Proton Excitation in V⁵¹ \ddagger

D. J. PULLEN AND BARUCH ROSNER* Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

AND

OLE HANSEN[‡] The Niels Bohr Institute, University of Copenhagen, Denmark (Received 8 August 1968)

The Ti⁵⁰ (He³,d) V⁵¹ reaction has been studied at 16.4-MeV incident energy with an over-all energy resolution of 20 keV full width at half maximum (fwhm). 57 levels in V⁵¹ were identified up to 9.5-MeV excitation, and corresponding deuteron angular distributions were recorded in the angular interval 7° to 50°. Spectroscopic information has been extracted for 27 of the strongest or most well-isolated transitions by means of a distorted-wave analysis of the differential cross sections. The results are compared with nuclear-structure model predictions.

I. INTRODUCTION

'HE present investigation of the $Ti^{50}(He^3,d)V^{51}$ reaction forms part of a systematic study of the Z=23 nuclei by means of the (He³,d) reaction. The results obtained for V^{47} and V^{49} have already been published.1,2

II. RESULTS AND ANALYSIS

The experimental techniques, data handling, and distorted-wave analysis used in the present experiment are identical to those described for the $Ti^{48}(He^3,d)$

reaction in Ref. 2. A deuteron spectrum from the $Ti^{50}(He^3,d)$ reaction measured at an incident energy of 16.4 MeV is presented in Fig. 1. The energy resolution is 20 keV full width at half maximum (fwhm). Since the target³ contained an appreciable amount of Ti⁴⁸, a number of (He^3,d) transitions originating from this isotope were also observed and their identification was aided by the results from Ref. 2.

Deuteron angular distributions were also measured at 16.4 MeV, using a thicker target that yielded an energy resolution of about 45 keV fwhm. The measured

FIG. 1. Deuteron spectrum from the $Ti^{50}(He^3,d)V^{51}$ reaction at 16.4 MeV and $\theta_{lab} = 25^\circ$. Groups shown numbered without parentheses correspond to levels in V^{51} and those with parentheses to levels in V^{49} (Ref. 2), the latter being due to approximately 18% of Ti⁴⁵ in the target.

[†] Work supported by the National Science Foundation under a contract with the University of Pennsylvania. * Permanent address: Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel.

[†] Present address: Department of Physics, University of Pennsylvania, Philadelphia, Pa. ¹ Baruch Rosner and D. J. Pullen, Phys. Rev. **162**, 1048 (1967).

² D. J. Pullen, Baruch Rosner, and Ole Hansen, Phys. Rev. **166**, 1142 (1968). ³ The enriched Ti⁶⁰ metal was obtained from Oak Ridge National Laboratory, Isotopes Sales Division. The isotopic composition of the material was Ti⁴⁶-2%, Ti⁴⁷-1.8%, Ti⁴⁸-17.8%, Ti⁴⁹-2% and Ti⁵⁰-76.4%.

FIG. 2. Deuteron angular distributions corresponding to orbital angular-momentum transfer $l_p = 1$ observed in the Ti⁵⁰(He³,d)V⁵¹ reaction. The different distributions are plotted offscale, the true crosssection scale being given in Table I. The full curves are from distorted-waves calculations (see text and Ref. 2). The dashed curve was drawn through the experimental points and has no theoretical significance.

FIG. 3. Deuteron angular pistributions corresponding to orbital ngular-momentum transfer $l_p=3$ (left) and $l_p=0$ and 2 (right) See also caption of Fig. 2.

1./1							
Deuteron group	$E_x(\mathbf{a})$	keV) Present ^b	dσ/dω max (mb/sr)°	a	l_p	Spectro- scopic strength ^d	Shell-model assignment®
0	0	0	3.22	7	3	7.2	1 f7/2
1	320	321		5			•
2	931	933	0.34	3	1	0.05	2p3/2
3	1611	1601		29-			
А	2411	2424	21.8	2 3-	1	26	2000
5	2548	2560	1.97	$\frac{2}{1}+$	ō	0.17	$\frac{2p_{3/2}}{2s_{1/2}}$
ő	2678	2685	0.19	<u>3</u> +	2	0.21	$1d_{2/2}$
	2702			$\frac{15}{2}$			
-	2793	2002	0.60		2	10	
8	3085	3092	7 31		3 1	1.0	1 <i>1</i> 2 <i>4</i>
0	3265	5221	7.01		-	0.7	29
	3282						
	3379		0.05			0.00	A :
9	3385	3398	0.25		1	0.02	2p
	3393 3454						
	3519						
	3566						
	3579						
	3617						
	3668						
10	3682	3693	0.47		1	0.05	2p
	, 12						
11	levels	1203	5 4 1		1	0.5	24
11	4439	4303	3.41		1	0.5	29
12	4487	4506	0.31		2	0.06	2d
	4512						
	4551 4576f						
13	4570*	4584	0.25		3	0.3	1 <i>f</i>
14	45	4702	0.34		(3)	0.4	$\bar{1}f$
15	levels	4817	1.28		(2)	0.2	2d
16	known	4910	2.69		1	0.3	$\frac{2p}{2}$
17	up to 6648	5025	4.94		(2)	0.3	$\frac{2p}{2d}$
19	keV ^g	5237	1.00		(-)		20
20		5407	0.50		1	0.04	2 <i>p</i>
21		5503	1.97		1	0.2	$\frac{2p}{2}$
22		5504 5654	2.78		1	0.3	2p 24
23		5703	2.00		-	0.2	~ <i>P</i>
25		5785	1.28		1	0.1	2 <i>p</i>
26		5907					
27		5901 6165	1 50		1	0.1	24
28 29		6278	1.19		ī	0.1	20
30		6355					-
31		6413					
32		0444 6506					
33		6694	0,91		(1)	0.08	2\$
35		6747					· •
36		6806					
37		0800					
30		6989					
40		7047					
41		7152	0.10			0.0	. .
42		1212	2.12		T	0.2	29
40 44		7393					
$\hat{4}\hat{5}$		7442					
46		7540					
47		7590					
48 40		7682					
50		7710					
51		7940					
52		01/1					

TABLE I. Results from the $Ti^{50}(He^3,d)V^{51}$ reaction.

1571

Deuteron group	$E_x({ m keV})$ Present ^b	dσ/dω max (mb/sr)°	l_p	Spectro- scopic strength ^d	Shell-model assignment*	
53 54 55 56	8218 8305 8501 9433	4.19	(1)	0.6 ^h	$2p_{3/2}, T = \frac{7}{2}$	

TABLE I. (continued)

• Energy levels are from Ref. 5. The spin-parity assignment for the 2424-keV level (group 4) is based on the present work, and the remaining assignment are from Ref. 6. • From 0 to 3 MeV the uncertainty in the excitation energy (E_z) is ± 15 keV. Between 3 and 6 MeV the uncertainty is ± 20 keV and above 6 MeV it is ± 30 keV. • The uncertainty in the cross-section scale was estimated to be $\pm 30\%$. • The strength is defined as (2j+1)S(j), where j is the transferred angular momentum and S(j) is the spectroscopic factor in a formalism without isospin. If the isospin is introduced, then $S(j) = (3 \ 3 \ 1 \ - \frac{1}{2} | T\frac{5}{2} \rangle S(j,T)$, where T is $\frac{5}{2}$ or $\frac{7}{2}$. Unless otherwise stated, it was assumed that $j = l + \frac{1}{2}$. (See, also, the text and Table III of Ref. 2).

• When no isospin is stated, $T = \frac{1}{2}$. The shell model assignments were used in the distorted wave analysis, and were based on the observed l_p values. • This state must be different from the 4584-keV state observed in the (He³,d) study. The spin of the 4576-keV level is from $\frac{9}{2}$ - to $\frac{15}{2}$ (Ref. 5), whereas that for the 4584-keV state must be $\frac{5}{2}$ or $\frac{1}{2}$. It is not possible to match the present (He³,d) results with the (d,p) data of de Lopez *et al.*, (Ref. 5) for $E_z > 4.6$ MeV. ^b State unbound. The strength was estimated by keeping the single-particle wave function bound near 0 keV, and using the correct kinematics.

distribution for 27 of the most intense or well-isolated deuteron groups are shown in Figs. 2 and 3. The excitation energies, maximum differential cross sections,⁴ l_p values, and spectroscopic strengths are listed together in Table I. The potentials BA1, PE1, and PR0 of Table II (Ref. 2) were used for the extraction of the spectroscopic strengths. Also shown in Table I are the excitation energies and spin-parity assignments taken from the literature.5,6

III. SUM-RULE ANALYSIS

The measured spectroscopic strength sums for 1 f and 2p transitions to V^{49} and V^{51} are shown in Table II, and are compared with the values expected from the corresponding $1 f_{7/2}$ Ti ground states. The V⁴⁹ data are from the Appendix of this report. In view of the $j=l+\frac{1}{2}$ assumption for the final-state spin values that underlies the distorted-wave analysis,² the strength sums of Table II probably err on the low side, with the 1f strength being more strongly affected² by the spinorbit coupling than the 2p strength. It appears, nevertheless, that most of the T-lower 2p and 1f strengths have indeed been observed in these experiments.

The observation of $1d_{3/2}$ and $2s_{1/2}$ strengths in the present work indicates that the Ti⁵⁰ ground state contains core-excited components.

IV. COMPARISON WITH OTHER EXPERIMENTS

V⁵¹ has been extensively studied by the MIT group using the $V^{50}(d,p)$, $V^{51}(p,p')$, and $Ti^{50}(He^3,d)$ reactions.^{5,7,8} In Table I are shown the excitation ener-

⁴ A reexamination of the Ti⁴⁸(He³,d) V⁴⁹ cross sections reported in Ref. 2 was undertaken and an error of a factor of 1.91 was discovered. The corrected Ti⁴⁸(He³,d) cross sections and spectroscopic strengths are given in the Appendix and the sum-rule data in Table II.

⁵ M. E. de Lopez, M. Mazari, T. A. Belote, W. E. Dorenbusch,

[•] M. E. ue Lopez, M. Mazari, T. A. Belote, W. E. Dorenbusch, and O. Hansen, Nucl. Phys. A94, 673 (1967). ⁶ A. W. Barrows, R. C. Lamb, D. Velkley, and M. T. Mc Ellistrem, Nucl. Phys. Phys. A107, 153 (1968); E. Newman and J. C. Hiebert, *ibid.* A110, 366 (1968). ⁷ M. Mazari, W. W. Buechner, and A. Sperduto, Phys. Rev. 112, 1691 (1958). ⁸ B. L. O'Prim, W. F. Dorenkusch, T. A. Belote, W. F.

⁸ B. J. O'Brien, W. E. Dorenbusch, T. A. Belote, and J. Rapaport, Nucl. Phys. A104, 609 (1967).

gies from Ref. 5, and it appears that the present values are systematically higher than those by about 10 keV (19 keV in the case of group 12). A comparison with the data of Ref. 8 shows somewhat larger discrepancies in the excitation energies. A reasonable identification of the stronger transitions reported here with the stronger transitions given in Ref. 8 is proposed in Table III. The energy discrepancy is seen to increase toward higher excitation energy, where it amounts to about 70 keV. [In the $Ti^{48}(He^3,d)$ experiment of Ref. 2, an over-all agreement to better than 15 keV is found with the magnetic-spectrograph data from Heidelberg⁹. With two exceptions all the present l_p -value assignments agree with those of the MIT group. For the two exceptions we have tentative $l_p=2$ assignments, whereas $l_p=3$ is assigned in Ref. 8. The present strengths are larger than the MIT strengths by about 30% for $E_x < 3$ MeV, the discrepancy increasing to almost a factor of 2 at $E_x \sim 5$ MeV. The (He³,d) study of Ref. 8 was performed at an incident energy of 10 MeV, whereas the present study employed 16.4-MeV He³ ions. In the case of the $Ti^{48}(He^3, d)$ study, the spectroscopic strengths of the Appendix agree well with the 18-MeV Heidelberg values of Ref. 9.

V. DISCUSSION

The level spectrum of V⁵¹ has recently been calculated by Auerbach¹⁰ with a configuration space comprising

TABLE II. Tlower strength sums.^a

		Configuration	
Target		1f	2 <i>p</i>
Ti ⁴⁸	Expt. ^b	8.2	4.5
	Theory	10.4	4.8
Ti ⁵⁰	Expt.	8.9	6.0
	Theory	11.1	5.1

• Pure $1f_{1/2}$ ground states and good isospin were assumed in the evaluation of the theoretical strengths. • See the Appendix.

⁹ D. Bachner, R. Santo, H. H. Duhm, and R. Bock, Nucl. Phys. A106, 577 (1968). ¹⁰ N. Auerbach, Phys. Letters 24B, 260 (1967).

$E_x(\mathrm{keV})$		l_p		(2j+	(2 <i>j</i> +1) <i>S</i> ª	
Present	b	Present	b	Present	b	
0	0	3	3	7.2	5.6	
933	930	1	1	0.05	0.05	
2424	2406	1	1	2.6	1.7	
2560	2541	0	0	0.2	0.06	
2685	2667	2	2	0.2	0.06	
3092	3075	3	3	1.0	0.75	
3227	3208	Ĩ	1	0.7	0.52	
4303	4252	1	ĩ	0.5	0.25	
4506	4445	(2)	3	0.06	0.14	
4584	4521	(3)	3	0.3	0.22	
4702	4633	(3)	3	0.4	0.30	
4817	4755	Ő	3	0.2	0.80	
4910	4849	1	1	0.3	0.18	
5023	4964	î	î	0.5	0.10	
	5104		ō	0.0	0.01	
5184	5127	(2)	ž	0.2	0.06	
	5170	(2)	2	0.4	0.04	
5503	5440	1	ĩ	0.2	0.01	
5564	5407	1	1	0.2	0.00	
5504	5497	1	1	0.3	0.17	
5054	3383	1	1	0.2	0.12	
3785	5720	1	1	0.1	0.09	

TABLE III. Comparison of present Ti⁵⁰(He³,d) results with those from Ref. 8.

* The strengths of Ref. 8 were evaluated without the use of a spin-orbit coupling term. Under our assumption of $j = l + \frac{1}{2}$, inclusion of a spin-orbit term in the bound-state potential would lead to a reduction in the strengths of Ref. 8. • Reference 8.

TABLE IV. Corrected Ti⁴⁸(He³,d) V⁴⁹ strengths.

Deuteron group	Ex (keV)	dσ/dω max (mb/sr)	l_p	Spectro- scopic strength	Shell-model assignment
0	0	2.5	3	4.8	$1f_{7/2}$
1	83	0.11	•••		
2	152	1.2	1	0.1	2 <i>p</i>
3	751	0.76	2	0.8	$1d_{3/2}$
6	1663	7.3	1	0.7	2 <i>p</i>
7	2185	0.80	3	1.0	1f
8	2265	6.9	1	0.7	2 <i>p</i>
9	2307	13.0	1	1.3	2p
11	2820	0.74	3	0.8	1f
13	3401	0.36	• • •		
16	37634	0.02	∫ (1)	0.1	2p
10	0100	0.72	$\lfloor (3)$	0.2	1f
17	3932	3.6	1	0.3	2p
18	4018	0.69	1	0.06	2p
20	4235	15	1	0.1	ንሐ
21	4265 J	1.0	-	0.1	29
22	4385	0.59	1	0.04	2 <i>p</i>
24	4511	2.7	1	0.2	2 <i>p</i>
26	4657	1.9	3	1.4	1f
27	4862	2.9	1	0.2	2 <i>p</i>
29	4954	0.42	1	0.04	2 <i>p</i>
31	5064	0.69	1	0.06	2 <i>p</i>
32	5218	2.1	1	0.2	2 <i>p</i>
43	6000	1.4	1	0.1	2p
48	6212	14	1	0.1	26
49	6252 ʃ	1.1	1	0.1	29
50	6327 \	10	1	0.2	26
51	6363 ∫	1.9	T	0.2	29
67	7137	1.9	•••		
71	7430	17	(1)		26
72	7478∫	1.7	(1)		2 <i>p</i>
76	7783	7.4	(1)	0.8	$2p_{3/2} T = \frac{5}{2}$
82	8111	3.1	(1)	0.3	$2p_{1/2}, T = \frac{5}{2}$

A doublet.

 $(1f_{7/2})^3$ and $(1f_{7/2})^2$ $(2p_{3/2})$. The results of this calculation are in good agreement with the (He^3, d) data for the ground state and three lowest $l_p = 1$ transitions (see also Ref. 8). It is conspicuous that the first excited $l_p = 3$ transition in V⁵¹ occurs more than 1 MeV higher than in V⁴⁹. (See Table IV and Ref. 2.) This feature suggests that all the $1f_{7/2}$ strength is concentrated in the ground state of V⁵¹, whereas several low-lying $l_p=3$ transitions in V^{49} may have $1f_{7/2}$ character.

If the strong transition to the 9433-keV state is indeed of $l_p=1$ character, as suggested in Table I, then this probably corresponds to the isobaric analog of the $Ti^{50}(d p)Ti^{51}$ ground-state transition. The corresponding Coulomb displacement energy, ΔE_c , is then 7751 ± 30 keV, which is, within the experimental uncertainties, the same as that found for the $2p_{3/2}$ state in the V⁴⁹-Ti⁴⁹ pair. In evaluating ΔE_c , the *Q* value of the Ti⁵⁰(*d* p)- $Ti^{51}(0)$ transition was taken from Ref. 11 and that for the Ti⁵⁰(He³,d)V⁵¹(0) transition from the 1964 mass table.¹² The spectroscopic strength for the (He^3,d) transition to the 9433-keV level is 0.6, whereas the corresponding (d,p) strength, when divided by 2T+1=7, is 0.4.¹³

ACKNOWLEDGMENTS

We wish to thank Professor R. Middleton and Professor W. E. Stephens for their continued interest in this work, and Dr. R. H. Bassel for performing part of the distorted-wave analysis. One of us (OH) is indebted to the Rask-Ørsted foundation in Copenhagen, Denmark, for a travel grant. The scanning of the nuclear emulsions was carefully performed by Mrs. M. Scrinivasan, Mrs. C. Coliukus, and Mrs. M. Barnett.

APPENDIX: ERRATA TO THE Ti⁴⁸(He³.d)V⁴⁹ STUDY OF REF. 2

An error of a factor of 1.91 has been found in the evaluation of the thickness of the Ti⁴⁸ target used in Ref. 2. All cross sections and spectroscopic strengths in Ref. 2 should be multiplied by 1.91. The corrected values are given in Table IV, which includes only those transitions for which a cross section was measured. From the data of Tables I and IV the ratio of spectroscopic strengths for the V⁵¹ and V⁴⁹ ground-state transitions is $S(V^{51})/S(V^{49}) = 1.5$. The Ti⁵⁰ target employed in the present study also contained Ti⁴⁸ as a contaminant. If the intensities of the deuteron groups leading to the V⁵¹ and V⁴⁹ ground states are used (see Fig. 1) in conjunction with the isotopic composition of the Ti⁵⁰ material,³ then a ratio $S(V^{51})/S(V^{49}) = 1.5$ is again obtained, thus showing the consistency of the target thickness evaluation.

¹¹ P. D. Barnes, J. R. Comfort, C. K. Bockelman, O. Hansen, and A. Sperduto, Phys. Rev. **159**, 920 (1967). ¹² J. Mattauch, W. Thiele and A. Wapstra, Nucl. Phys. **67**, 1

^{(1965).}

 ¹³ P. Wilhjelm, O. Hansen, J. Comfort, C. K. Bockelman,
 P. D. Barnes, and A. Sperduto, Phys. Rev. 166, 1121 (1968).