from a few terms of the series
(a)

M(a b z): Z
(~)0 (&)„~'

where (a)n=a(a+1) ~ ~ ~ (a+n —1) and (a), =1. However, outside the nucleus the converging series for U are
extremely inconvenient to work with. (U has, in general, a singularity at the origin. ) We can use the
asymptotic (semiconvergent) expansion

() —1 (a) (1 + a —b)
U(sbz)-z ' r "

„, "(-z) "
O()z)~ )), ssz-",

&=0

for large z, where the error term is approximately equal to the first term neglected. We then simply
numerically integrate the radial equation from a point where this series is sufficiently accurate back in to
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the nuclear surface. The eigenvalues y are found by requiring that

[ lnR I(R )]=d [lnR I(R )]. (5.7)

This is essentially the method used by Pustovalov'~ with the exception of the representation inside the
nucleus. We have used a computer to find solutions to (5.7) for the n= 1, 2, 3 states of the closed-proton-
shell nuclei listed in Table III. The values found for y agree with Pustovalov s to four or five places.

As a check on relativistic effects and the accuracy of our other approximations, the energies for Z = 70
were compared with those computed by Barrett" using the Dirac equation for a Fermi shape nucleus and
including vacuum-polarization effects. In no case did the difference exceed 3/0 (the center of gravity was
used for the fine structure multiplets of P and d states). For a second check, the overlaps of the 1s wave
functions with the nucleus were computed and compared with the relativistic results of Sens. ""' Here agree-
ment was to 5%. These nonrelativistic wave functions should therefore be sufficiently accurate for this
calculation, and have been used in the results which follow.

For later reference, the energies of the n = 1, 2, and 3 bound states are plotted in Fig. 4 as a function
of Z.

6. MATRIX ELEMENTS OF THE POLARIZATION POTENTIALS

The polarization potentials and energy shifts have been evaluated for the 1s, 2s, 2p, and 3d muon states
for nuclei with closed (harmonic-oscillator) proton shells; Z = 8, 20, 40, and 70. As the results are rather
approximate, and we may wish to interpolate to estimate the core contributions for nonclosed-shell nuclei,
typical parameters (rather than those for any particular nuclei) have been used. In particular, the charge
distribution is taken to match (in (r') ) a Fermi distribution

p(r) = p, (1 + exp[(x —c)ja]}-',
where the parameters

c=1.12A'i'F, a=0.50 F (5.2)

have been chosen to give a good over-all fit to experimental values. We ignore the fact that Z =70 lies in
a range of strongly deformed nuclei. Typical n-P asymmetries and GD energies" have been used, and
the nucleon effective mass taken equal to its free mass. The various parameters are given in Table II.

It is well known that the harmonic-oscillator shell model gives a poor description of dipole excitations-
the dipole strength is at too low an energy, mostly at v, rather than EGO = 2&u0 (the GT state exhausts the
dipole sum rule). This gives roughly a factor of 4 difference in hE. If we use the oscillator-model form
factor but put the dipole strength at EGD, Fig. 3 shows that the polarization potential matches the GT form
outside the nucleus, but is significantly larger inside. This is not surprising —the GT model is essentially
a long wavelength model and is expected to err at short distances. The difference in computed dipole-,
energy shifts (with &u0 =EGD) is less than about 20%%uo with the exception of 35/0 for the 2s state of the largest
nucleus considered, Yb; it is much less for small Z or large I (where the part of Vpoi inside the nucleus
is relatively less important).

I 0.00

I,OO

FIG. 4. Energy levels of muonic atoms.

O. IO

O.ci
0 20 40

Z
60 80
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TABLE II. Properties of typical nuclei. The entries are aB, the Bohr radius, (r )~, the mean-square radius of the
nuclear charge distribution, and Rz, the equivalent uniform radius. Ny is the number of filled harmonic-oscillator
proton shells, b the oscillator parameter, and coo the oscillator energy (M*=M). EGD is the giant dipole energy.
These are all typical average values fitted to the general trend of stable nuclei, not the experimental values for the
specific nuclei listed.

8
20
40
70

16
43
91

173

Element

0
Ca
Zr

ag
(F)

32 ~ 0
12.7
6.39
3.65

(r')AI
(F2)

8.225
12.674
18.695
26.742

Rg
(F2)

3.70
4.60
5.58
6.68

b

(F)

1.912
2.055
2.233
2.438

+0, shell
(Mey)

11.4
9.9
8.4
7.0

&GD
(MeV)

21
19.7
16.6
14.7

We have used the GT model for dipole transitions and the harmonic-oscillator shell model for all others,
summing through hE = 10~„and computed separately the energy shifts due to monopole (M), dipole (D),
quadrupole (Q), and remainder, K~ 3, (R) transitions. This exactly parallels the approach of Foldy and
Walecka20 in analysis of muon capture. The muon closure energy has again been separated out as a closure
factor as in Fig. 3 [see (2. 49), (2. 51), (2. 52)]

x=z/(z+(e)) . (5.3)

Here Z is to be t~en as ZGD for D, as about &u, for other odd multipoles (part of B), and as about 2&v, «r
even multipoles (M, Q, and the rest of B) since most of the shell-model contribution comes at these ener-
gies. The results 3.'—&MK nrem, are given in Table III. They are not yet directly comParable; the muon
closure factors K vary considerably.

7. MUON CLOSURE FACTOR

f
-=QQ (Z -Z - e —~ f)-&~(v (+~a ' 0) nf&'

K nl
N

N 0 v nl

To estimate the muon closure energies and therefore X's, we recall that X is defined by (2.49)

ZZ(Z~-Zo) ' &v &X a 'Io) nf&~2,
N v

where H'K is the Kth multipole component of the interaction. We may approximate this by

=Q z(z+e —e )-'((vi[V ]'i'[nf& 5 ~&v~(V, )'~'~nt&„d ', (7.2)

TABLE III. Matrix elements of the polarization potentials in eV. M, D, Q, and R refer to monopole, dipole, and

quadrupole transitions, and to the remainder (octupole and higher) .

Z=8 ls
2s
2P
3d

Z=20 ls
2s
2P
3d

Z=40 ls
2s
2P
3d

Z=70 ls
2s
2P
3d

4.65
0.581
0.000 2
~ 10

120
15.7
0.08
10

906
133

5.6
0.004 91

3150
565
119

0.6

9.01
1.11
Oi. 014 1
0.000 206

145
17.7
1.36
0.024 6

749
90.6
40.3
1.13

1680
204
387

24.2

9.59
1.20
0.002 8
0.000 001

215
25.6
0.72
0.001 2

1330
173
36.1
0.24

3640
489
505
13.4

9.41
1.18
0.001 8
10 7

294
37.4
0.75
0.000 4

2140
270
51.6

.17

6380
809
906
16.5
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where E is the energy of the most important nuclear excitations and "rad" means the radial part of the
matrix element. This is exact for the D contribution (only one state N=GD contributes) and not unreason-
able for the others. If we keep track of the angular momentum of the states v as in (2.51) and (2.52) this
becomes

x~ « I
=~«E+~ I

—e„f) 'l&~f'I«..I E)'"I«&„,I'/~I&«'I«. .. ~)'"lnf&„,I'.
Q

(7.3)

Here n must run over both bound and continuum states. High bound states are not important since they are
small near the origin. We have roughly evaluated the sums in (7.3) numerically using our numerical wave
functions for low bound states and spherical components of plane waves (spherical Bessel functions) for
continuum states. (This is really too many states, but it turns out that usually either most of the sum
comes from low bound states, or most of it comes from relatively high-energy plane waves so that the
duplication is unimportant. )

For plane waves, the radial wave functions are (2/m)'~'kjf(kx) with the continuum normalization

&u'I'I af) =5«,5(u- u') .
Then &kf'IV&I«) =(2/~)'"f d~~'&jf (&~)V (~)E (~),

where Az) is the radial part of the bound-state wave function, and

x„, , = J', d&E[E+(I'/2~)-e„, l 'I&&f'I V~l«& '/f"d& I&&I'I Vol«&I'.
7

(7.4)

(7.5)

(7.6)

For bound intermediate states I n'l'), the matrix elements are explicitly evaluated and the sum on n in
(7.3) taken over low bound states.

As an example, we will treat muon closure for the dipole contribution in detail. For the 1s and 2g states
the only intermediate states are p states. Less than 10%%uo of the sum comes from bound states, with the ex-
ception of about 3(P/o for the ls state of Yb, the highest Z nucleus discussed, so that we should be able to
do the sum with plane waves using (7.6). X is evaluated twice, first assuming that (7.6) applies to all in-
termediate states, and then assuming that it applies only to continuum states while bound-state contribu-
tions are treated separately. E =EGD is taken from Table II and e„~ from Fig. 4. In no case do the re-
sults differ by more than about 25%, in most cases by less than 5%. A simple average is taken, and the
results entered in Table IV.

Evaluating the factors

(~p o(l'xl}'
in (7.3), we see that the 2P state is coupled -', to s states and —', to d states. We find that 80 to 90/o of the
coupling to s states is to the bound 1s state while almost all of the rest and of the coupling to d states is to
the continuum. Then XD 2p= —,'Xfl 2p-s+ —',)Xgl 2p-d, and we compute XD 2p-s using bound states
(with a plane wave estimate of the 10 to 20%%uo of the sum which comes from the continuum), and XD 2p-d
using plane waves. The values obtained are given in Table IV. We note that XD 2p-s is greater than
one for Z ~ 20. This is because the sum on intermediate states is dominated by the 1s state, a downward
transition from the 2p state.

Closure factors for the 3d state are computed exactly as for the 2p. The coupling is -', to p states (95 to
99/o to the bound 2P state) and —', to d states (almost all continuum). Numerical values for these partial-
and tota1.-closure factors are also given in Table IV.

The remaining total-closure factors are computed in the same manner as 3'D and entered in Table V.
Most of the contributions come from the continuum except for Xq 3d - s (85 to 95% to bound states),
XE 3d -P (20%%uo to bound states for Z =40, 50%%uo for Z =70), and X~ ls s, XM 2s- s (both 10%%uo to bound
states for Z =40 and 35%%uo for Z =70). For XE we note that the largest contributions to Vpol E are from E~
= v0 and E~= 2&0, so we would expect E in (7.2), (7.3), and (7.6) to satisfy eo & E & 2uro. This gives a range
in computed X's as great as a factor of two. However, XEVpoi E contributes at most 10 to 2(S to the total
energy shift so that our final results are not very sensitive to Xg. The values in Table V correspond to
E =1.5&d, . A number of blanks have been left for factors which will not be needed because the corresponding
matrix elements in Table III are small.

Our computed X s are certainly not accurate to the full two or three places given. The initial approxima-
tion (7.2) of replacing individual nuclear transition potentials by (Vpol If) is probably reasonably good:
closure energies are not very sensitive to the detailed shape of the potentials, and (Upol ff)'~' is very like
the individual potentials (see Fig. 3). The muon closure energy is affected to some extent by the value of
E, the nuclear excitation energy, used in (7.2), (7.3), and (7.6), and we might go so far as to use different
values for each different nuclear excitation energy. This would seem, however, to be placing too much
faith in the details of the nuclear model, in violation of the original philosophy of our calculation. The val-
ues of X~ obtained are almost certainly good to a factor of two, and are probably somewhat better, perhaps
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TABLE lV p.artial closure factors for dipole excitations, X= E/(E+ (e)), to intermediate states of various
angular momenta.

Z= 81s
2s
2P
3d

Z=20 ls
2s
2P
3d

Z=40 1s
2S
2P
3d

Z=70 ls
2S
2P
3d

x
D, nl —s

0.99

1.08

1.15

1.43

x
D, ml —P

0.49
0.48

1.00

0.65
0.61

1.01

0.42
0.39

1.03

0.40
0.36

1.13

0.85

0.69

0.51

0.40

0 ~ 98

0.92

0.74

0.54

D, nl

0.49
0.48
0.90
0.99

0.65
0.61
0.82
0.95

0.42
0.39
0.72
0.86

0.40
0.36
0.75
0.78

within 20 to 50% for the most important ones. We believe, therefore, that they are sufficiently accurate for
the calculation at hand.

8. RESULTS AND DISCUSSION

The changes in the muonic energy levels may
now be found by multiplying the matrix elements
tabulated in Table V by the closure factors in
Table V. The various contributions, M, D, Q, and
8, and their sum are plotted against Z in Fig. 5
for each of the muonic levels considered. The to-
tal shifts for each state are plotted together in
Fig. 6.

We see from Fig. 6 that the 1s state is shifted by
1 to 3 keV for medium to heavy nuclei, while the
2s and 2p levels are shifted somewhat less —a few
tenths to 1 keV or so. These results are very

TABLE V. Total closure factors, X= E/(E+(e)).I, D, IqtI, and R refer to monopole, dipole, and quadru-
pole transitions, and the remainder (octupole and higher) .

similar to those we obtained previously" retaining
only dipole terms and setting all muon closure fac-
tors equal to unity, and in reasonable agreement
with other existing estimates' "discussed in Sec. 1.

With regard to the accuracy of these results, we
feel that the greatest uncertainty is probably in
the muon closure factors, which may be in error
by as much as a factor of two. The nuclear phys-
ics is probably accurate to 30/o or so. Our cal-
culation has assumed that the giant-dipole reso-
nance exhausts the T. R. K. dipole sum rule,
which is not strictly true, particularly in light
nuclei. For example, estimates obtained by in-
tegration of the photodisintegration cross section"
indicate that the GD resonance accounts for about
68/o of the sum rule for oxygen and for about 82/o
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FIG, 5. Various multipole contributions to the muon
level shifts: Monopole (M), Dipole (D), Quadrupole (Q),
and Remainder (R). T is the total shift.
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malized to the experimental photodisintegration
value, produces capture rates within 10%%uo of the
experimental values for oxygen and calcium.

The neglect of the transverse interaction is
probably no more important than the uncertainties
in the nuclear physics. Our aim from the begin-
ning has been to obtain estimates of the level
shifts accurate to a factor of two or better, and
we feel that each part of the calculation is at
least this good. Therefore, while it is not im-
possible that the errors are larger, we believe
that Fig. 6 is accurate within a factor of two.

The nuclear-polarization corrections are there-
fore clearly of sufficient size (one to several keV)
for heavy nuclei to be significant in the analysis
of muonic x-ray spectra. A calculation by Barrett
et al. 2' which corrects the spectrum of ' Bi for
nuclear-polarization effects of this order of magni-
tude seems to show a slight worsening of agree-
ment with electron-scattering results. We can
draw no conclusions from this: no account has
been taken of nuclear polarization in interpreting
the electron- scattering data. A calculation very
similar to the one just performed could clearly
be made for electron scattering, although trans-
verse terms would almost certainly be relatively
more important. Until some such calculation is
performed, we will still be unsure of how to in-
terpret any apparent discrepancies between nu-
clear charge distributions fitted to muonic x-ray
spectra and ones fitted to elastic electron scat-
tering.
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APPENDIX A. SPURIOUS STATES IN HARMONIC-OSCILLATOR SHELL MODEL

The nuclear Hamiltonian for a harmonic-oscillator shell model of the nucleus is, with a fixed center of
potential,

A
H= ~ 5 (-&.'+b 'x '), &@0=(11.fb') '.

The states of this system include spurious center-of-mass excitations, which we wish to exclude. This
problem has been considered previously, for example by Elliott and Skyrme, "but we will reformulate it
in a manner particularly convenient to the situation at hand.

If we change coordinates to use center-of-mass and relative coordinates

R=A ' Q x. , ).=x.-R
z=~

$ 2

(the $; are not all independent) we ca.n sepa, rate the Hamiltonian as

(A2)

H=(2MA. )-'(- V '+A'b-4R')+H (($., &~ )).B rel i ' (As)

The first term is just a harmonic-oscillator Hamiltonian for the center of mass with mass. MA, oscillator
parameter QA-'~2 and energy ~0. The second term describes the motion in the center of mass frame. The
solutions are

~4' ((x.j) = Q (/(. j)C~ (A' R/b), (A4)
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where 4N(n) is a harmonic-oscillator function with energy n(d, . The good states are those for which
N=O (ls), with the center-of-mass wave function

(0) (~/ b2)-,
' —AR'/2b'

(A5)

We should really use p ((gf j)= (vb2/2} / e~ /2b 04'~((xf]) for the allowed shell-model wave function
referred to a fixed center of mass. However, Tassie and Barker" have shown that matrix elements of
charges and currents computed with Qm's are related to those computed with 0@n('s by a multiplicative
factor of exp[(qb/2)'A-']. Because of the A-' in the exponential the effect is small except for very large
q. Further, the increase at large momentum transfer tends to be offset by the decrease in the form
factor of the individual nucleons which must also be included. For nuclei of reasonable size we may simp-
ly neglect both effects without serious error.

Any excited state of the center of mass with energy neo, may be represented in the form

(n) (&/ b2}—,
'

(n)t -AR'/b'] AR'/2b'
(A6}NIM NI M

where (BNf M(n) is a differential operator proportional to n gradients VR coupled up to a tensor of rank I
component M. This 4NI, M&n) clearly has the desired angular momentum, and the simple observation that
[R VR, (8/BR&)]= —(8/BRf ) implies that

(Av)

A

which makes it easy to verify directly that

DENIM(n)

is an eigenfunction of H with eigenvalue (n+ —,)&u,.
In particular, we have

We may write any of these in the form

( )
3 Bn 3

k=1 ' eR kol=1 IU+ v=n
k

b
8 8

N7kl7 pv R ~ BR
v

k

e" 8' e'
N, y, vo g v o '

p, + v+o=n ' BR, BR, BR3 (A9)

The transition potential between a spurious state and the ground state is

VN 00=(N4' I fdsx p(x)/Ix- zlp0)
(Alo)

= fdr) dr dxidx —El d (((.))d&(((.))(,) d (R)e Z il(x —r. )

using p(x) = Q. 1 5(x —r. ). But the derivatives in 6(R) commute with any function of the (f, and 8/BR~

1+ 8/8(r~)f, giving

3 3 3 .z (n)- 1
Nm, 00 1 A. ~ '

NL,M j~0 0 0 Iif-XIg=l
(A11)

plus terms which are perfect derivatives and integrate to zpqo at once.
Integrating by parts, we get the derivatives Vz in 6NJM&~&(rj } onto the 5 functions, where they may be

replaced by Vx (there are no surface terms)

Z
(A12)

The sum on j in (A11) is again p(x}. Another integration by parts puts the derivatives Vx onto (x- z)-
where they may be replaced by —Vz to give

m7 m7
(A13)
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This simply relates the transition potential for transition to a spurious state to that for the related "good"
state. An overestimate of the contribution of spurious states may be made by removing the restriction of
good states on the right of (A13) a.s

S~"""'~ ' NLM" ' S 0' '
pol, sp KI.M S

(A14)

where NL, M has energy neo, and the sum on shell-model states 8 (energy sv, ) runs over all states (including

spurious ones and the ground state).
Dipole excitations of the center of mass {by 8 ~& &) will be the most important: they have the smallest

energy denominators and a factor of A in V ol relative n =2 excitations. The most important such state is
the one derived from the ground state since the total transition charge is Ze rather than just e. For this
state

2 ~( @1pM" & (z) V (z) I
' = (b'/2A) l(8VC(z)/ez) I'

O, O

and V
1 1& O(z) = (2AM(do') 'l(BV (z)/&z)l'

pol, sp 1P, O

(A15)

(A16)

very much like the Goldhaber- Teller state.
For the other spurious 1P center-of-mass states, the gradient formula gives

[ 5 &K (z)VK (& )]: 2g yg2 Zi 2K 2 (KQ lpga K1K+1 Q+ p)
& 33K&z z K

8 K 1xr ((( )-( () (rcq v x((z-(q+(q)( —, +
'

I v v, ((( l. (A17)

After a little algebra, the contribution to Vpol is found to be, in the notation of Sec. 4,
2o' CG(Lz, L2, K) b~

pol, sp, other 1P K N & N& Z, —E, +v, (2K+1)' 2A
2 2 1 1

FIG. 7. Charge density, potential, and t dV/dzt for
three model nuclear charge distributions for calcium:
uniform (U); Fermi shape (F); and harmonic-oscillator
shell model (S).
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(Bg g ) N L, N L;K 2&+1 ( ~~ ~ j
(A18)

Here the first term in the brackets comes through multipole K+ 1 and the second through K- 1. These cor-
rections have been evaluated on a computer in exactly the same manner used for the naive shell model of
Sec. 4, and found to be negligible (contributing in aggregate no more than a percent or so) with the excep-
tion of the pure center-of-mass 1P state in (A14).

Of the remaining spurious states the most important are the N40 with N above the 1I' state since the
total charge Ze contributes to matrix elements. Their contributions to Vpol may be evaluated as the 1I'
state was, and are found to be negligible.

APPENDIX B. NUCLEAR-CHARGE MODELS

To illustrate the similarities and differences of the three charge models used in this paper, Fig. 7
shows Z-'p(z), (Zn) 'Vg(z), and (Zn) 'l sVg/sgl' for each of the three models used: (1) uniform charge
density to a radius R(U); (2) Fermi shape (E); and (8) independent-particle harmonic-oscillator shell
model (S). The parameters used are those for Z =20 in Table V. We note that except for the charge
density near the origin, the 8 and F models are very similar and U not too different. The U model was
used only in computing muon wave functions, and should be adequate there since the potential is not much
different from U or I'.

*Research sponsored by the Air Force Office of Sci-
entific Research, Office of Aerospace Research, U. S.
Air Force, under AFOSR Contract No. F44620-68-
C-0075 '

~Present address: Sandia Laboratory, Albuquerque,

New Mexico 87115.
'J. A. Wheeler, Rev. Mod. Phys. 21, 133 (1949),
V. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).
L. Cooper and E. Henley, Phys. Rev. 92, 801 (1953).
For example, E. M. Lyman, A. O. Hanson, and

M. B. Scott, Phys. Rev. 84, 626 (1951).
R. Hofstadter, B. Hahn, A. W. Knudsen, and

J. A. McIntyre, Phys. Rev. 84, 626 (1954).
L. R. B. Elton, in Proceedings of the Williamsburg

Conference on Intermediate Energy Physics (College of
William and Mary, Williamsburg, Va. , 1966), p. 48.

F. G. Percy and J. P. Schiffer, Phys. Rev. Letters
17, 328 (1966).

D. G. Ravenhall, in Proceedings of the Williamsburg
Conference on Intermediate Energy Physics (College of
William and Mary, Williamsburg, Va. , 1966), p. 38.

W. Lakin, Carnegie Institute of Technology Technical
Report No. 2, OORNo. 116-53, 1954 (unpublished).

Pieper and W. Greiner, Phys. Letters 24B, 377
(1e67).

F. Scheck, Z. Physik 172, 239 (1963).
B. Jacobsohn, Phys. Rev. 96, 1637 (1954).

' L, Wilets, Kgl. Danske Videnskab. Selskab Mat. Fys.
Medd. 29, (1954).

R. K. Cole, Jr. , Phys. Letters 25B, 178 (1967).
5We use units with 8 = c= 1, a caret to denote an

operator in Hilbert space, capital and lower-case let-
ters when in Latin alphabet for nuclear and muonic quan-
tities, respectively, and a metric where qx = q ' x —~t.
Angular momentum notation follows A. R. Edmonds,
Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton, New Jersey, 1957).

This is strictly true only for states containing the
nucleus in its ground state, but these are the states of
immediate interest. It may be considered a reasonable
approximation for other states if the nuclear charge dis-
tribution is not changed much from the ground state.

"J, M. Jauch and F, Rohrlich, The Theory of Photons
and Electrons (Addison-Wesley Publishing Co. , Inc. ,
Reading, Mass. , 1955).

~ T. deForest and J. D. Walecka, Advan. Phys. 15, 1
(1966).

In the preliminary version of this work, Ref. 14, the
transverse interaction was treated incorrectly. Since its
effect was then neglected in comparison to the Coulomb
term, the conclusions of that paper are not affected.

L. L. Foldy and J. D. Walecka, Nuovo Cimento 34,
1026 (1964),

D. B. Isabelle and G. R. Bishop, Nucl. Phys. 45,
209 (1963).

P. Bounjn and G. R. Bishop, J. Phys. Radium 22,
555 (1961).

W. Czyz, Phys. Rev. 131, 2141 (1963).
G. E. Pustovalov, Zh. Eksperim. i Teor. Fiz. 36,

1806 (1959) [English Transl. : Soviet Phys. —JETP 36,
1288 (1959)] .

R. C. Barrett, private communication, and
R. C ~ Barrett, S. J. Brodsky, G. W. Erickson, and

M. H. Goldhaber, Phys. Rev. 166, 1589 (1968).
' J. C. Sens, Phys ~ Rev. 111, 940 (1959).

E. G. Guller and E. Hayward, in Nuclear Reactions
edited by P. M. Endt and P. B. Smith (North-Holland

Publishing Company, Amsterdam, 1962), Vol. 2.
8E Hayward, Rev Mod Phys 35 324 {1963
J. P. Elliott and T. H. R. Skyrme, Proc. Roy, Soc.

(London) A232, 561 (1955).
L. J. Tassie and F. C. Barker, Phys. Rev. 111,

940 (1958),


