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A method is developed for performing Brueckner-Hartree-Pock (BHF) calculations of spherical nuclei in
the harmonic-oscillatox repr~ntation. Both the Brueckner and the HF self-consistencies axe satisaed. The
method 1s app11ed to the calculat1on of '%, 4OCa, 4Ca, and I'~Pb w1th a G matr1x denved froxn the Hamada-
Jollllston potentlsL The nuclei sre too small snd underbound. Various kinds of convergellce al'8 studied
It is concluded that the calculations are essentially as easy and as xeliable as, though a Httle longer than,
pure Hartree-Pock calculations.

I. INTRODUCTIOÃ

HE last fcw yern'8 have sccD the emergence of
~ ~ Inany DUclcRI'-stl'UctUI'c calculations pcl formed

with two-body potcntlRls obtained from thc two-
nucleon data Some of these' 3 have been shell-model
calcUIRtloDS seeking to Rdd Inany-pRI'tlclc lmpI'ovc-
ments on an assumed single-particle (SP) basis. Others
have aixned at laying the foundations of the shell model
itself, thereby calculating the SP parameters and ex-
hlbltlng thc Ila, tllI'e of tllc essential (Ilollpcl'tulbatlve)
Inany"partlclc coI'I'clatlGDs. Thc sllnplcst way to pel-
fGrm a calculation of thc second category ls thc Hal tI'cc-
Fock (HF) method, in which there are no essential
IDRDy-partlclc correlations. It 18 valid when thc two-
DuclcoD lntcx'Rctlon 18 8UKcicntly smooth. H thc 1Dtcr-
action ls smooth at distRnccs of thc order of thc Rvc'I'Rgc

internucleax spacing, but unsmooth at short distances,
a modi6ed form of HF is still applicable, in which the
essential correlations are those of two nucleons inter-
acting at close range in the average 6cld of the others.
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Tllls Is thc BrllcclUlcl'-Hartl'cc-Fock (BHF) xllcthodq
which has bccn lnuch studied ln thc last decade.

The principal change frGID HP to SHP is the re-
placement of thc two-nucleon lntcx'Rctlon V by an
effective lnteractlon of'tc11 kllow11 Rs tllc G matrix G(ro)
dcpendcDt on thc Rvallablc energy 0P Gf thc correlated
pair. Thc equation COIlncctlng V RIld G(oo) ls thc Bcthc-
GGMstonc cqUatlon. s Yhc solution Gf this cquatlGD
requires thc knowledge Gf the single-pRrtlclc paraxneters.
The latter cannot be determined, however, without
prior knowledge of G(ol); this is the Brueckner self-
consistency. Another self-consistency arises in the HP
part of the pxoblem, since the single-particle potential
U ls calclllatcd ln terms of G(oI) bf R sum ovcl' occllplcd
single-particle states, but the latter cannot be deter-
mined without prior knowledge of U; this is the HP
self-consistency.

ID light Duclcl, harlnonic-oscillator %'Rve functions
(HOWFS) are well known' "to be good approximations

' K. A. Brueckner, Phys. Rev. 1N, 56 (1955), and other refer-
ences mentioned in Ref. $.

~ B.H. Brsndow, Rev. Mod. Phys. 89, 171 (1967).
~A recent review especiall oriented towards 6nite nuclei is

M. Baranger, in Infeeu '
School of I'h siss "EeHco Fermi, "

Verosse, ZNy, 8dlted by Maurice Jean Academic Pless Inc.,
New Voxk, 1969).

~ An altexnative approach, which may be equivalent to BHF
but has not been as highly developed, is F. M. H. Villars, in
INWea4'owcl School of Physks "Eermo Fermi, " Vwegga, JW1,
edited by V. %eiMopf (Academic Pr~ Inc, , New Vork, 1963);
J. da Providencia snd C. M. Shakin, Ann. Phys. (N. Y.) 50, 95
(1964); C. M. Shskin, Y. R. Wsghmare, and M. H. Hull, Jr.,
Phys. Rev. 161, 1006 (1961); C. M. Shakin, Y. R. Waghmare,
M. Tomaselli, snd M. H. Hull, Jr., ihid 161, 1015 (.1961).'H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957').

~ R. Muthukrishnan and M. Baranger, Phys. Letters 18, 18)
(1955); K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl.
Phys. 84» 545 (1966)s S. J. Krlegerg K. T. R. navies» and M.
Baranger, Phys. I.etters 22, ee (19m).

'o A. K. Kerman, J. P. Svenne, and F. M. H. Villars, Phys.
Rev. 147, 710 (1966).
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to the true single-particle wave functions (SPWFs).
Hence the HF self-consistency problem is mostly of
academic interest in light spherical nuclei. Calculations
using pure HOWFs encounter only the Brueckner
self-consistency problem and are called Brueckner cal-
culations. Several such calculations have been per-
formed" "and it has been a pleasant surprise to dis-
cover that they are at least as easy as those of nuclear
matter.

The situation is altered in heavy nuclei, where
HOWFs and self-consistent SPWFs may give noticeably
different results. For instance, " the radial charge dis-
tribution is radically different with the two sets of
WFs. One might try to avoid coping with HF self-
consistency for heavy nuclei by using a preselected
potential well (for instance, Woods-Saxon) to calculate
the SPWFs. It turns out, however, that the G matrix
is much easier to calculate for HOWFs. Hence the
best procedure seems to be to perform BHF calcula-
tions in an oscillator basis. Eventually BHF calculations
will have to be performed for deformed heavy nuclei,
since most heavy nuclei outside of the vicinity of
"'Pb seem to be either deformed or highly deformable.

This paper discusses BHF calculations of spherical
nuclei in the oscillator representation. Past BHF cal-
culations' ' were done in the coordinate representation
and they contained many more approximations than
the present method. (Very recently BHF calculations
have also been done by Irvine' using the Reid soft-core
potential. ") The line of approach of this paper is the
same as in the recent series of pure HF calcula-
tions. ' """The oscillator basis is chosen because the
Talmi-Moshinsky transformation" permits easy passage
from the c.m. -relative representation to the single-

"A. D. MacKellar and R. L. Becker, Phys. Letters 18, 308
(1965); R. L. Becker and A. D. MacKellar, ibid. 21, 201 (1966);
A. D. MacKellar, Ph.D. thesis, Texas A. Bz M. University, 1966,
Oak Ridge National Laboratory Report No. ORNL-TM-1374
(unpublished); R. L. Seeker, A. D. MacKellar, and B.M. Morris,
Phys. Rev. 174, 1264 (1968)."R. J. McCarthy and H. S. Kohler, Nucl. Phys. A99, 65
(1967); H. S. Kohler and R. J. McCarthy, ibid. 86, 611 (1966);
A106, 313 (1967)."C.W. Wong, Nucl, Phys. A91, 399 (1967); A104, 417 (1967);
A108, 481 (1968).

~4A. Kallio and B. D. Day, Phys. Letters 25B, 72 (1967);
Nucl. Phys. (to be published)."D. Grillot and H. McManus, Nucl. Phys. A113, 161 (1968)."R. M. Tarbutton and K. T. R. Davies, Nucl. Phys. A120,
1 (1968).

'7 K. A. Brueckner, J. L. Gammel, and H. Weitzer, Phys. Rev.
110, 431 (1958); K. A. Brueckner, A. M. Lockett, and M. Roten-
berg, ibid. 121, 255 (1961); K. S. Masterson and A. M. Lockett,
ibid. 129, 776 (1963).

~8 H. S. Kohler, Phys. Rev. 138, B831 (1965).
~9 J. M. Irvine, Nucl. Phys. (to be published).
~ R. V. Reid, Ph.D. thesis, Cornell University, 1968; Ann.

Phys. (N. Y.) (to be published).
nr Y. Abgrall and G. Monsonego, Nucl. Phys. 75, 632 (1966);

R. K. Bhaduri and E. L. Tomusiak, ibid. 88, 353 (1966);
G. Saunier and J. M. Pearson, Phys. Rev. 160, 740 (1967); J. M.
Peason and G. Saunier, ibid. 173, 991 (1968); K. Sleuler, H. R.
Petry, and D. Schutte, Nuovo Cimento 55, 296 (1968).

2'I. Talmi, Helv. Phys. Acta 25, 185 (1952); M. Moshinsky,
Nucl. Phys. 13, 104 (1959).

particle representation and because oscillator wave
functions are fairly good approximations to the true
wave functions, so that the basis needs to have only a
fairly small dimensionality. It is found that relatively
minor changes are sufhcient to transform the HF for-
malism into a BHF formalism. The HF programs de-
veloped by Tarbutton and Davies" are readily trans-
formed into BHF programs. The main difference comes
in the energy dependence of G. The energy cu occurring
in G(~) is given in terms of SP energies, which are part
of the result of the calculation, and therefore this aspect
of Brueckner self-consistency has to be worked into
the iteration procedure. The other aspects have to do
with the dependence of G on the intermediate-state SP
potential and on the Pauli operator. They can be in-
cluded in a self-consistent manner also, but this com-
plicates the calculations greatly, and since the numerical
value of G is rather insensitive to small changes in these
variables, they have been kept fixed in the calculations
done so far.

The G matrix used in this paper is derived" from
the Hamada-Johnston potential. For the S-wave part,
the G matrix is calculated using a combination of the
separation method and the reference-spectrum method.
The potential V is separated into a short-range and a
long-range part, Vg and Vl,. Then the G matrix is
given by a sum of Gs, Vr„and Vr(Q/e) Vr„plus cross
terms of Gg and V~.23 Here Gq is the reaction matrix
deduced from V8, it is calculated by the reference-
spectrum method. Free-particle intermediate states
are used in calculating both GB and Vl, (Q/e) Vr, . The
criterion for choosing the separation distance which
divides V into Va and VL, is to minimize the Pauli
correction terms due to approximating the physical G&

by the reference spectrum G&. For the other partial
waves, the G matrices are obtained essentially by the
reference-spectrum method.

This G matrix differs from that of Kuo and Brown, '
which has been widely used in shell-model calculations
but was never meant for BHF, by the fact that it retains
the repulsive contribution of the short-range potential
Gg. This contribution was set equal to zero in Ref. 1
because of the following consideration. The Hamada-
Johnston potential has a hard repulsive core while one
would expect that the short-range repulsion is better
represented by a "soft" repulsive core. The repulsion of
Gz will be largely reduced upon changing from a hard-
core potential to a soft-core potential. Thus for nuclear
shell-model calculations where one does not deal with
the problem of nuclear saturation, one may as well
totally leave out Gz until a better description of the
short-range repulsion is available. However, the situa-
tion for a BHF calculation is very different, because
now we are dealing with the nuclear-saturation problem
and G~ has an important saturation effect. Gq is there-
fore included in the present work, although it should be

"T.T. S. Kuo, Nucl. Phys. A103, 71 (1967),
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remembered that the Gg derived from the Hamada-
Johnston potential probably overestimates the physical
short-range repulsion. Calculations with other G
matrices are also underway.

A BHF calculation is not a substitute for a shell-
model calculation. It is only a beginning, the deriva-
tion of SP parameters which are usually chosen empiric-
ally. After this, higher-order diagrams may need to be
calculated, i.e., a shell-model calculation may have
to be performed. For example, the radial charge dis-
tribution resulting from BHF calculations needs to
be corrected for Brueckner correlations.

If $ is a hole and g a particle,

(~l Ul ~&=Z' &u IG(.+..) I.f &. (ib)

If $ and g are both particles,

&tl Ul ~&=-: P' &ylG(~*+~*)+G("+~.) Ii &. (ic)

II. BRUECKNER SELF-CONSISTENCY

Notations:

q charge quantum number (neutron or proton),
l single-particle orbital angular momentum,

j single-particle total angular momentum,
re s component of j,

s, f= (q l—j) symmetry type. "
For harmonic oscillator wave functions:

n radial quantum number (number of radial
nodes),

n, P, p, 8=—(n q l j) complete specification of HO state,
is, fi, c, if=—(n q / j)=—(ns).

For self-consistent wave functions:

p radial quantum number,

$, p, f'—= (p qI jm) complete specification of HF state,
x, f, z—= (p q l j)—= (ps).

This section deals with the method for introducing
into the iteration scheme the dependence of G(a&) upon
the available energy co. The connection between a
matrix element ()I Ul i7) of the SP potential and G(&o)

has been discussed by BBP~4 in the case of nuclear
matter. The formula depends on whether $ and
are holes or particles. The extension to 6nite nuclei' of
the BBP theorem yields the following results. If $ and g
are both holes,

«IUI~&=l 2' Qf IG( *+")+G(,+")l~i &. (ia)

denoted by e. The quantities ~ differ from c and their
definition is somewhat uncertain. It is discussed below.
In fact, the particle-particle matrix elements have been
the subject of much study in the literature. "One ex-
treme proposal has been simply to set them equal to
zero; another one has been to use Eq. (ic) with e re-
placed by e, the "on-shell" prescription. Somewhere in
between lies the "best" prescription, and the argu-
ments of the last few years seem to have produced a
rough consensus as to its nature: The potential should
vanish for the high particle states, but for the low ones
it should be attractive and almost continuous with the
hole potential. The distinction between "high" and
"low" in nuclear matter comes for momenta of the
order of 2k'. For the low particle states, e should be
somewhat off the energy shell, i.e., lower than e. This
off-shell prescription makes U slightly less attractive
than the on-shell prescription does, producing a small

gap at the Fermi surface for the SP energies. However,
for "low" states, the off-shell eGect is far smaller than
the effect of setting U=O. This is readily checked for
nuclear matter, and in finite nuclei it has been demon-
strated in some recent calculations of Becker et al."
A reasonable rough formula for e might be

6g= 26p 6g ~

where ep is the average energy of occupied SP states.
Since BHF calculations are concerned only with hole

states and low-lying particle states, the particle-
particle matrix elements of U should definitely be re-
tained in a form such as (ic), and not be set equal to
zero. This is fortunate because the similarity of treat-
ment between particles and holes makes the formalism
simpler. Note that the SP potential defined by Eqs.
(1) is Hermitian. It has sometimes been said, because
of the dependence of the right-hand side of (1) on SP
energies, that U is "state-dependent" and not a true
potential, and that it must be averaged before it is
used. This is false. U is an ordinary potential which is
completely specihed by a Hermitian matrix, with no
additional parameter; but the relationship of U to the
G matrix involves a delicate self-consistency problem.

In view of the uncertainty associated with the treat-
ment of the particle energies, we have taken the liberty
of modifying Eqs. (1) slightly. This is not necessary;
the equations could be used as they are. We argue that
one is mostly interested in the SP energies and wave
functions for the occupied states; hence the formula for
hole-hole elements, Eq. (1a), should not be changed.
The hole-particle elements, Eq. (1b), are less important
because a small change in them affects the occupied
states in second order only; this formula can be altered

The primed sums run over hole states only. The single-
particle energies, eigenvalues of T+ U, have been

'4 H. A. Bethe, B.H. Brandow, and A. G. Fetschek, Phys. Rev.
129, 225 (1963).

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958); B. H. Brandow, ibid. 152, 863 (1966); G. E. Brown,
Umpired Theory of NNclear 31odels and Forces Qohn Wiley 8z
Sons Inc. , New York, 1967), p. 225; R. Rajaraman, Phys. Rev.
155, 1105 (1967); H. A. Bethe and R. Rajaraman, Rev. Mod.
Phys. 39, 745 (1967).
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a little. The particle-particle elements, Eq. (1c), come
in third order; they can be modified even more. In our
calculations so far, we have used the following formula,
which replaces all three Eqs. (1) and is exact as far
as hole-hole elements are concerned:

The next step is to do the geometry. This has been
described in Ref. 16. A matrix P& is defined by

&~~I G(M) lp~&= —g F,(atd. ; ~)(—) ™s(—) '™
XC(j,j pJ; 4n, —

nst4, M)C(jzj,J; tn4, —n43, M). (g)
&El Ul n&

=
2 2' &8 I

G(p*'+")+G("'+4.) I n(&, (3)
The matrices U and p have the form

with

e '= ~, for levels below the Fermi surface
= e, for levels above the Fermi surface.

( I
v

I p) = ~,.„s . ,(n. l v, In,),
&431pr IP)= tta 34t'33p34t'im mitimpmi(na I pay lnp) .

(4)
Then Eq. (7) becomes

(9a)

(gb)

The quantity e, is taken to depend only on the sym-
metry type. The choice which makes Eq. (3) as ac-
curate as possible for hole-particle elements is

e, (') = average value of e for the occupied levels of

symmetry type s. (5)

However we have used other choices of e, and their
effects will be discussed in Sec. 4. Choice (5) also pro-
duces the desired o8-shell effect in the particle-particle
elements, although it is not exactly that given by Eq.
(2).

Coming now to the way in which this self-consistency
is achieved, one must transform Eq. (3) from the un-
known $, 3t, f representation to the known n, P, y, h

harmonic-oscillator representation. This is done by the
following steps

&ol UI p) =2 Z Z' &~l 4&&81G("'+4*&

+G(.„'+..) I g&(g IP&

(n I
U, ln ) =-,' P g P' (n I p.„ln ')(n

I p„,ln, )
nl'n3n4 yl ty3

XL—(2j3+1)'t (2j3+1)
XFp(sni', snp, tn4, tn3, p, „,'+ 4„,)]
+2 2 2 2' (n41pi-Inp)(»'I p.»ln2)

n2'n3n4 P2 tP3

X I

—(2j3+1)"'(2j.+1) '"
XFp(sni Sn2 tn4 tn3 sp»+pt»)]

=2 p (nil p", Ini')(ni'IP (".3') Inp)

(10)

+l p (»I P (p"3') ln2')(n2'I p»lnp) (11)
+2 P2

with the definition

(n, lP.(.)ln,)= Z Z (. I..I")L—( j+ )'"
nsn4 ty3

X(2j,+1)—'12Fp(sn» sn2, tn4, tnp', p+ 43»)j ~ (12)

=2 2 2 2' &ol ~)&kl~'&&017)&bit)&p'I v&

X &~ I
p)&~'~

I G(..'+.,)+G(.„'+.,) I
p'~)

=-' Z Z 2'(~lptl '&&~lprlv&&p'lp. lp&

X (n'y
I
G(p.'+ p.)+G(p„'+p.) I

P'f),

with the definition

(ol peal
'&= &~l ~)&kl~'&. (6)

(~IUIP)=l 2 2 2'(~I peal '&&bl priv)
a'y5

X(~'pl G(p.'+ p.) IP&)+-,' P g P'(&
I pr I y&

O'V& 1l

x(P'IP, IP)(~~IG(.„'+..) IP'b&. (7)

If the two terms of the two-body matrix element are
separated, the sum over either $ or 3t becomes trivial,
and one obtains

We are now in a position to explain how an iteration
is actually performed. The previous iteration has
yielded a set of single-particle levels sp whose energies
are e,„and whose wave functions can be specified by

(n
I p,„ln') = (sn

I sp) (sp I
sn') . (13)

The complete iteration consists of three steps: (1) for
each s and for each p' in s, compute a matrix P, (p') by
Eq. (12); (2) for each s, compute a matrix U, by Eq.
(11), which may be simplified as explained in the next
paragraph; (3) for each s, find the eigenvalues and
eigenvectors of the matrix T+ U„which are the new SP
energies p,„and wave functions (sn

I sp) This proced. ure
is actually very close to that followed in a pure HF
calculation, the difference being that, in HF, I', is
independent of e' and is therefore identical to U,.
Furthermore, in BHF, one must have easy access to
the matrix elements of Fp(pi) or G(4p) for any value of
the available energy, since this value changes with each
iteration. Since it would be prohibitive to solve the
Bethe-Goldstone equation all over for each iteration,
the method that is followed is to solve it ahead of time
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for a few values of eu and to interpolate. The converg-
ence of the iteration procedure toward self-consistency
has been found to be almost as good as in the HF case.

From a programming point of view, Eq. (11) can be
considerably simplified, especially for large dimension-
alities, if it is rewritten as

(nil &.Ins) =(nil I' (e ) I no)+s 2' 2 (nil p.» Ini')

X('ni
I
I (s ) I (e ) I no)+s Q 2 (nil I (s vp)

Pm n2'

—I'.(e.) Ins')(»'I p...lno) (14)

g2= —
g AQgy ) (16)

for the odd and singlet-even states since oo and 21V+L
enter only through the combination

y =(2m/ts')Lsr(21V+Lyz')ItQ —ro]. (17)

There is no such relation for the triplet-even states,
since the second-order tensor term introduces an addi-
tional (linear) ro dependence.

Substituting Eq. (15) into the general expression
for two-body matrix elements, " we obtain functions
which are linear in co; each matrix element is then stored
in the computer memory in the form of two numbers,

TABLE I. Binding energy per nucleon, neutron radius r, and
charge radius r, of the four nuclei studied. The experimental
values, in parentheses, are for the binding energies' and for
the charge radii. b The parameters for "0 are b=1.7 fm, D
(dimensionality of a given symmetry type) =5; for "Ca and "Ca,
b=1.9 fm, D=P (number of occupied levels of a given symmetry
type)+3; for '"Pb, b=2.2 fm, D=P+2. In all cases the maxi-
mum relative l is 3 and the prescription e, ('), Kq. (5), is used.

III. CALCULATIONAL DETAILS

The method of calculation of the two-body matrix ele-
ments has been described previously. "The energy de-
nominators occurring in Vri, (Q/e) Vz r, and Var, (Q/e) Var,
were approximated by the constant values 210 and
420 MeV, respectively. The separation distance d was
chosen as 1.05 fm and the Fermi momentum &~= 1.3
fm ' was used in the second-order terms.

The relative matrix elements can be approximated"
by linear functions of &o and 2Ã+L, i.e.,

g—go+yogi+ (2++L)gs & (»)
where go, g&, g2, depend on 5, T, n, l, n', l', j, and
b=(h/mQ)'t'. Within this linear approximation, there
is a simple relation between g& and g2

from which the value of this element at any co can be
obtained when needed during the BHF iteration process.

The calculation of two-body matrix elements takes
only slightly longer than with smooth forces, once the
relative matrix elements have been computed Th. e biggest
increase in time comes in the iteration part of the cal-
culation. For example, in "'Pb, when the dimension-
ality of each symmetry type equals the number of
occupied levels plus one, the time needed on the
IBM-360/75 for 17 iterations is 1z min for HF, 5 ruin
for BHF.

I7. RESULTS AND DISCUSSION

The main results on binding energies and radii are
given in Table I.""All nuclei come out too small
(most likely because the saturating effect of the tensor
force has not been treated properly in Ref. 23) and
underbound. Presumably this might have been predicted
if nuclear-matter calculations had been done with the
same type of G matrix, but they have not been. As for
nuclear-matter calculations using other types of G
matrices also based on potentials derived from the two-
body data, none of those published at the time of this
writing has succeeded in yielding the desired binding
energy and density; hence it is not surprising that the
finite nuclei calculations fail also. It simply means that
the search for the "true" two-nucleon potential and
for the best Brueckner-type theory must go on. Very
encouraging results have been reported recently" with
the Reid soft-core potential. ' In the future, when a
new two-nucleon potential is being checked for agree-
ment with experimental data on many-nucleon systems,
it would be desirable to calculate both nuclear matter
(in the usual way) and finite nuclei (by the present
method).

We are excluding from the above considerations the
"smooth potentials, " one of which" has given rather
good agreement' with the experimental nuclear radii.
This agreement was built into the potential from the
start by fitting the properties of nuclear matter. Al-
though such potentials have been found satisfactory in
almost all respects in nuclear calculations so far, '0 they
do not have the strong short-range repulsion which
theory seems to suggest, and therefore it is expected
that, some time in the future, they are bound to fail.

Since this paper does not claim to obtain completely
satisfactory shell-model parameters, its main interest
lies in the method used and in the fact that the cal-
culations can be repeated with relative ease whenever a

Nucleus

1$0
~Ca
4'Ca
xsPb

a Reference 26.
b Reference 27.

—Hp/A
(MeV)

3.84 (7.98)
4.20 (8.55)
3.73 (8.67)
2.82 (7.87)

r„(fm)

2.46
2.97
3.24
4.74

r, (fm)

2.61 (2.75)
3.22 (3.50)
3.14 (3.49)
4.60 (5.49)

"A. H. Wapstra, Physica 21, 367, 385 (1955); I. R. Huizenga,
ibid. 21, 410 (2955).

27 1. R. B. Elton, Nuclear Radii (Springer-Verlag, New York,
2967).

"Private communications originating in Cornell University."C. %V. Nestor, K. T. R. Davies, S. J. Krieger, and M.
Baranger, Nucl. Phys. A113, 14 (1968).

~ E. U. Baranger, in International School of Physics "Enrico
Fermi, " Varenna, 1967, edited by Maurice Jean (Academic Press
Inc., New York, 1969).



new two-body force looks hopeful. With a view to
illuminating the method, we shall discuss briefly some
questions of convcl gcncc.

The convergence with dimensionality is critical for
large nuclei such as "'Pb, for which calculations of
high-dimensionality are prohibitively long. The rapidity
of this convergence is, in turn, very dependent on the
choice of the harmonic-osciBator length b. We demon-
strate this behavior for the light nucleus "O. Figures 1
and 2 show the convergence with dimensionality of the
total energy and the proton radius in "0for various b.
A similar graph for the kinetic energy would look very
much like that for r~. The best convergence is obtained
with b= 1.7 fm. This is close to the b value that would
give the best results with pure HOWFs. As a rule,
BHF calculations should be done with the b that yields
the right size with pure HOWFs, because this also
simplifies the treatment of the Pauh operator and the
particle spectrum in the calculation of G. This is dif-
ferent from the rule followed in HF calculations, where
the best b was that which minimized Ho. If the HF rule
were followed in the present case, one would 6nd with
dimensionality 3, for instance, that the b at minimum
is 2.1 fm, for which Figs. 1 and 2 show the convergence
to be much slower. Such a mixtake could be fatal in
"'Pb. The HF rule should not be used, since the mini-
mum principle does not hold in Brucckner theory.

Once b has been chosen in the way just said, the
convergence with dimensionality is about as good as
with smooth potentials. '6

Note also in Fig. 1 that, although Bo converges
satisfactorily with dimensionality, the limiting value
depends on b. This is due to the intrinsic b dependence

of the G matrix and would be eliminated if Brucckner
self-consistency were properly taken into account in
the intermediate state propagator. It is one of the
reasons for using the b which is best with pure HOWFs.
It can be corrected for by perturbation theory after
the self-consistent part of the calculation has been done,
but this is not worth doing at the moment.

The convergence with relative l is quite comparable
to that found with the smooth potentials. '6 All calcula-
tions reported here stop at relative f waves, and no
perceptible change of results is obtained by going
further.

Table II gives the single-particle energies of the four
nuclei studied. The most unsatisfactory ones are the
~zsgs(e) and hug(p) of "'Pb, which should lie among
the levels of opposite parity belonging to the harmonic-
oscillator shell below them. Instead, these two levels
are about 8 MCV higher. The same phenomenon occurred
with the smooth potential of Ref. 16, and it was pre-
dicted there that the discrepancy would persist in
BHF calculations. Its resolution must involve higher-
order processes or a better treatment of the Pauli
operator ln thc G matrix.

The calculations are fairly insensitive to the exact
choice of e, in Eq. (4). Prescriptions for e, other than

2.85

l

2.80

2.75

2.70

-45

-50
b =1.9
b =2.f
b =23

2.55 ~

2.50 L
b=).7

FIG. j.. '60 total energy IJO as a function of dimensionality D,
for various 0 values. The maximum relative / is 2.

Fzo. 2. '60 proton radius r~ as a function of dimensionality D,
for various b values. The maximum relative / is 2.



177 8 RUE CENE R-HA RTREE —POCK CALCULATIONS i525

TABLE II. Single-particle energies, in MeV. For the unoccupied symmetry types in "0, ' Ca, and Ca, the
parameters D=4 and e '= —20 MeV are chosen; all other parameters are the same as for Table I.

Nucleus

States
0$1/2
Op8/2

Opi/2
MS/2
M8/2
1$1/2
Ofz/2

ofs/2
1p8/2
1p1/2
Ogg/2

Ogz/2

1~5/2
188/2
2$1/2
Oh 11/2

Ohg/2

ifz/2
ifs/2
2p3/2
2pl/2
13/2

Neutrons
—43.8—20.3—15.9

0.43
4.6
0.95

16O

Protons
—40.4—17.0—12.6

3.8
7.6
3.8

40Ca

Neutrons
—66.1—44.7—41.1

2307—17.7—20.5—3.2
3.4—0.22
1.1

Protons
—58.2—37.0—33.5—16.2—10.5

1301
4.5

10.2
6.2
7.3

48+a

Neutrons
—67.9—46.8—45.3—25.6—22.8—22.8—6.4—0.37—1.5—0.43

Protons
—62.9—43.1—41.3—22.6—19.8—19.1

103

3.0
3.0
4.1

2t)8Pb

Neutrons
—91.6—78.6—78.0—64.7—64.0—62.1—50.0—49.1—46.1—45.3—34.9—33.4—30.5—28.9—28.5—20.0—17.4—15.6—13.2—13.1—12.0—5.7

Protons
—75.4—63.3—62.8—50.0—49.4—47.1—35.8
-35.0
-31.6—31.0—21.2—19.8—16.3—15.0—14.1—6.5

Tax.z III. Single-particle energies for the unoccupied sym-
metry types in 60, 'OCa, and 4'Ca. The table shows the sensitivity
to e,'. All other parameters are the same as for Tables I and II;
e,' and the SP energies are in MeV.

16O

Odglm (n)
Odglm (tl)
od (p)
III 2(P)

40Ca

Ofz/2(~)

Ofei2(N)

of»2(P)
0/sn(P)

48Ca

Ofsgs(n)

0/~s(P)
os/2(P)

e '=-20
0.43
4.59
3.81
7.58

e '= —20
—3.19

3.41
4.52

10.2

e '= —20
—0.37
—1.28

2.99

2.26
5.78
5.49
8.63

~,'= —80

1.44
6.49
8.54

12.5

6,'= —80

4.02
4.73
8.00

(5) can easily be used, e.g. ,

e, &+~ = the highest occupied level of symmetry
type s, (18)

e, & '= the lowest occupied level of symmetry
type s, (19)

e, &"&= a constant m for all symmetry types. (20)

In calculations of 'Ca and "'Pb, we found that
e, &'&, e, &+&, e, & &, and e, &"& (with a reasonable choice of
s&) all gave nearly identical results for the total energy,
the rms radii, and the SP levels. For "'Pb, the most
extreme case, the Os~/2 neutron and proton levels only
changed by about 0.6 MeV in going from prescription

(18) to (19); the other SP levels changed even less and
the total energy and radii changed by less than 1%.

Once the BHF calculation has been done, it is also

possible to calculate single-particle energies for com-

pletely unfilled symmetry types. This is done with

Eq. (3) in which, however, we need a prescription for
e,'. This prescription can make an appreciable dif-

ference, as shown in Table III. The lower e ', i.e., the
more oB-the-energy-shell one goes, the higher the ex-
cited state.

Finally, it is possible to study the effect on the BHF
results of translating the entire particle spectrum up
or down by a fixed amount in the solution of the Bethe-
Goldstone equation. " Ideally, this equation should be
solved with the particle spectrum that comes out of
the BHF calculation. This has not yet been done, how-

ever, first because it is more difFicult, but mostly be-
cause of the still somewhat unsettled controversy"
regarding the particle spectrum. The present 6 matrix"
uses free-particle intermediate states, with no allow-

ance made for the attraction exerted by the nucleus
on the low-lying particle states. Although an over-all
downward translation of the spectrum is certainly not
the best thing to do, it does allow for this attraction
to some extent and it can be done easily. "All that is

8'An alternative and better way to allow for this attraction
would be to calculate G with a Pauli operator excluding a range
of "valence states" in the vicinity of the Fermi surface. {SeeRef.
5.) Then, after the BHF calculation, the eGects of these valence
states could be included by doing a shell-model calculation. The
drawback of this method is that it makes the entire calculation
considerably longer. It seems preferable, for a start, to get as
close as possible to the complete answer with the BHF calcula-
tion alone. Note, however, that our G matrix, which uses free
particle intermediate states and therefore large energy denomina-
tors, has many of the characteristics to be expected from exclud-
ing such a valence shell; thus such a shell-model calculation may
be needed in any case.
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needed is to define a new G matrix

G'((o) =G((o—2c), (21)

creases the binding per nucleon by 1 MeV. By chance'
this is exactly the figure that comes out of our cal-
culations also.

where c is the amount of the constant translation
(negative if downward). This lowering of the spectrum
makes 6 more attractive and results in a lowering of
the total energy, the SP levels, and a further decrease in
radius. Kohler" and %'ong' have given the rough rule
that lowering the particle spectrum by 10 MeV in-

g2 H. S. Kohler, Nucl. Phys. A98, 569 (1967).
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Nonmesonic Decay of Hydrogen Hyperfragments
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Approximately 35 000 K -capture stars in an emulsion stack were examined for hyperfragments. Using
a mass selection criterion for all events, a sample of 13 x -mesonic decays and one nonmesonic decay of
hydrogen hyperfragments was identified for the purpose of estimating the relative rates of decay for the
m=mesonic and nonmesonic modes.

I. INTRODUCTION

l 1HZ study of nonmesonic decays of hyperfragments..has been limited by the difficulty in identifying the
decaying hyperfragments. This is particularly the case
for ~H, where first the charge of the particle must be
determined by profile measurements to separate the
Z=1 events from those with Z) 2. In order to separate
the qH events from lighter Z=1 particles, including a
large number of Z capture events, gap or blob meas-
urements must be performed. Although a number of
investigations have been carried out on the nonmesonic
decays of various hypernuclei, no direct measurement
of the nonmesonic decay of zH has been done pre-
viously.

In this work, an attempt has been made to directly
identify nonmesonic decays of zH and estimate the
nonmesonic-to-m -mesonic decay ratio for +H4.

II. EXPERIMENTAL PROCEDURE

A. Scanning and Emulsion Stack Calibration

The scanning technique and the calibration of the
emulsion stack have been described in a previous paper. '

* Present address: Physics Department, University of Sas-
katchewan, Saskatoon, Saskatchewan, Canada.' M. W. Holland, H. G. Miller, and J. P. Roalsvig, Phys. Rev.
161, 911 (1967).

In both the previous and the present work, only the
45 interior pellicles from a stack of 100 KTB-5 emul-
sion pellicles (15 cmX10 cmX0.07 cm) were area-
scanned. Approximately 35000 X -capture stars (or
primary stars) were observed and recorded.

The same range-energy calibration correction has
again been used on all measurements made in the
present work. Also, the range and angle measurements
and the kinematic analysis of the mesonic decays of
zH are the result of the same techniques as described
previously.

B.Mesonic Decays of &H

Of the approximately 300 mesonic hyperfragment
decays found in the emulsion plates scanned, 72 mesonic
decays of &H'4 were identified. From these a sample
of 13 hydrogen hyperfragments was selected whose
hyperfragment prong had a projected range XIII &350p,
and a dip angle

~
a ~&30'. Since gap-interval measure-

ments were used in the identification of the nonmesonic

'H. G. Miller, M. W. Holland, J.P. Roalsvig, and R. G. Soren-
sen, Phys. Rev. 167, 922 (1968}.' M. M. Block, R. Gessarok, J.Kopelman, S.Ratti, M. Schnee-
berger, L. Grimellini, T. Kikuchi, L. Lendinara, L. Monari, W.
Becker, and E. Harth, in Proceedings of the International Con-
ference on Hyperfragments (CERN, Geneva, 1964), p. 63.

4 D. Abeledo, L. Choy, R. G. Ammar, N. Crayton, R. Levi-
Setti, M. Raymund, and 0. Skjeggestad, Nuovo Cimento 15,
181 (1960).


