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Motivated by a desire to understand the electric quadrupole transition rates in 5Ni, calculations of
the effective charge for both neutrons and protons were carried out, first with #Ca as a core and then with
%Ni. The calculation was done in perturbation theory using the Kallio-Kolltveit interaction. Concerning
state dependence, it was first observed and then proved that in the limit in which energy differences in
the 2p-1f shell were small compared with 2Ahw excitations, the effective charge depended on the initial
and final orbifal angular momentum of a given transition, but when these ’s were specified, it was inde-
pendent of the initial and final j values. The effective-charge correction was much bigger for a neutron
than for a proton. This may have the effect of reducing the isovector part of the quadrupole operator and
hence causing AT=1 transitions to be inhibited. The effective charge is substantially larger with %Ni
as a core than with ©Ca as a core, but is somewhat too small to explain the E2 transition from the first
excited 2;* stage to ground. The effect of state dependence in the examples considered was to change certain
E2 rates by a factor of 1.5 to 2. In %N, the E2 ratio 2,"—0;+/2,"—2,%, if calculated with shell-model wave
functions, is extremely sensitive to the two-body interaction that is used. For example, it is about séxty times
smaller (and closer to experiment) if Kuo’s matrix elements, which are derived from a realistic inter-
action, are used rather than matrix elements chosen to give a least-squares fit to the energy levels of the
nickel isotopes. If only one of the matrix elements obtained from the energy fit is changed by 0.3 MeV, the
ratio becomes forty-two times smaller, also closer to the experimental value. The possibility that a low-
lying 2% state was basically a 3p-1% state was examined. The lowest two such states had very weak E2
transitions to ground and therefore did not at all resemble the one-phonon state or the electric quadrupole
state. By themselves, these states fail as candidates, not only for the 2,* state but also the 2,* state because
they radiate more to the ground than to the 2;* state.
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I. INTRODUCTION

HE need to keep the description of electromagnetic
properties of nuclei restricted to the action of a few
valence nucleons leads to the concept of “effective
charge.” Probably the best known example is O,
which in the shell model is described as one neutron
outside closed shells. The zero charge of the neutron
implies that electric transitions involving only a change
of state in the neutron should be essentially zero. Still,
the observed E2 transition between the ground and
0.87 MeV single-particle levels is comparable to the
one in YF, where the transition can be ascribed to the
proton outside closed shells. Thus, the valence neutron
in 0 behaves as if it had an “effective’ electric charge
of order unity. Mottelson! gives a simple description of
the situation in terms of the extra neutron inducing a
quadrupole moment in the core. From a more micro-
scopic point of view this means that particle-hole
configurations are admixed to the independent-particle
states. These admixtures are taken into consideration
by Horie and Arima? to account for the quadrupole
moments in odd-neutron nuclei, and by Blin-Stoyle?
* Work supported in part by the National Science Foundation.
1B. R. Mottelson, in Proceedings of the International School of
Physics “Enrico Fermi” at Varenna 1960 (Academic Press Inc.,
N.Y., 1961), p. 44. See, also, A. Bohr and B. R. Mottelson, Kgl.
Danske Videnskab Selskab Mat. Fys. Medd. 27, No. 16 (1953).
2H. Horie and A. Arima, Phys. Rev. 99, 778 (1955). See, also,
R. D. Amado, and R. J. Blin-Stoyle, Proc. Phys. Soc. (London)
A70, 532 (1957).
$R. J. Blin-Stoyle, Proc. Phys. Soc. (London) A66, 1158

(1953). See, also, A. Arima and H. Horie, Progr. Theoret. Phys.
(Kyoto) 11, 509 (1954).
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for the deviations in magnetic moments. De Shalit*
gives an estimate for the effective charge of neutrons
arising from the protons in excited configurations on a
shell model basis.

The O case mentioned before was treated by several
authors, and it was found that core-excited con-
figurations (or core polarization) account both for the
ground-state quadrupole moment and the E2 transition
rate.

Clearly the effective charge can be state dependent.
Its origin lies in the particle-hole admixtures to the
zero-order wave functions, and these admixtures can be
different for different states. This “‘state dependence”
of the effective charge can affect the calculated electric
moments and transition rates. In this paper we ex-
amine these questions, motivated by the experimental
data recently obtained in *Ni by the Rutgers® and
Bartol” groups. Shell-model calculations,®® using %Ni
as a core and one effective charge for the neutrons,
sometimes fail to reproduce electromagnetic transition
rates and branching ratios by extremely large factors.!
We present here a detailed calculation of effective

4 A, de-Shalit, Phys. Rev. 113, 547 (1959).

5 F. C. Barker, Phil. Mag. 1, 329 (1956) and Nucl. Phys. 59,
513 (1964); R. D. Amado, Phys. Rev. 108, 1462 (1957); S.
Fallieros and R. A. Ferrell, ¢bid. 116, 660 (1959).

6 M. C. Bertin, N. Benczer-Koller, G. G. Seaman, and J. R.
MacDonald (unpublished).

7R. N. Horoshko, P. F. Hinrichsen, L. W. Swenson, and D. M.
Van Patter, Nucl. Phys. A104, 113 (1967).

8 S. Cohen, R. D. Lawson, M. H. Macfarlane, S. P. Pandya, and
M. Soga, Physica 160, 903 (1967).

9 N. Auerbach, Phys. Rev. 163, 1203 (1967).
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charges with #Ca and ®Ni cores, and study their state
dependence. The sensitivity of the %Ni results to the
state-dependence of the effective charge and to various
modifications in the wave functions is also investigated
in detail.

II. EFFECTIVE-CHARGE CALCULATION

The calculation of an E(L) transition-matrix
element up to first order in perturbation theory is
indicated schematically in Fig. 1. The first graph
represents the zero-order contribution which, of course,
vanishes for a neutron. The remaining graphs give the
effects of core polarization. The calculation was per-
formed using interaction matrix elements derived from
the Kallio-Kolltveit interaction.!

Let us write the quadrupole operator in the form

L=QL4Ql where 0 and 1 refer to isoscalar and
isovector, and where, in particular

Q=L 2 (3 cogtt~1)rTh(erter),
02=L 20 (B ot~ DriTh(e—e)rd (), (1)

where 7o!=-1 for a neutron and —1 for a proton and
where, strictly speaking, e,=0 and ¢,=1. (Do not
confuse the epsilons here with the e’s we shall use to
designate effective charges.) Indeed, in calculating the
effective charges we set ¢,=0 and ¢,=1, but we shall
also discuss the possibility of using other values in order
to simulate higher-order effects.!*

Up to first order in perturbation theory, the E2
matrix element for the transition of one particle beyond
a closed shell from a state J; to a state J; can be written
as

EL=E(L0)+E(L1),
where

E(LT)=[T%0 Mr |3 Mr]
X (11,.7/1/2[ (QLT+5QLT) ¢J1/2]J,1f2> (2)

g

+ exchange graphs

F16. 1. Contributions to the effective charge up to first order in
perturbation theory.

1 A, Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964).
W, J. Gerace and A. M. Green, Nucl. Phys. A93, 110 (1967).
12 G, F. Bertsch, Nucl. Phys. 89, 673 (1966).
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+ exchange graphs

Fi16. 2. Zero-order and first-order graphs of electromagnetic
transition rates when there are two particles beyond a closed
shell. The last two graphs describe effects that are not included
by using an effective charge.

and
B(EL)=[(2J;+1)/(2J:+1)] | EL >

For brevity we designate the first-order matrix element
by 80, and we find

B0 = 3= (14Ppy) (—1)Permsitrs
P.H

X {(2HA+1) /[(2P+1) (27 41) (27;41) X 4]}
X 2 U(LHJ;Io, PT)U(T} 4 To, 3 %

X WHALQMYP ) (21 +1) (2To+1)
X((A=Pp) [J,PJ | V | [J:HT0)/AE, (3)

where P is above the Fermi sea, H is below, and Ppgy
exchanges the labels P and H.

The above expression, or its equivalent, has been
used by many people, starting from Horie and Arima.?8
We have nevertheless included it here for completeness.

Since we are interested in Ni*® we indicate in Fig. 2
the graphs for fwo particles beyond a closed shell. We
note that all but the last two graphs can be taken into
account by replacing the matrix element (J;QJ;) by
{(J;0+8QJ;). In the last graph both nucleons are in-
volved in polarizing the core. This graph is an effect
beyond the effective charge. However, one should
note that in this graph the particle-hole pair excited
from the core is a neutron pair and therefore will not
contribute unless we assign an effective charge due to
higher-order processes. We have found that even if we
assign an effective charge of one to the particle-hole
pair, the size of this graph is negligible in comparison to
the effective-charge graphs. The only exception is when
one is dealing with very weak transitions.

13 T, Hamamoto and A. Molinari, Phys. Letters 26 B, 649 (1968).
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TaBLe I. State dependence of the effective

charge for ©¥Ca and %Ni.
“Ca N “Ca N1
States involved en n p ep

1fue-1fure 0.59 1.11 0.21 0.44
2psi2-Yfue 0.41 1.11 0.15 0.36
fsie-1f1r2 0.59 1.14 0.21 0.24
2p312-2pasa 0.38 0.73 0.14 0.30
fsia-2p312 0.41 1.09 0.15 0.48
2p12-2ps12 0.38 0.73 0.14 0.26
1fsi2-1fss2 0.59 1.12 0.21 0.41
2pue-1fsie 0.41 1.1 0.15 0.47

To obtain the effective charge we set ¢,=0 and ¢,=1
in the quadrupole operator. The effective charge de-
pends on J; and Jy and is written

e.(JJ;) for a neutron [1+-e,(J:Jy)] for a proton

WHL8Q%— (1/v3) 808 T +)
W+ (1/3) Q" W)

Note that the effective charge for a neutron and proton
are different as long as 6Q" is finite and indeed it turns
out that the neutron correction is larger than the proton
correction. This has been noted by Horie and Arima?
and others. Note that only the polarization of protons
contributes to the EL transition. The valence proton
interacts with the polarized protons only via a I'=1
part of the interaction while the valence neutron can
interact also via the T7=0 part.

€pn JJy) =

III. DISCUSSION OF THE EFFECTIVE CHARGE

In Table I, we present the effective-charge results
obtained for a nucleon moving in Ca® and Ni® cores.
The first column gives the single particle states involved
in the transition. The following four columns present
the e, and e, obtained for each transition in both cores.

The most striking feature is that the effective charge
seems to depend on /; and I, but for a given /; and I;
it does not depend on j; and jy.* Thus for example the
effective charges for the transitions fre-pam, fo2-ps2
and fso-p1e are all the same. Another feature of our
result is that the effective charge for p orbitals is
smaller than for f orbitals.

Although there are very many particle-hole pairs
which contribute to the effective charge in “Ca, it is

4 The same effect is observed in a recent calculation for the
tin isotopes. M. Gmitro, A. Rimini, J. Sawicki, and T. Weber,
Phys. Rev. Letters 20, 1185 (1968).
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found that only a few give large contributions. These
are 1fielpss™, Usplpys™, 1goeldss™, and 1graldyst.
Note that in all cases the angular momentum of the
particle is two units greater than that of the hole.

To see why the effective charge is bigger for an
Suafre transition than for a pyp-pse transition, we ex-
amined in detail the case where the particle-hole pair
was 1gi-1d3s~%. This gave the largest single contribu-
tion to the effective charge. Note that in Eq. (3) there
is a sum over T and Io. In the fio-f1/2 case the possible
values of Ty and I, are (0.2), (0, 3), (0, 4), (0, 5),
(11 2); (17 3): (1) 4)) and (1) 5)) in the P3/2'P3/2 con-
siderably fewer values are possible—(0, 2), (0, 3),
(1, 2), and (1, 3). Actually, the contribution for any
given I, T which are common to both will be bigger
in the psp-pse case. For example, (in arbitrary units)
the contribution for (Zo, Tp)=(0, 3) is 2.4 in the
pa/z-ﬁa/z case but only 1.3 in the f7/2~f7/2 case. But this
is more than compensated for by the fact that there
are large (0, 4), (0, 5), and (1, 5) contributions
(1.3, 3.1, and 3.9, respectively) which are present only
in the f7/2-f7/2 case.

We thus conclude that the reason the effective
charge is larger in the fys-fr» case than the psp-ps is
that there are more three-particle-one-hole intermedi-
ate states in the former case. Our result concerning the
“j independence” of the effective charge should be of
value to people who are interested in parametrizing
the effective charge. In the case of #Ca only three
parameters are required instead of eight (one for each
single-particle transition).

Often in the literature the assumption is made that
the effective-charge correction is the same for neutron
and proton. Our results indicate that the effective
charge for the neutron is more than twice as large as
the effective charge for the proton. This trend is
supported by an empirical analysis of transitions in the
Jfue region® where it is found that about the same total
charge is needed for neutron and proton to give the
best fit to several quadrupole moment and £2 transi-
tion measurements.

If, indeed, it turned out that the neutron and proton
had the same effective total charge, then the effective
quadrupole operator would be pure isoscalar. It then
follows that AT=1 E2 transitions would vanish. It is
not at present clear whether or not there is an inhibition
of AT=1 transitions in this region. Obviously, an
empirical study of this point would be very interesting.

Another point in our results is that the effective
charge correction in Ni% is almost twice as large as the
one in Ca® We can write the effective charge in
Ni® ag

en=en1+en2,
where ¢,! is due to excitations in which both the particle

(1;56%5 Zamick and J. D. McCullen, Bull. Am. Phys. Soc. 10, 485
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and the hole are in the 2p-1f shell and hence involve
relatively small energy denominators (~5 MeV),
and e, to all other kind of excitations, which will
involve 2hw energy denominators (~20 MeV). It is
then found that e,! and e, are both significant. For
instance for the fs/o-fs2 transition, e,'=0.41 and e.?=
0.71

IV. PROOF OF THE j INDEPENDENCE OF THE
EFFECTIVE CHARGE FOR A CENTRAL
INTERACTION

We must show that, in the limit where single-particle
energy differences in the 2p-1f shell are small compared
with 2k excitations, the quantity e=8Q/Q, which is
proportional to

WLV/(E—H) W)/ i)

does not depend on j and j'. We also assume V is a
central interaction.

We take all 2p-1% intermediate states to have the
same energy, —Fr. We can then write

WV(E—H)7'QY7)=(E—Ep)™ ; WV 105",

where I represents a 2p-1/ intermediate state. We now
use the completeness relation

ZI> I+ 22 5"<35"

i

+ (states which do not contribute) =1,

where | j”/) is a 1p state. Hence,
< Q > _ Wreyry

(E—Ex) @Q47)
—(E=E)71QVy).

The numerator of the second term above represents
the potential energy of the nucleus in a j state. The
difference of this quantity for different values of 7 is
simply the single-particle splitting ej—e;. This is
divided by E—Er~2hw» and precisely such ratios are
being neglected. Alternatively, if one uses an inter-
action which has no two-body spin-orbit part, e.g.
a central interaction, then one will not get any j
dependence.

We next consider the numerator of the first term.
It is convenient to regard the product VQ as a single
entity. It is a rank-two tensor. Consider in particular
W' VQuobm?"). We expand the single-particle wave
functions in terms of m; and m, and get this to equal

> (m | Bmamy) (G'm | Vimam,)

mims

X s Xon 2V Qo X, 112
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There will be no cross terms in m; and m, because VQ,
commutes with both L, and .S,.

We can now apply the Wigner-Eckart theorem to the
orbital angular momentum and get

Wm?V Qupm?" ) = Z (jm I Izmum,) (j'm l Vgmum,)
X (200my | bma) JWLVORYT).

We have thus factored the expression and we note that
the second factor has no j dependence. We can factor
the denominator in the same way and we thus obtain

W’V Qo )/ b Quibm” ) = (W (VOHV) 1)/ (W1 (QHM)).
The right-hand side is clearly independent of j and j’.

V. STATES OF ®Ni IN THE
TWO-PARTICLE MODEL

Shell-model calculations of the nickel isotopes,
including %Ni, were carried out by Auerbach,® Mc-
Grory,® Lawson, MacFarlane, and Kuo,” and by S.
Cohen ef al8 (see Ref. 18). For Ni® the calculation is
very easy—the configuration consists of a closed ®Ni
core and two particles in the psp, f52 and pyjs orbitals.
The calculation of Auerbach and of the Argonne group is
similar in that both made a least-squares fit of inter-
action-matrix elements, the criterion being that the en-
ergy levels are to be fitted as well as possible; indeed,
very good fits to energy levels were obtained. This leads
the authors to believe that the low-lying states—in par-
ticular the O¢*, 2,+, and 2,* states—can basically be de-
scribed as “effective” two particle shell model states. In
simple cases, the hope is that an effective charge will
take care of more complicated configurations. But in
general transition rates depend so drastically on the de-
tailed structure of the wave functions that the use of
simply an effective charge is an oversimplification. This
is dramatically exemplified in the case of ®Ni. The E2
transition rates involving the three states mentioned
above come out rather poorly.® They were calculated
in the same way by both Auerbach and Cohen ef al.:
an effective charge was chosen so that the 2,40,
transition is fitted to the experimental value. The
same effective charge was then used for all the other
transitions. An effective charge of 1.9 was needed by
Cohen et al. and about the same by Auerbach. (In his
report, Auerbach quotes a value 1.1, but we repeated
the calculation and found that 1.9 is the correct value.)

167, B. McGrory (private communication).

7 R. D. Lawson, M. H. Macfarlane, and T. T. S. Kuo, Phys.
Letters 22, 163 (1968).

18Tt should be mentioned that the shell-model calculations of
Refs. 8 and 9 were performed by fitting the 2.78 and 2.94 MeV
levels as having, resgectlvely, spins O* and 2+, Later assignments
(Ref. 7) show that the correct spins are 2+ and 0%, respectively. A
fitting to the corrected spins could therefore yield shghtly madified
two-particle matrix elements,
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TaBLE II. Transition rates in ¥Ni.
Kuo’s
Kuo’s matrix
Cohen matrix elements; our  Auerbach
Experiment etal. Auerbach elements effective modified
Transition (e¥%) ex=1.9 e.=1.9 en=1.9 en=1.1 charge en=1.9
25+ —0 0.3640.11 17.6 38.5 13.0 9.5 9.2
25—t 19060 0.61 76.8 25.6 16 13.4
2,10t/ 2, 2 1.9X1073 33.1 29.00 0.51 0.51 0.59 0.69

This should be compared with the values of 0.73 and
1.1 that we obtain for p-p and for f-p or f-f transitions,
respectively. It is perhaps worth mentioning that the
inclusion of higher-order corrections would increase the
values we obtained.!? The nucleons involved in the
particle-hole excitations describing the polarization of
the core would also acquire an effective charge arising
from higher-order excitations. This could be simulated
by changing the values of ¢, and ¢, in the definition of
the quadrupole operator from the bare values 0 and 1
to larger ones.??

We focus our attention on the ratio 2;t—0,%/2;t—
2;7. Experimentally, this ratio is very small, i.e., there
is hardly any cross-over transition; theoretically, the
ratio is very large. The disagreement between theory
and experiment is of the order 10% The experimental
ratio is easily explained on the basis of a vibrational
model. The 0, state would be a zero-phonon state,
the 2;% a one-phonon state and the 2,* state a.two-
phonon state. There cannot be any transition between
a pure two-phonon state and a zero-phonon state. In
the rest of the even Ni isotopes such a difference in the
predictions of the shell model and the vibrational
model does not arise. The cross-over inhibition can be
explained in terms of shell-model wave functions for the
2;* states containing mainly seniority 2, which cannot
therefore be identified as two-phonon states.? It is
therefore of interest to examine more closely the case
of Ni. Its spectrum can be nicely fitted using the same
interaction as for the rest of the Nickel isotopes, by

two-particle wave functions which in no way resemble
a one- or two-phonon state.

Our initial idea was to investigate to what extent the
concept of one effective charge is an oversimplification,
and see if a possible state dependence of it could be of
importance in the theoretical estimates of the transi-
tion rates.

But before discussing the state dependence of the
effective charge, we consider an even more basic
question: are the results for the B(E2)’s sensitive to
the two body interaction (or matrix elements) that is
used? To answer this question we redid the Ni® cal-
culation, using the matrix elements of Kuo, which were
derived from the realistic Hamada Johnston two-
nucleon interaction. These matrix elements had already
been used, of course, by Lawson, Macfarlane and
Kuo.!

The results are listed in Table II. We find that there
is a tremendous difference in the resulis of using Kuo’s
matrix elements compared to those of Auerbach. In
particular, the ratio 2,+—0,%/2;+—2;+, which was
about 30 in the results of Auerbach and Cohen et al.,
is now 0.51 with Kuo’s matrix elements. This is much
closer to experiment, although there is still a long way
to go. If one examines the individual contributions of
each shell-model configuration to the B(E2)’s it
becomes apparent that the main reason for the dif-
ference between the results obtained using Kuo’s or
Auerbach’s matrix elements is the vanishing amplitude
of the pg2py/2 configuration in the 2, state in Auerbach’s

TasLe ITI. Wave functions of 2;* and 2;* states in Ni%.

Matrix elements State Daia? Dai2 for Dsi2 Dria Jor? Jors pin
Auerbach 2 0.696 0.180 —0.633 0.191 0.215
Auerbach modified 2 0.684 0.225 —0.602 0.233 0.253
Kuo 2 0.875 0.163 —0.356 0.241 0.154
Auerbach 2, 0.422 —0.674 0.001 —0.478 —0.373
Auerbach modified 2, 0.691 —0.448 0.378 —0.327 —0.268
Kuo 2, 0.482 —0.252 0.669 —0.373 —0.343
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case. Moreover, comparing both sets of matrix ele-
ments one can see that (psapipJ=2|V | psp2J=2)
is the one that differs most. Auerbach quotes a value
of 0.83 MeV while Kuo gives 0.27 MeV. We decided
then to check the sensitivity of Auerbach’s results to a
small change in the (psap1pJ =2 |V | 32 2] =2) matrix
element only. We modified it from 0.83 to 0.5 MeV.
In Table III we list the wave functions for the 2,
and 2,* states for the three sets of matrix elements:
Kuo’s, Auerbach’s without and with the single modi-
fication mentioned above. The change induced by the
small change in one of Auerbach’s matrix elements is
very appreciable only in the 2,* state,® as can be seen
in Table III. Next, we go on to calculate the transition
rates with the new wave functions obtained for the 2+
state. The results are included in Table II. It should be
noted that the effect of modifying one matrix element
by 0.3 MeV is indeed striking. The ratio 2;t—0;1/2,t—
2;+ goes from the previously mentioned value of about
30 to a new value 0.69. Also the individual transitions,
though still far from being satisfactorily explained, are
in better agreement. In particular the 2;¥—2,* rate
goes from 0.61 ¢ to 13.35 €%, to be compared with
19060 €*f* obtained experimentally.

Let us look at the transitions in more detail. The
two-particle wave functions are of the form

Y= 20 CI(WTs) (YT,
and the transition matrix element has the structure

2 CHUT)C I (T QLI T).
11727374
We can thus speak of a component of the E2 matrix
element, where each component is specified by the
numbers jy, f2, 73, and j4. The individual contributions are
listed in Tables IV and V for an effective charge
e,=1.1. Table IV gives the 2,—0; and Table V the

TasLE IV. Individual contributions to the transition rate 2;—0;.

Auerbach
b Ja Js Ja Kuo Auerbach modified
3 E RN S | 2.25 +0.00 +1.26
3 3 & 3 4.00 -+0.01 +2.25
3 3 3 3 —4.07 —-3.52 —5.75
H i ¥ 3 1.17 1.28 0.89
H i 5 % 1.15 1.28 0.93
3 5 3 3 0.82 2.17 1.4
E § 3 3 0.45 1.24 0.83
H 5 5 3 2.28 2.99 2.07

¥ G, T. Garvey and I. Kelson, Phys. Rev. Letters 16, 197
(1966) .
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Tasre V. Individual contributions to the transition rate 252,

Auerbach
! Y Kuo Auerbach modified
3 3} 3 3 1.07 +0.00 +1.08
% 3 3 % —1.09 —1.70 —2.71
5 i 3 3 0.16 0.31 0.22
3 5 3 % 0.13 1.04 0.69
3 1 3 3 3.71 +0.00 +1.69
3 5 3 3 —0.54 —1.16 —0.75
3 3 5 3 0.13 +0.00 +40.15
5 i 3 % 0.27 0.41 0.30
3 5 5 % 0.09 0.35 0.25
§ 5 5 3 0.32 0.58 0.40
3 i 3 3 0.27 -+0.00 +0.20
3 3 3 3 0.19 0.19 0.31
3 3 3 3 0.13 0.16 0.12
3 5 3 3 —0.06 —0.02 —0.01
5 5 3 3 0.07 0.09 0.06
5 I 5 3 0.47 0.40 0.30
3 5 5 3 0.07 0.14 0.10
3 5 5 % —0.33 —0.34 —0.23

2,—2; contributions. The first columns give ji, 7s, 73,
and js. The following three columns correspond to the
case of Kuo, Auerbach, and Auerbach modified wave
functions, respectively. It turns out that in the 2,—0;
transition, all components have the same phase. This
explains why this transition is so strong, and also why
the transition is not very sensitive to small changes in
the wave function.

In the 2,0, transition it was observed that all com-
ponents except one, had the same sign. The exception
was the case when ji=je=psp and js=js=ps. We
remember that the 2,—0; transition is very weak,
essentially zero. Theoretically, the only way to get
cancellation is for the one component py*—pse to
cancel all the rest. But this simply does not happen,
because, as can be seen from Table III, there are many
large components other than ps.?. The use of a state
dependent effective charge could have helped provided
that somehow, the effective charge for psa—>psn were
much larger than in other states. On the contrary, our
calculation indicates that it is smaller. It thus seems
impossible on the 2p model to get a cancellation of this
matrix element because of the fact that the burden of
the cancellation is on only one of many terms.

In the 2,72, there are first of all many more terms
than in the 2,+—0;* transition, and there are several
positive and several negative terms. In such a situation
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the result is extremely sensitive to the details of the
wave functions.

It should be emphasized that the large changes in the
E2 rates for different interactions are due not to small
changes in the wave functions but rather to very large
ones (see Table III). The statement is that small
changes in the two-body matrix elements can induce
large changes in the wave functions and hence large
changes in E2 transition rates.

In the above we refer to changes in the two-particle
wave functions. One should not forget that the use of
an effective charge masks the effect of many con-
figurations other than 2p, e.g. 3p-1k, that are con-
tributing to the transition (without them the effective
charge would be zero). These other configurations may
have a very small probability, but still they seriously
affect the transition rates.

VI. POSSIBILITY OF LOW-LYING THREE-
PARTICLE-ONE-HOLE STATES

In calculating the effective charge, one treats the
3p-1h states as weak perturbations of the basic 2p
states. But what if one of the low-lying states was a
3p-1k state with a possible weak admixture of a 2p
state? Then the above approach would break down.

The one-phonon state is mostly a 3p-1% state, and
since it has sometimes been offered as a candidate for
the 2;* state, it would be of interest to see if the lowest
3p-1h state obtained by diagonalization resembles a
one-phonon state, or alternately resembles the 2, state.

Closely related to the above is the electric quadrupole
state which is simply the product of the ground-state
wave function and the electric quadrupole operator.
Such a state would exhaust the E2 sum rule. It was
mentioned as a possibility by Cohen et al.® (they did
not necessarily believe it) that the 2;* state could
largely be such a state. Clearly the quadrupole state is
also mostly a 3p-1/ state and again it is of interest to
compare with the 2p-1% state obtained by diagonaliza-
tion.

Also, if it turns out that the 2;* state is not a 3p-1%
state, then maybe the 2,* state is.

The first problem is to estimate the energies of the
3p-1k states. We consider two cases, depending on
whether the isobaric spin of the three particle is
To=%or Tp=%.

In estimating the energy, we at first neglect the
particle-hole interaction. In the 7,=% case the excita-
tion energy is about E(®Cu)—E(*Ni)4E(*Co)—
E(%®Ni) =3.9 MeV. In the T,=% case it is E(*Ni) —
E(%*Ni) +E(%Ni) — E(®Ni) =5.9 MeV. [The nucleus
%Nj is not listed in the mass tables. It was obtained by
using the Garvey-Kelson mass formula® E(%*Fe)—
E(®Ni) = E(%Fe) — E(*Co) +E(*Co) — E(*Ni) . ]

Both energies above are higher than the energies of
the 2;* and 2% states (1.45 and 2.77 MeV), but not so
high that they could be ruled out with certainty.
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The diagonalization of the J=2 3p-1k states was
carried out in two stages. First the 3p states were
diagonalized, i.e. ®*Ni and ®Cu, and then an fy, hole
was coupled to the low-lying 3p wave functions.

The first two low-lying 3p-1% states had a very simple
structure. They were mixtures of two states, one where
the 3p coupled to J=% T'=% and one where they
coupled to J =% T'=%. The first component dominated
in the lowest state despite the fact that the particle-hole
interaction brought the T,=% state down towards the
Tp=7% state.

Since the precise mixing of the T,=% and T,=3
states is very sensitive to the parameters that are used,
it makes more sense to calculate the transitions for
each of these states separately.

Here we calculated the following quantities:

(a) The transition of the 3p-1k state J,=3% T,=3%
to the 0,F 2p state with the result B(E2) =4.7 é*f*

(b) To the 2, 2p state with the result B(E2) =
0.75 ef.

(c) The transition of the 3p-1k J,=3% T,=3% to the
0.+ 2p state, with the result B(E2) =9.3 e2f*.

(d) To the 2+ 2p state with the result B(E2)=
2.8 &ft.

An effective charge of 1.1 and 2.1 were used for the
neutron and proton, respectively.

We see that both the states above decay very weakly
to ground and hence are not likely candidates for the
2;* state. Secondly, the transition to ground, though
weak, is stronger than the transition to the (two
particle) 2;* state. This again is contrary to experi-
ment. We found further that the sign of the mixing
amplitude between T,=3% and T,=3% in the lowest
3p-1h state was such that the 3p-1% transition to
ground would not be cancelled, but rather enhanced by
a mixture of these two basic states.

It is possible to concoct a mixture of 3p-1% and 2p
states whose decay to ground would be negligible, but
since it is so easy to control the mixing amplitudes by
adjusting certain parameters, especially the diagonal
energies, it is hard to know whether such a calculation
should be believed or not.

What can be said with reasonable confidence is that
the 2,+ state is not basically a 3p-1k state and the 25+
state is not a pure 3p-1% state.
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