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A theoretical study of single-particle transformations, quasiparticle transformations, Slater determinants,
and quasiparticle vacuum states is made for a given 6nite number of single-fermion states. The usual unitary
single-particLe or quasiparticle transformations are generalized. The new transformations are the most
general transformations which transform Slater determinants into Slater determinants or quasiparticle
vacuum states into quasiparticle vacuum states, and they contain as particular cases Thouless s nonunitary
transformation. It is shown that several Brillouin theorems used in Hartree-Fock and Hartree-Bogolubov
variation theories follow from the form of the continuous variations which can be performed in the space
of Slater determinants and in the space of quasiparticle vacuum states,

I. INTRODUCTION

LATER determinants (SD) and quasiparticle vac-

~

~

uum states (QPVS) constructed from a finite num-

ber of fermion states are used in the Hartree-Pock and
the Hartree-Bogoliubov variational methods applied to
nuclear calculations. ' ' The stability of the variational
SD or QPVS solutions has been investigated in the
literature with the aid of single-particle or quasiparticle
unitary transformations, "and with the aid of non-

unitary Thouless transformations. ' 4 The Thouless trans-
formations proved advantageous because they do not
contain redundant parameters. '4 However, the possi-
bility of using both unitax'y and nonunitary Thouless
transformations to study stability conditions, as well

as the connection between these two kinds of transfor-
mations, has not been completely clarihed hitherto.

In the present paper we introduce the most general
single-particle and quasiparticle transformations, trans-
forming a SD into a SD and a QPVS into a QPVS.
%'e consider the Lie groups and the Lie algebras associ-
ated with these transformations in order to obtain the
decomposition of a general transformation into a prod-
uct containing a unitary transformation and a non-

unitary Thouless-type transformation. It is shown, for
instance, that the most general quasiparticle transfor-
mation, which conserves the anticommutation relations
but not the relations of adjointness between fermion
creation and annihilation operators, decomposes into
a product of a generalized Bogoliubov (unitary) trans-
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I.et us consider the 2m creation and annihilation
operators

Cy y
' 8 Cy ' ' ' 8 (&)

corresponding to the given single-fermion states art
~
0),

~ ~ ., a„t
~
0), and obeying the fermion anticommutation

I'clatlons

Lac ~
ar' j+=L~'~ ar'j+=0)

Pa, a;j+=b,;
(2)

It will be convenient to introduce the e-dimensional
vector space V formed by the complex linear combina-
tion of the cxeation operators u;~. A new basis of single-
particle operators b;~ of V may be obtained from the
basis a;~ by a unitary transformation. The 2n operators
b;, b; will then satisfy the fermion anticommutation
relations (2) .

A morc gcnelal bas1S ~it of tt may bc obta1ncd from
the basis a;t by an invertible transformation T which

~ L. Brillouin, Acta. Sci. Ind. 159 (1934).
6 D. H. Kobe, Ann. Phys. {N.V.) 40, 395 (1966).
r V. H. Young, Jr., Nuovo Cimento 488, 443 (1967).' D. H. Kobe, Phys. Rev. 140, A825 (1965).
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formation, a diagonal, and a Thouless-type transfor-
mat1on.

Ke consider also the two spaces formed, respectively,
by all the SD and by all the QPVS which can be con-
structed from the given single-fermion states. %e deter-
mine the form of the continuous variations that can
be performed in these two spaces. From the speci6c
form of the variations and from the variational prin-
ciples themselves, a number of theorems known as
Brillouin theorems ' ' axld sonic cl ltcr1a fol choosing
the "best" quasiparticle~' can then easily be deduced.
The usual derivations of these theorems, which make
use of single-particle ox quasiparticle transformations,
are, in general, less direct and more involved.

II. SINGLE-PARTICLE TRANSPORMATIONS
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is not necessarily unitary; i.e.,

b;t=Tu, sT '= Q T;,a;t. (3)

given by
~ SgCg Cp

If T is not unitary, one has P;t, b;j+48;;, but the
creation operators b;t still anticommute among them-
selves:

where the s, are real, and that an arbitrary element of
L„has the form

to= ~ p&ttts tsar':&

b.tb.t — b.tb.t (4)

Relations (4) show that unnormalized Slater deter-
minants

where the p;t, are complex.
The decomposition

to t„+——ts+t„ (9)
N

IIb I»
can be constructed from the generalized operators (3)
of V. In the following we shall mean by a SD a SD
which is not necessarily normalized.

The invertible transformations T form a group G
which is represented with respect to the basis u;t of
V by the general complex matrix group GL(m, C).
Notice that a transformation T acts in two spaces:
(i) in the operator space V following the rule tt;t—+

Ta;tT ', and (ii) in the space of wave functions follow-
ing the rule

~
C)—+T

~
C). Since T is the most general

transformation transforming creation operators into
creation operators, it is also the most general trans-
formation transforming SD's into SD's.

Let us consider now the three subgroups U, D, and
S of G, which are isomorphic, respectively, to the uni-
tary matrix group U(tt), the group of diagonal real
matrices, and the group formed by the complex upper
triangular matrices with ones on the main diagonal.
It was shown that a transformation belonging to a
connected group can be written as a product of terms
of the form e', where I; is a Lie-algebra element. Since
the groups G, U, D, and X are connected, it will be
sufFicient to determine their Lie algebras L„L„,L~,
and L„.

The Lie algebra of GL(rt, C) consists of all rt)&st
complex matrices, and a basis is formed by the ma-
trices E;& with 1 at the intersection of the j row and
k column and 0 everywhere else. With respect to the
basis a;t of V, the e' operators u;tal, are represented
by the matrices E,7,. Hence, an arbitrary element of
the Lie algebra L, may be written

t, = g ct,a;&a„ (5)
g,k

where c,l, are complex coefBcients. Since the Lie algebra
L„contains only anti-Hermitian operators, an arbitrary
element of L„has the form

t =i Q (trt, sa, taj,+m, t,*tata;)+i Q tttta;tttt, (6)
y&Itt:

where the m;I, are complex and the m; are real. It can
be verified also that an arbitrary element of L& is

R. Hermann, Lie Groups for Physioists (W. A. Benjamin, Inc. ,
New York. , 1966).

is now readily obtained by comparing the scalar coeffi-
cients on both sides of Zq. (9). The corresponding
decomposition for transformations T of the group G is
written

T=T„TdT„, (10)

T„=exp(Q ptt, at ag). (12)

The connection between unitary and Thouless trans-
formations is thus established: Both kinds of transfor-
mations are components in the standard decomposition
(10) of the general transformations T.

III. SLATER DETERMINANTS

Following our convention of Sec. II, it can now be
said that Ã generalized creation operators bit,
bN~, define up to a scalar factor a SD

II &"
I
o).

However, the SD
N

does not specify uniquely the set of operators bi~, ~ ~,
bNt, because new creation operators

N
d;t= g S,,b;t, $ f ~ ~ 0 g (13)

define the same SD up to the scalar factor det
~
S,t ~.

The correct statement is, in this case, that a SD speci-
fies uniquely an E-dimensional subspace VN of the
space V spanned by bit, ~ ~, bNt. This establishes a
one-to-one correspondence between SD's defined up to
a scalar factor and X-dimensional subspaces VN of V.

where T„=e'" T~——e'" and T„=e~, and is a particular
case of the general Iwasawa decomposition. '

A Thouless transformation is given by4

T-=-p(Z~Z p,",'")= II (1+p;" "), (»)
g&N k&N y'&N, k&N

where the indices k=1, ~ ~ ~, X, and j=X+1, ~ ~ ~, rt,

stand, respectively, for the occupied and the unoccu-
pied states in the trial SD. It is clear that Tyh is a
particular case of the transformation T„, which has
the form
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The above correspondence may be used to deter-
mine the number of essential parameters necessary to
specify a SD with respect to the given basis a;~ of V.
An E-dimensional subspace V~ of V is completely
determined by giving a system of n —E homogeneous
linear equations with n unknowns

Brillouin theorem may thus be seen as a consequence
of the topological structure of the space E~.

The Thouless transformations (11) perform only con-
tinuous variations of the second kind on the SD

(14)

This system may be solved for the 6rst n—Ã un-
knowns

(15)

hence it involves only N(n —N) complex parameters
8;;. A SD is therefore speci6ed up to a scalar factor
by N(n —N) essential complex parameters. This is ex-
actly the number of parameters involved in a Thouless
transformation (cf. Eq. (11)j.

We denote now by E& the space formed by all the
Slater determinants of order E which can be con-
structed from the creation operators of the space V.
It is clear that E~ is not a vector space, because a
linear combination n

~
4')+P

~
C") of two SD's is not,

in general, a SD. It can be verified without difFiculty
that such a linear combination is a SD if and only if
the two SD's di6er by at most one excitation; i.e., a
basis b;~ of V can be found such that

Thus, they do not involve redundant parameters and
are more adequate for the study of the stability condi-
tions.

IV. QUASIPARTICLE TRA1VSFORMATIONS

Jn this section, we introduce quasiparticle trans-
formations more general than the usual generalized
Bogoliubov transformations, ' and we show that the
new transformations contain as a particular case the
generalized Thouless transformations.

I.et us consider the complex vector space 8' spanned
by the 2n fermion operators ajt, ~ ~, a„t, and a&, ~ ~,
a„, These operators obey the anticommutation relations
(2) and satisfy the relations of adjointness, i.e., the a,
are Hermitian conjugates of the a;, and

(21)

The anticommutation relations (2) may be interpreted'0
as de6ning a bilinear symmetric form in the space S".
The 2e operators

I
c'&=br'bi' "bN'

I 0» I
e")=b-'bi'"b~'

I o)

(16)

h, = r2VZ(a;-i+a, ), h„+;= ,'iV2(a-, t a;), —

j=i, ~, n, (22)

It follows that an elementary continuous variation in
the space E~ has the form

whose anticommutation relations read

Lh;, hing+ ——h,7„ (23)
8 [ 4') =er

(
4')+eib~ib;

( C), ni)N, i&N, (17)

where the scalars ei and e2 take care, respectively, of
the variations of the SD

~
C) and of its once-excited

component b tb,
~

C).
The Hartree-Fock theory is based on the variational

principle
b&H) =0,

where (H) = &C
~

H
~

C)/&C
~
C), and the variation of

~
C ) has to be performed continuously in the space E~.

The variational principle is not sensitive to the first
kind of continuous variation, br

~

C ) =or
~
C), because

of the identity

&C'
I
H

I
C'&&brC'

I
C')

=0.
The stationarity of &H) with respect to all the possible
continuous variations of the second kind bi

~
C)=

e.b "b,
~

4 ) leads to the equations

&C I
b,'b H

I e)=(C'I Hb ib;
I
C')=0, (20)

which state the well-known Brillouin theorem. 5 The

form an orthonormal basis of 5' with respect to the
bilinear form. The relations (21) become in this basis

(24)

We are now interested in finding the explicit form
of transformations S, which conserve only fermion
anticommutation relations, and, also, of generalized
Bogoliubov transformations Sg, which conserve both
relations (2) and (20).

It has been shownio, ii that the group OB of Bogoliubov
transformations Ss is isomorphic to the group 0(2n, E)
of real orthogonal matrices. The group 0 formed by
the transformations S is the most general group leav-
ing invariant the bilinear symmetric form of the com-
plex space lV; it is therefore isomorphic to the complex
orthogonal matrix group 0(2n, C).

We shall determine 6rst the form of the transforma-
tions S' and S~' belonging to the subgroups 0' and
On' of 0 and Os, which are isomorphic to $0(2n, C)
and SO(2n, E).Since they belong to connected groups,
the transformations 0' and 0&' may be written as one

'0 A. K. Bose and A. Navon, Phys. Letters 17, 95 (1965).
» C. Bloch and A. Messiah, Nucl. Phys. 39, 95 (1962).
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term, or as a product of terms of the form d', where s
is a Lie-algebra element. ' A Lie-algebra element s acts
in the space 8', following the rule

Let us consider now the e(2e—1) elements of the
form h, hp (j(h=1, ~ ~ ~, 2'). These elements are lin-

early independent, generate by commutation a closed
space, and map any element of 8', according to the
rule (24), into another element of W. An element s of
the Lie RlgebIR J of 0' must be antlsymmetrlc with
respect to transposition, while an element sg of the
Lie algebra Jp, of Op,

' must be both antisymmetric
Rnd real. For operators expressed in second quantiza-
tion notation, the operation of transposition has to be
de6ned, with respect to the bihnear form represented
iri W by the Rnticommutator. 01M obtRlns from th1s
definition that the transpose of a product of operators
h;, or ujt, aj, is the product of the same operators
written in reversed order. Hence,

(hhp)'=hph = —hhp (26)

and the operators hjh~ thus form a basis for the Lie
algebras J and Jp. Arbitrary elements s and sp, may
now be written in the form

g m;ph;h„
j&k

where the coe%cients mj~ are complex for s an.d real
for SB. In terms of the operators ajt, uj, the elements s
and sg may be expressed as follows:

S= 1S7rS ~CJc~ Q 7cC SP 7''tC@
j&k jp-k

+ Q rs(2a;ta; —1), (27)

sg — tÃ'@ 8' + —c@G' ss'y 8' cg QgG
j&k

%e show Bow that a transformation S cRD be de-
composed in a unique way into a product containing a
Bogoliubov and a Thouless-type transformation. Ke
remark first that the arbitrary elements s and sa of
the Lie algebras J and Lp, may also be expressed by
replacing in Eqs. (27) and, (28), the particle operators
a;~, a;, by quasiparticle operators g;t, c;. Let us intro-
duce at this point the following Lie algebras: (i) the
commutative Lie algebra Hd spanned by the diagonal
elements

ss ——Q s, (2c,tc;—1),
i~1

(32)

where s; are real parameters; and, (ii) the nilpotent
Lie algebra B„spanned by the elements

It follows that a group transformation can be expressed
in the form

(35)

where Sq =e'~ and S„=e'". A generalized Thouless trans-
formation is given by

STp=exp(g Pqpc~ cp )~' (36)

It is clear that STg is a particular case of S„.Thus, the
quasiparticle transformations S we have introduced
contain as components generalized Bogoliubov and gen-
eralized Thouless transformations.

S = K'&A: ~7& &a

g&k

where p;p, r; p are complex parameters.
It can be veri6ed without diS.culty that Rn element

s expressed in terms of t,";~, c; can be decomposed in a
unique wRy Rs

s $B+sd+so

V. QUASIPARTICLE VACUUM STATES
+psp (a& ap ap a'j)+—ig p (a ap+ap a)j.

+ Q ir'(2a ta 1), (28)—
where the primed coeKcients are restricted to be real.

From the isomorphism between the groups 0, OB
and the groups O(2rp, C), 0(2n, R), we can assert now
that a transformation S or S~ is either proper, or can
be written as a product of a chosen reQection and a
proper transformation. In order to know the general
expression of a transformation S or Sp, it will be suN. -
cient to determine the form of some reAection. If we put

c;i C)=0; (37)

(ii)
~
C) may be expressed in the form

(38)

These de6nitions can be generalized by replacing the
Bogoliubov transformations S& by the more general
tralisformations S introduced in the previous section.
This is possible because the set of quasiparticle opera-
tors c; defining j C) in (i) is characterized only by the
anticommutation relations

R =4Th; =aP +ag, (29)
Rnd not1ce that

(30)

it follows that the basis vectors hj of 8' transform like

h pRh R i=h h —pRh R'= —h (jWi), . (31)

and R is thus clearly a reQection,

Lc~) 6'.l+=0~ (39!

and does not imply relations of adjointness. Thus, any

A quasiparticle vacuum state
~
C) is usually defined

in one of two ways:
(i) Tliei e exist '0 ailiiiliila'tloll quasipal ticle operatois

c;=Spa;Sg ', which satisfy the relations
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QPVS may be written in the form

I
C&=S

I
0&. (40)

Bogoliubov (BB) equations'

(C'
~
c c P [ C') = (C

~

Bc tc„t
[ C)=0. (44)

From the definition of a QPVS it follows that m anti-
commuting quasiparticle operators ci, ~ ~ ~, c„define a
QPVS

~ C) up to a multiplicative constant. However,
the QPVS

~

4') defines uniquely only the I-dimensional
complex space 5"„spanned by the operators ci, ~ ~, c„.
8'„ is a subspace of 5' such that any of its elements x
satis6es the relation

Lx, x]+=0. (41)

Such a subspace is called isotropic. The correspondence
between the QPVS's and the isotropic subspaces of W
was studied in the frame of the algebraic theory of
spinors. "

%'e shall denote by E the space formed by all the
QPVS's. It was seen in Sec. IV that a transformation
5 is either proper, or can be written as a product of a
reAection and a proper transformation. Proper transfor-
mations applied on the particle vacuum

~
0) generate

QPVS's with an even parity of the particle number,
while improper transformations generate QPVS's which

have an odd parity of the particle number. Hence, the
space E is the direct sum

E=E,+Ep (42)

of two connected spaces E, and Ep, containing, respec-
tively, the even and the odd QPVS's. One cannot pass
from E, to Ep by a continuous variation, but only by
a reAection.

It was proved in Ref. 10 that a linear combination
~

~
C')+P (

C") of two QPVS
~
4) and

~

C') is a QPVS
only if the isotropic subspaces lV„and 8'„' defining

~
C) and

~

C') have an intersection of dimension e or

(I—2) . This implies, in second-quantization language,
that

~

C ) and t
4') must be proportional, or must differ

by two quasiparticle excitations. It follows that an
elementary continuous variation of a QPVS

~
C) de-

Gned by the annihilation quasiparticle operators c; has
the form

(43)

where e~, e2 are coefBcients corresponding to two kinds
of variation.

Hartree-Bogoliubov theory is based on the varia-
tional principle (18), where (H) is now varied with

respect to wave functions
~

4 ) in E. As in the Hartree-
Fock theory, the variational principle is not sensitive
to variations 8i

~

C') =ei
~

C ) of the first kind. The sta-
tionarity of (H) with respect to variations 82

~

4')=
e;c tc„t

~
C) of the second kind yields the Brillouin-

'~C. Chevalley, The A/gebraic Theory of Spinors (Columbia
University Press, New York, 1954).

It is seen that, in this form, these transformations per-
form exclusively variations of the second kind on the
QPUS ~ C), and therefore do not contain redundant
parameters.

The structure of the continuous variations in the
space E is also responsible for the equivalence of cri-
teria for choosing the best quasiparticle. Thus, it was
proved' ' that the criterion of maximum overlap

b(«(e
~ C)) =0, (46)

where
~

4') is the true ground state and
~ C) is the trial

QPUS, is equivalent to the principle of compensation
of dangerous diagrams of Bogoliubov:

8(«(+ ( c c,'
~

C')) =&(«(+ [ c;c; [ C')) =0 (47)

The proof of this equivalence was quite involved, while
here it appears simply as a consequence of the topo-
logical structure of the space E.

VI. CONCLUSIONS

The main result obtained in this work is the intro-
duction, in Secs. II and IV, of single-particle and
quasiparticle nonunitary transformations. The decom-
position of these transformations in terms of unitary
and Thouless transformations illustrates the connec-
tion, hitherto unknown, between these last two kinds
of transformation.

In Secs. III and V the spaces of Slater determinants
and of quasiparticle vacuum states are studied as enti-
ties, rather than through the intermediary of single-
particle or quasiparticle transformations. It is seen
thus, that the topological structure of these spaces
is directlv responsible for several properties of the vari-
ational Hartree-Pock and Hartree-Bogoliubov methods.

This work can be seen as a generalization of the
usual single-particle and quasiparticle methods. Sev-
eral particular results may also be applied to speci6c
problems, such as the study of stability conditions and
the treatment of neutron-proton correlations with the
aid of quasiparticle transformations.
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These equations are thus a consequence of the topo-
logical structure of the space E.

The generalized Thouless transformations (36) can
also be written

5Th= lI (1+pjkcj ck ) ~


