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The theory of proton-proton bremsstrahlung treating the nuclear interaction exactly and the electro-
magnetic interaction to first order is formulated so as to include the exact determination of the rescattering
term. The effect of the Coulomb interaction between the two protons is not considered. The off-energy-
shell nuclear matrix elements are written so as to eliminate the necessity of integrating over the nuclear
potential. Coplanar symmetric cross sections are calculated with the one-boson-exchange momentum-
dependent potential of Bryan and Scott and the hard-core potential of Hamada and Johnston, including
partial-wave contributions of the nuclear matrix elements with J&4. All results include rescattering cor-
rections, which are shown by explicit calculation to be small {&15%). Quantitative agreement with existing
experiments, including the characteristic quadrupole photon angular distribution, is obtained. Present
experiments are inadequate to differentiate definitively between the Hamada-Johnston hard-core potential
and the Bryan-Scott momentum-dependent potential.

I. INTRODUCTION

f &HE theoretical aspects of proton-proton brems-..strahlung were originally treated by Ashkin and
Marshak'; interest in the problem as applied to the
study of the o8-energy-shell behavior of various
nucleon-nucleon potentials has received. a revitalization,
both experimentally and theoretically, with the work
of Sobel and Cromer. ' A number of experiments, ' "as
well as several calculations, '4 "have followed.

The present study constitutes an elaboration and
extension of an earlier paper, "hereafter referred to as

*Work performed under the auspices of the U.S. Atomic
Energy Commission.
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A. Presented in A were the first p-p-y results using a
realistic potential for which quantitative agreement
with existing experiments, including the characteristic
photon angular distribution, was obtained. At the time
of publication of A, however, there were both quantita-
tive and qualitative disagreements with the calculations
of Cromer and Sobel'4 and with those of Marker and
Signell. "The results of A at 46 MeV were a factor of
the order of 6 lower than either the results of Cromer
and Sobel or those of Marker and Signell, and this
disagreement increased with decreasing energy. An
important qualitative disagreement was in the photon
angular distribution. The results of A showed a quad-
rupole angular distribution, while both the results of
Cromer and Sobel and those of Marker and Signell
showed a dipole angular distribution. The results of A
at 46 MeV were consistent with the experimental
results of %amer' at 48 MeV and somewhat lower than
those of Slaus et al.' at 46 MeV; they were close to, but
higher than, the calculations of Pearce et a/. ' Experi-
mental evidence for a quadrupole shape in the photon
angular distribution at 46 MeU was not clearly demon-
strated at that time. Since then, Mason et al.' have
obtained a photon angular distribution at 47 MeV that
is consistent with a quadrupole shape.

According to Signell, " and as discussed further by
Drechsel and Maximon, "a substantial portion of these
discrepancies is due to the neglect of the rescattering
term when the effects of the electromagnetic potential
are calculated in the laboratory frame with the use of a
transverse gauge. In the present study, as in A, the
calculation is done in the barycentric system, and the
rescattering term, which is evaluated explicitly, is small.
In addition, since the calculation is done entirely in the
barycentric system, using invariance considerations to

"D.Marker and P. Signell (unpublished) (as quoted in Fig. 1
of Ref. 6)."P. Signell, in Proceedings of the International Conference on
Light Nuclei, Few Body Problems, and Nuclear Forces, Brenda,
Yugoslavia, i%67 (Gordon and Breach, Science Publishers, Inc.,
New York, 1968).
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obtain laboratory cross sections, the question of prop-
erly joining the amplitudes calculated with the electro-
magnetic matrix elements determined in the laboratory
frame and the nuclear matrix elements determined
necessarily in the two-nucleon c.m. frame does not arise.

The essential results here, as given in A, are that (a)
a quadrupole shape is obtained for the angular distribu-
tion, which is suggested to be a model-independent
feature"; (b) the rescattering corrections to the
differential cross section are shown by explicit calcula-
tion to be small (&15%); (c) the method of evaluating
the oG-energy-shell nuclear matrix elements, though
equivalent to previous methods, is simplified; and (d)
present experiments are inadequate to differentiate
definitively between the Hamada-Johnston'4 hard-core
potential and the Bryan-Scott' "' momentum-dependent
potential.

In view of the last result, the hope that P-P-y might
be sufBciently sensitive to the inner region of the nuclear
interaction to distinguish between the various nucleon-
nucleon potentials is somewhat diminished, at least for
the accuracy with which the differential cross sections
have been obtained thus far. The use of polarization
eGects, for which the rescattering-term contribution is
important, as a possible method for exposing more of
the oG-energy-shell behavior of the two-nucleon poten-
tials is presently being considered by the author.

In Secs. II—VI the formalism of p-p-y, designed to
include the exact determination of the rescattering
contributions, is developed. It is intended that sufhcient
detail is included to avoid confusion, since a coherent
treatment of p-p-y without ambiguities and with

rescattering is not available in the literature. The effect
of the Coulomb interaction between the two protons
is not considered in the present work. In Sec. II the T
matrix for p-p-& is expressed to first order in the electro-
magnetic interaction including the rescattering term,
and is developed for use in the barycentric system. In
Sec. III the eGect of spin and polarization in the deter-
mination of the electromagnetic matrix elements is
considered. The singlet-triplet spin representation is
used for the p-p system, and the polarization states of
the photon are treated in the circular basis, which cor-
responds to using a helicity representation for the
photon. In Sec. IV the evaluation and interpretation

I F. M. Nyman, phys. Letters 2SB, 133 (1967); Phys. Rev.
170, 1628 (1968)."T.Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

"R.A. Bryan and B.L. Scott, Phys. Rev. 164, 1215 (1967);
and (unpublished) .

'6 The potential used in the present calculation is a modiGcation
of that given in Ref. 25. The modi6cation consists of new input
parameters and the use of a cutoff factor in order to give an S-
as well as a higher partial-wave 6t. The new parameters used
here are, in the notation of Ref. 25, g =12.5, g j'=1.65, m~=
600 MeV, g =1.81, fp/go=1. 13, g„'=2.60, g,o =8.19, m,0=550
MeV, g„'=1/.3, and f„/g„=o. The cutoB is introduced in momen-
tum space through a Feynman factor h.'/(A, '+q'), where q is
the momentum transfer and with A. =1500 MeV.

II. I-MATRIX FORMULATION '
BARYCENTRIC SYSTEM

The Hamiltonian for p-P-y can be written

H=Ki+Ks+K +p', +p'N, (2.1)

where Ki and E2 represent the kinetic energies of the
two protons, X~ is the free-field Hamiltonian of the
quantized electromagnetic field, V& is the nuclear
potential, and V, is the electromagnetic interaction.
The two-potential expansion'~ of the complete T matrix

&7 B.Lippmann, Ann. Phys. (¹Y.) 1, 113 (1957).

of the o8-energy-shell nuclear matrix elements are
considerably simplified by expressing them in terms of
volume and surface contributions, eliminating the
necessity of integrating over the nuclear potential. The
volume term goes to zero on the energy shell or in the
limit of no photon emission, and the surface term which
is evaluated beyond the range of the nuclear interaction
is directly expressible in terms of the elastic phase shifts
and scattering parameters. ' Presented in Sec. V is a
method for evaluating the rescattering matrix elements,
involving the partial-wave decomposition of the electro-
magnetic interaction. The cuto6 in this partial-wave
decomposition is provided by the cutoff in the partial-
wave decomposition of the initial and final nuclear
states, and is exhibited by the angular integration. The
radial integration involves the evaluation of the product
of three spherical Bessel and Neumann functions with
limits from a point beyond the range of the nuclear
interaction to infinity. Section VI contains the invariant
form of the cross section suitable for the present study.

The results are presented in Sec. VII, where a com-
parison is made between the hard-core potential of
Hamada and Johnston'4 and the momentum-dependent
potential of Bryan and Scott.""These results include
higher partial-wave contributions and wider angular
dependence and energy range than those presented in
A. In particular, the present work includes partial-wave
contributions from the nuclear matrix elements with
J(4, as well as cross sections for coplanar symmetric
angles from 20' to 40' with an incident laboratory
energy ranging from 10 to 300 MeV. Also included is a
partial-wave analysis of the results at 158 MeV with
coplanar symmetric angles of 30' for the Hamada-
Johnston potential. These results demonstrate the
importance of the off-diagonal matrix elements in the
evaluation of p-p-y cross sections at this energy, and
correspondingly suggest the necessity of using a poten-
tial for which the effects of the tensor force are con-
sidered. The explicit behavior of the rescattering contri-
bution as a function of the photon angular distribution
for the Hamada-Johnston potential is also pr~ented
at 158 MeV with coplanar symmetric angles of 30'.
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to erst order in the electromagnetic interaction yields"

2'y;= &pippin I &e Gs(@)2'sr(@)
I pi(ps')

(2.2)+&pvpsf I
I'~'(&I) Go(Ef) ~- I pi*ps'&

+&pifpv I T~'(~~)Go(Er) ~-Go(@)&~(E~) I pi'ps')

where the initial and final proton free-scattering states
are represented with the appropriate momenta (spin
indices omitted) as viewed. from the barycentric system.
In Kq. (2.2), E; (Er) is the initial (f(nal) energy of the
two-nucleon system. The energy of the two-nucleon
system is initially the same as the energy in the bary-
centric system. In the final state the energy of the
two-nucleon system is altered from that of the initial
state by the photon energy. The nuclear Hamiltonian is

represented by

IIx =&i+&s+ Irsr =IIo+ Ir'x, (2 3)

and the I.ippman-Schwinger equations for the nuclear
T matrix and the free-particle Green's function are
given by

&sr(E) = ~sr+ &arGo(E) 2'nr(E)

Gs(E) = (E Hp+—srr)) '.

(2 4)

(2 5)

Complete sets of intermediate plane-wave states are
inserted in the first two terms of Eq. (2.2); it is not
convenient to follow this procedure for the rescattering
contribution, which is the third term of Eq. (2.2), since
momentum conservation does not limit the number of
intermediate states available, as is the case in the erst
two terms. Thc results are

2'i'= &pvpsr I
I e Go(E') I pv+K~ psf&&pv+I) psr I 2'))r(&()

I pi'ps(&

+&pifpv I I'-Go(E~)
I pif p r+K&&pif ps)+K I ~~(E') I pi ps')

+&pi~p~ I
2'~ (E~)Go(&f) I pi' —I, p'&&p' —K, p'I I'-

I p'p'&

+&pvps~ I
I'~ (E~)Gs %~) I pi', ps' —K&&pi', ps' —K

I
I'-

I pi'p ')
+&pi)'ps)r I &zr (&r) Go(Ey) I emGo(E() 2'N(&i)

I pi~ps(& (2 6. )

The five T-matrix elements of Eq. (2.6) are represented
by thc five T-matrix diagrams of Fig. I, respectively, if
wc definc

&p p ~ I
2'(1)+2'(s)+2'(s)+2'(4)+2'(s)

I
pi.ps. )

(2.7)

in order of appearance in Kq. (2.6). Separation of the
elements of the 2' matrix of Eq. (2.6) into relative and
e.m. coordinates of the two-nucleon system is desirable
because thc nuclear matrix elements are defined with
respect to the two-nucleon c.m. In diagrams 1 and 2
of Fig. 1, the photon is emitted after the nuclear inter-
action, and the two-nucleon c.m. system is identical
to thc baryccntric system. In diagrams 3 and 4 of Fig. 1,
the photon is emitted before the nuclear interaction,
and the two-nucleon system has momentum relative
to the barycentric system. The three reference frames
involved in the calculation are then the laboratory
frame, the baryccntric system or the two-nucleon c.m.
system before the photon is emitted, and the two-
nucleon system after the photon is emitted. The trans-
formation from the barycentric system to the laboratory
frame is made relativistieally, consistent with the rel-
ativistic treatment of the two-nucleon kinematics in on-
the-energy-sheO potential-model calculations. Strictly
speaking, the transformation from the baryccntric
system to the final two-nucleon c.rn. system should also

"The f. (double dagger} notation is a combination of two
operations, complex conjugation and Hermitian conjugation, as
introduced in Ref. 27.

bc made relativistically. It is, however, a good approxi-
mation" to make this second transformation non-
relativistically, in which case the two-nucleon c.m.
momentum is —K, relative to the barycentrie system.
This is a result of the condition

pl(+ pN= plf+psf+K —Op (2 8)
which defines the baryccntric frame. For the nonrelativ-
istic transformation there is no singlet-triplet spin
mixing as would occur for the relativistic transformation.

The use of a potential to represent the nuclear
interaction makes this dynamical aspect of the present
calculation. unavoidably nonrelativistic. The nuclear
matrix elements of T(') and T(2) are calculated in the
barycentric system, while the nuclear matrix elements of
X&3) and T&4) are calculated in the final two-nucleon

.~ 1 f .P2f

FIG. i. The T-matrix diagrams for p-p-y to erst order in the
electromagnetic interaction including rescattering. The labeling
of the kinematics here corresponds to the barycentric system in
the notation of Secs. II-V.

'OThe maximum value of the relativistic velocity of the ftnal
p-p system with respect to the barycentric system at 160 MeV,
for example, can be obtained by assuming that the photon takes
all the kine ic energy, in which case P (80/2m~ =0.05.
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c.m. system. The connection between these two systems
by a nonrelativistic transformation allows a separation
of the elements of the T matrix of Eq. (2.6), including

V„„, into relative and c.m. Coordinates of the two-
nucleon system. The integration over the coordinates
of the c.m. motion with respect to the barycentric
system exhibits the 8 function for over-all conservation
of momentum. In the notation of Eq. (2.7) the result
is80

(As I
V I 0'-o f&&4'-os I

Vir I 6
r(k') r(psf—)

(fir I V-14oil&(4'oil I Vir I 4
(k') (pv)—

(2 9)

(2.10)

r(kf) —r(pi' —21')

~ (,) (A, I V~ I e. ;+«&Q. ;+«s I V- I 4~; &

r (kg) r(p„+ ',—K)-
(2.12)

~d"=8~, —A, l v. IA,+—4~;&, (2.13)

r(k) =2nso(yg-, —1), (2.14)

where tn~ is the mass of the proton and y~ is the Lorentz
coo.traction factor corresponding to a proton with
momentum k.

where Pq, + (iraq, ) is the exact scattering state of the
nucleon-nucleon system corresponding to outgoing
(incoming) spherical wave boundary conditions, and

ftq represents the various plane-wave states with the
appropriate values of q indicated. All quantities in
Eqs. (2.9)-(2.13), including V. and the energy
denominators, are now expressed in relative c.m. co-
ordinates and momenta as determined from the bary-
centric system; correspondingly, we have introduced
lr;=pi; and kf ——ia(pif —p,r) . In the above equations we
have also introduced the quantity

The electromagnetic potential V, as used in Eqs.
(2.9)-(2.13) is"

V =e/sss (2sr/K)"(e " "" e—" "I')ie V

+ i»(2rr/If') in(e-'(I'i/sdi KX a+e'&K'&@de KX e)

(2.15)
where e=(1/137.04)'~' is the charge, p„=2./93e/2sm„
is the magnetic moment of the proton, d~ and d2 are the
Pauli spin operators of the protons, and e is the polar-
ization of the photon. Here we have chosen the Coulomb
gauge so that K a=0, and V. as given in Eq. (2.15)
is developed from the coupling of the electromagnetic
Geld to the proton currents in the usual way, " using
the principle of minimal electromagnetic coupling in
the kinetic-energy part of the Hamiltonian only. For
the Bryan-Scott potential this prescription is not gauge-
invariant for the momentum-dependent part of the
potential and will ultimately have to be suitably
modihed. In the following sections we shall refer to that
part of the interaction (2.15) that corresponds to
charge coupling of the protons to the electromagnetic
held as the electric part 8, while the magnetic-moment
coupling term shall be referred to as the magnetic term
5R, so that Eq. (2.15) can be written, V, =g+gg.

III. SPIN AND POLARIZATION TREATMENT

In the barycentric system the 2' direction is taken as
the photon direction, and the polarization states of the
photon are represented in the circular basis correspond-
ing to left and right circular polarization. The choice
of the helicity representation for the photon is partic-
ularly convenient in the treatment of the rescattering
term which is discussed in Sec. V. The singlet-triplet
nuclear spin representation is used for the proton-
proton system.

The electromagnetic matrix elements of Eqs. (2.9)-
(2.12) correspond to that portion of the first four 2-'
matrix diagrams where the photon is emitted from an
external leg. The evaluation of the spatial part of these
elements exhibits momentum conservation at each
electromagnetic vertex, giving

(3.1)

lz(ill, 5 &

&»" I "p'f+ ""Kx'I»'"'&&~ "'"lv Ii"" '' &

r(k;) r( iy)— (3.2)

(3 3)

el 2 (e)l 1 g x ~~~lsf s I
V~

I &.i+«s s "&&» " I ~" &'+i~-ds KX e
I »,'.&

r(ks) —r(pi*+21')
(3.4)

~ Further detail can be found in the University of California Radiation Laboratory Report No. U'CRL /1263 (unpubhahed)"Units of 5=c= j. are used throughout."R.P. Feynman, Qssositlm Elecsrodynomecs (W. A. Benjamin, Xne. , New Yoiir& 1961).
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where spin indices are now included, and the two-
nucleon spin state is given by xq„, where S is the singlet
or triplet spin and v is the spin projection along the
photon direction. The plane-wave normalization

4~s, = (2~) '"e"'xs, (3 5)

is used in the evaluation of the electromagnetic integrals.
In the above equations the quantities a, =e/m„(2'/K )'~''
and a„=y~(2n. /K) '" are introduced.

Right- (left-) handed circular polarization for the
photon is dined in the present convention by

a"«& = ',V2 -(s,+is„), (3 6)

with the upper (lower) sign taken for right (left)
handedness. The effect of using the helicity representa-
tion is to project out from the magnetic term BR of
V, either the raising or lowering spin operators for the
nucleons. For example, the magnetic part of V, ,
appearing in Eqs. (3.1)—(3.4), for which we introduce
the notation OR(o) to indicate that the spatial integrals
have been completed, becomes for right-handed circular
polarization

singlet states, and those of Eqs. (3.3) and (3.4) involve
only triplet states. For over-all triplet transitions of the
two-nucleon system, there are both electric and mag-
netic contributions, and the nuclear matrix elements
involve triplet states only. The left-handed circular
polarization involves lowering operators and corre-
sponding spin transition selection rules.

(44lf I A'0'k ) ~ (4.1)

Because of the 6nite extent of the nuclear interaction
the integral over all space of Eq. (4.1) can be replaced
with

4 o*&~Po+«, (4.2)

IV. NUCLEAR MATRIX ELEMENTS

The oG-energy-shell nuclear matrix elements which
are needed in Eqs. (3.1)—(3.4) can be calculated in
terms of surface and volume contributions, eliminating
the necessity of integrating over the nuclear potential.
Consider a nuclear matrix element of the form in Eqs.
(3.1) and (3.2) (omitting spin indices):

where

Olt'~(o) =ia„d,'EXp=a„Ko"+

o, = ',42(a;-.+io;„)

(3.7)
where 8 is beyond the range of the nuclear interaction.
Adding and subtracting V'/m~ to Viv and using

( V'/mi, +V~) P—g+ =Eofg+
is the usual Pauli-spin raising operator and j is the index
designating the protons. The e6ect of cT;+ operating on
the singlet and triplet states is given by

0j X11 0p.+

and

yields

R R

Q,*Eo(gi+ 4i )dr+ —Q,*V'/m„go+ p~) dr, —
0 0

(4.3)

~~+xi, =&.ox»+&.,-iLx~o+ (—1)~'xoog (3.8)

The fact that the electromagnetic interaction mixes
the singlet-triplet spin states can be seen from Kq.
(3.8); however, transitions between the singlet and
triplet spin states do not occur for the nuclear matrix
elements. Certain selection rules are evident in consider-
ing over-all transitions of the two-nucleon system from
the initial to the final state as in Eqs. (3.1)—(3.4).
Over-all singlet-singlet transitions are purely electric,
while over-all singlet-triplet transitions are purely
magnetic. For over-all triplet-singlet transitions in
which the two nucleons are initially in the triplet
state, the nuclear matrix elements of Eqs. (3.1) and
(3.2), which represent the case in which the photon is
emitted after the nuclear interaction, involve triplet
states only. On the other hand, when the photon is
emitted before the nuclear interaction as in Eqs. (3.3)
and (3.4), the nuclear matrix elements involve only
singlet states. The reverse of this is true in over-all
singlet-triplet transitions in which the two nucleons
are initially in the singlet state; that is, the nuclear
matrix elements of Eqs. (3.1) and (3.2) involve only

where the plane wave has been subtracted for conven-
ience. The second term in Eq. (4.3) can be further
reduced to a volume and surface contribution, resulting
ln

2~= (&o—&o) 4 *(A+—4~) «

(4 4)

The volume term of Eq. (4.4) goes to zero on the energy
shell or in the limit of no photon emission. The surface
term, which is evaluated beyond the range of the
nuclear interaction, is directly expressible in terms of
phase shifts and scattering parameters for the partial
waves corresponding to the two-nucleon c.m. momen-
tum k. The treatment of the nuclear matrix elements
of Eqs. (3.3) and (3.4) involving Pq, follows in a similar
fashion.

Because of the tensor force the nuclear Hamiltonian
does not commute with L', but it does commute with
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82, J', J., and the parity operator. Accordingly, the
nuclear scattering states can be resolved into states of
well-dined total angular momentUm, its projection
along the axis of quantization, well-defined total spin,
and, parity. The partial-wave decomposition of the
nuclear scattering states with incoming (outgoing)
spherical wave boundary conditions for c.m. momentum
h and total spin 5 with component v along the axis of
quantization, which is taken as the photon direction, is
jhen

'U=Xa —&.) f 0i "(q~)LA its+(&~) —&«4v(ar)]r'ar

(4.10)

In obtaining the results in Eq. (4.9) we have made use
(4 3) of the orthogonality of the spin-angle functions given by

where we have introduced the well-known vector-
addition coeKcjents, ~ the spherical harmonics, " and
the spin-angle functions" which are simultaneous
eigenfunctions of J' and J„defined by

yJis (r) = g C- '~'"'yi™(r)xs" (46)
vlmI

where we have introduced

ei(qr) =( /2~) "~'ii(Vr) (4.8)

The evaluation of the nuclear matrix elements of Eqs.
(3.1)-(3.4) can be made in terms of surface and volume
contributions with the use of Eqs. (4.4)-(4.8). Spin
indices are now included for a general case; total spin
is not mixed by the nuclear interaction, but when
5=1, the spin projection v is mixed by the tensor force.
The results corresponding to the nuclear matrix ele-
ments of Kqs. (3.1) and (3.2) are

(qsv'
i T~ i hsv)

PBzg lsz~, m&(~)y m4(g) (g+8) (4 9)

I' A. R. Kdnmnds, ANgular 3Amentum irI Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957}.

'4 The phase convention y~~~= (—1}~y~ is used here.
~ J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(John Wiley k Sons, Inc., New York, 1958).

Because of tensor coupling of orbital angular momentum
the radial wave function of Eq. (4.5) is designated by
both / and /', where /' would be the angular momentum
in the absence of the tensor force. The identity of the
protons requires totally antisymmetric states restricting
orbital angular momentum to even (odd) values in
singlet (triplet) states. The analogous decomposition
into partial waves of a plane-wave state with c.m.
momentum g and total spin S with component v along
the axis of quantization can be written

The results for the evaluation of the nuclear matrix
elements of Eqs. (3.3) and (3.4) are similar to those
given by Eq. (4.9), where use is made of the energy-shell
relationship"

f. ..zs-(kr) =(—1)"$4vi,zs+{kr)j'., (4.13)

which can be obtained by time-reversal considerations.
The evaluation of the radial portions of the nuclear

matrix elements as given by the volume and surface
contributions of Eqs. (4.10) and (4.11) does not
expljcitly involve the nuclear potential. The determjna-
tion of the volume contribution requires a numerical
integration, involving the two-nucleon wave functions,
out. to some point R beyond the range of the nuclear
jnteractjon. The surface contribution of the radjal
integrals is evaluated beyond the range of the nuclear
interaction, allowing the replacement of the two-nucleon
scattering states by their asymptotic forms, where, jn
the present study, the Blatt-Biedenharn parametrjza-
tion'r is used. On the energy shell (k=g) the radial
portions of the nuclear matrix elements which are
obtained from the surface integrals of Kq. (4.11) reduce
to the same expressions as given for the on-energy-sheH
matrix elements by Stapp eI uL'8 It is also useful to
point out that the quasiphase parameters introduced by
Cromer and Sobel" take a particularly convenient form
when expressed in terms of volume and surface integrals
in the manner developed above, where again the
necessity of integrating over the nuclear potential is
eliminated.

V. RESCATTERING

The fifth diagram of Fig. 1 (in parentheses) is the
rescattering term and is expressed by Eq. (2.13).

+ M. I. Goldberg and K. M. Watson, ColHsion Theory (John
Wiley Bz Sons, »c., Ne~ Y«k, &9).

» J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(195&).

38 H. P. Stapp, T. J. Ypsilantis, and N. Metropo1is, Phys. Rev.
105, 802 (1957).
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Whereas V, was evaluated between plane-wave states,
giving 8-function momentum conservation for the first
four diagrams of Fig. 1, for the fifth diagram V, is
evaluated between the distorted parts of the nuclear
scattering states, that is, with the undistorted momen-
tum eigenstates subtracted out, portending a solution
by partial-wave analysis. The feasibility of this ap-
proach stems from the fact that the plane waves sub-
tracted from the initial and final states provide cutoGs
in the respective partial-wave decompositions of these
states, thereby providing a cuto6 in the partial-wave
decomposition of V, .

The electric part 8 of the electromagnetic potential
of Eq. (2.15) for right-handed circular polarization of
the photon is given by

g/2 O (S
—e(K r)/2 Si(K r)/2) 2&8, V (5 1)

1n Eq. (5.2) the usual orbital angular momentum
operators L+ and L, are introduced, where

L+yp(r) = L(l—m) (i+m+1) j1/2yi +'(r) (5.3)

L,yi (r) =my/" (r). (5.4)

The results of 8~ operating on the product of a radial
function and a spherical harmonic, as in the case of a
two-nucleon scattering state, can be written

Gsf/(r) yi" (r) =v2a, sin(K r/2)

(i+m+1) (i+m+2) '/'

(2l+3) (2l+1)

Bf/(r) fi(r) (l—m —1) (l m) "'—
X —l +

Br r (2l+1) (2l—1)

where for use in spherical polar coordinates we can
write

I'8 L ~e' &= —(4~) '"y1'(r)
I

———*
I +(2~)"y1'(r) —.

&Br r j r

(5 2)

states and expanded in partial waves are given by

odd~'r =ey(l 2 Z "(e (2(+()3'j i(lyre)yp(e)) r„,
l

(5.7)

and
(5.9)

even~'» -1='-&
I

2 Z 2'I.4~(2l+1)1'/'ji(2'«) y)'(r)
I »02

)

odd

+e r' 2 +2[4 (2(+()]~f(( yre)yP(y)) r-
l

(5.10)

In the evaluation of the nuclear matrix elements
discussed in Sec. IV, the orthogonality of the spin-angle
functions considerably simplified the resulting expres-
sions. In the rescattering term the angular integrations
involve the spherical harmonics of V, as well as those
in the nuclear states, and 8~ contains orbital angular
momentum operators which act on the spherical
harmonics in the expansion of the spin-angle functions
of Eq. (4.5). Consequently, to calculate rescattering,
the nuclear wave functions are expressed as in Eq.
(4.5), but including the expanded form of the spin-
angle functions as given in Eq. (4.6) .

The rescattering contribution for the electric part
(following angular integrations) is given by

(0') fsfef 4') fsfef I
g

I 4;s;e;+—y),(see, )
odd

iN/2As;sf Q— B„„(2l,'+1)—'
lg Jflf~lf2Mf vfI Jsl& li Mivsl

x(2."(mj(lj, sf)J;; fc,;, kf) Q {~I/, +(m 1)jl/2

(5.8)
even

erer, =e.yr
l

2 g i'(4 (2 +()(]' 'Iy()-,'Er) y'( )y) r„,
l

x ""(r)
I

' +(l+1) I (5 5)
r )

1t is useful to note that when fi(r) is a Bessel function,
the expressions in parentheses on the right-hand side
of Eq. (5.5) can be simplified by recursion. relations.

The magnetic part 5K of V, of Eq. (2.15) for right-
handed circular polarization of the photon is given by

g L(g+1)~ (m —1)$1/2C, ) )e)fyC ) )e)f y

&& {.(R1+((1—/()», 1; P1+ (2+&)»,1,' 1)(R2j}, (5.11)

where X takes on the values 1 +1with the upper (lower)
sign corresponding to l, '+1 (l —1) throughout, and
m=m, '+1.The sums over magnetic quantum numbers
3ff JI//I ' pf', and v have the restrictions

e3its o ~(s i(K r)/2(f ++si(K r—)/2(r +) (5.6)
and

Mi=mi +ve =mi+vi (5.12)

The results of 5K" operating on the singlet-triplet spin Ãf =mf'+vf' =mf+vf (5.13)



In Eq. (5.11) we have introduced

~ (~f(~P'f)&f,k'fof) =o' (24+1) I (24'+1)l(21«'+1) 3'f'

m«(k )y„mph'(k. )C l«s«Z«

where the dependence of 8 on the various nuclear
quantum numbers is indicated by the subscript j.The
radial integrals Sg and 64 Rre given. by

+1 ly'ly Jy8y ~Q ~lyly' ly' ~P jl8
0

8
X g'1 1,. « 8+(k r) .—81 1;gk (k r) jr dr (5 15)

SQ — lyvly*J'yay kfF 8lyvly ly& Off jl gEf

XF f/', 1, g8,+(kg ). . Bk 1 P'g,—.(k,r).fr dr. (5.16)

The angular integration leading to Eq. (5.11) was
performed with the use of

( ~+»( "+»'t~
C 11,1«.C 11.1«. (51))

4lr(2lf'+1)

where, in application to Eq. (5.11), X=1 +1 and
m=fN +1.

The indices of Eqs. (5.11)-(5.16) are subscripted by
i and f to indicate the initial and final states; the quan-
tum numbers which appear both primed and unprimed
correspond to mixing by the nuclear interaction as
discussed, in Sec. IV. The sums over the various quan-
turn numbers for the initial and 6nal states have the
restrictions described in Sec. IV in consideration of the
identity of the p-p system. The sum over odd values of
the index /, represents the electromagnetic partial-wave
decomposition of sin(K r/2) appearing in 8" of Eq.

(5.5), corresponding again to taking the 8 axis along
the photon direction K. The cuto6 in the partial-wave
decomposition of the electromagnetic potential is
determined by the number of partial waves needed to
describe the distorted parts of the initial and final p-p
scattering states. The vector-coupling coeScients in
Kq. (5.11),which resulted from the angular integration
according to Eq. (5.17), contain the specific rules for
coupling 1 +I, l„and lf'.

Since 8 docs Qot mix spin or spin pro]ectlonp thc
orthogonality of the singlet-triplet spin cigenfunctions
has been invoked, as evidenced by the Kronecker 8
symbols involving spin indices, which appear in Eq.
(5.11); the latter symbol restricts the sums on v and
vf' to a single sum. Note that Kq. (5.11) is written for a
particular spin transition so that S;, Sy, v;, and vy are
not summed over; consequently, the Kronecker 8
symbol involving 5; and Sy on the right-hand. side of the
equation is interpreted according to the general nature
of Eq. (5.11) in representing either singlet-singlet or
triplet-triplet transitions. Now, since M;=nfl +v and
Mf —fPlf +vf the restriction mf =m +1 exhibited by
the angular integration combined with the fact that

=vf' yields the result

Mf =M;+1.

All thc su nls over magnetic quantum numbers that
appear in Eq. (5.11) reduce then to a single sum
involving only one magnetic quantum number.

The contribution to the rescattering term from the
magnetic part of the electromagnetic interaction 5K~
mixes the two-nucleon spin representation according to
Eqs. (5.7)—(5.10) .The matrix elements of OR" involving
singlet-singlet transitions of the two-nucleon system are
forbidden, while transitions that connect the singlet
and triplet states are allowed. In other words, as in the
case of thc selection rules corresponding to the first
four T-matrix diagrams, singlet-singlet transitions are
purely eLectric, and singlet-triplet transitions are purely
magnetic. The rescattering matrix elements of 5R~
for a given spin transition which involves transitions
between the two-nucleon singlet and, triplet spin states
cRD bc summarized by

(fk«8«v«fk«8«~« ~
OR

~ lr«kgsg~g 4k;8;vg) 2%elk Q
l, JytyIly, ~l~yy J;l;yl;,m;»y

(4«14;O~v«'1~a 0+4«04;1~v«'O~v —1)

&&8'(m (I«Sf)Jf.k; k«)C,. o f ""'«'Cooo""'«'eo (5 19)

lyI ly. Jy8y pyf $lyt ly ly& kgb jl g Ef go
v l»; Joa ~ kgb halo «l Qlo « kgb (5.20)
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The results of the application of Eqs. (5.7) and (5.10)
along with the orthogonality of the spin eigenfunctions
in the development of Eq. (5.19) are summarized by
the Kronecker 8 symbols in the parentheses. For a
particular singlet-triplet transition S;, Sy, s;, and vy are
given, and are therefore not summed over. In the
present case Eq. (5.19) represents a general singlet-
triplet spin transition where either the initial or the
final state is the singlet; the Kronecker 8 symbols in-

volving S; and Sy are included on the right-hand side
of the equation to distinguish the two distinct cases.
The first (second) term in the parentheses corresponds
to the initial (final) state being the singlet; corre-
spondingly, the sum on v,

' (ir') is degenerate. Since
either the initial or the final state is a singlet, the cor-
responding vector-coupling coe%cients collapse to

unity, and the quantum numbers necessary to describe
the state are reduced to J=/'=l and M=m'=ps.

The angular integrations leading to Eq. (5.19) have
been don. e according to Eq. (5.17), where now X=l
and ns =m .Accordingly, the vector-coupling coeS.cient
from the angular integrations contain the coupling
between 3, /„and l~', which limits the sum on 1, as in
the case of the rescattering contribution. involving 8~.
Also exhibited by the angular integrations is the restric-
tion m =my'. A consideration of the magnetic quantum
numbers for the spin transitions represented by Eq.
(5.19) leads to the result Mr M;+——1 as given in Eq.
(5.18), and appropriately the sum over magnetic
quantum numbers reduces to a single sum.

The rescattering matrix elements of 5K~ for triplet-
triplet transitions can be written

Q'&Isy~l 4'&Isa~I I ~ I 0&;s; ~& 4'4&; ~g )=2iim+4&i4li g
Jf~f~~f, Mfvf~ Jsls~hs, 3fsvs~

(4 o~.; i+~.;i&„'-o)

&«"(~ (~P'i) ~;RI r)~.'~, ""'~'Coooi""~'e, (5.21)

The orthogonality of the spin eigenfunctions along with
the results of Eqs. (5.8)—(5.10) have been used to ob-
tain the Kronecker 8 symbols of Eq. (5.21).For a given
triplet-triplet transition v; and vy are fixed, and although

S,=Sy——1 throughout, the Kronecker b symbols in-

volving S; and Sy are included on the right-hand side
of Eq. (5.21) to be consistent with the earlier notation.
The angular-integration results leading to the rescatter-
ing matrix elements of BR~ for triplet-triplet transitions
are the same as those obtained for the singlet-triplet 5K

matrix elements of Eq. (5.19), where now l, is summed
over even values. The cutoG in l, follows in the same
fashion as described previously. For a given spin transi-
tion there are two separate contributions to Eq. (5.21)
as evidenced by the two terms in parentheses involving

and uy'. A consideration of the magnetic quantum
numbers for both contributions leads to the result
M&=M;+1 as given in Eq. (5.18), and appropriately
the sum over magnetic quantum numbers reduces again
to a single sum.

The determination of the electric and magnetic
rescattering contributions of Eqs. (5.11), (5.19), and

(5.21) requires the integration over all space of the
electromagnetic potential evaluated between the dis-
torted parts of the initial and 6nal exact scattering
states of the two-nucleon system. The angular integrals
exhibit the cutoG in the partial-wave decornpositions
described above. The three distinct types of radial
integrals, all with limits from zero to infinity, are given

by (Ri, No, and Ro of Eqs. (5.15), (5.16), and (5.20).
The radial parts of the 8 matri. x elements given by 64

f~, (&rr)ji, (-,'Er)f),. (k,r) r'dr, (5.22)

wllei'e tll lilltlal aild final functions designated by f
can be either spherical Bessel or Neumann functions
and E is a point beyond the range of the nuclear
interaction. A method of evaluating these integrals
in terms of sine and cosine integrals has been developed,
the details of which are discussed elsewhere. "

The rescattering matrix elements as presented

and {R2 involve the spherical Bessel functions obtained
from the partial-wave decomposition of the electro-
magnetic potential, along with the distorted parts of the
initial and 6nal radial wave functions. The Ri integrals
contain a radial derivative of the initial state, whereas
a weighting factor of r is contained in the $2 integrals.
The radial integrals R3 corresponding to the matrix
elements of SP involve the distorted parts of the initial
and 6nal radial wave functions and the spherical Bessel
functions of the electromagnetic potential, with no
additional radial dependence. Inside the range of the
nuclear interaction a numerical integration involving
the appropriate nuclear wave functions and derivatives
is performed. Beyond the range of the nuclear inter-
action the wave functions take on their asymptotic
forms, and the problem reduces to the evaluation of
integrals involving combinations of the product of three
spherical Bessel and Neumann functions, with limits
from a point beyond the range of the nuclear interaction
to in6nity. A typical integral is of the form
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throughout this section are expressed for a particular
helicity state of the photon, corresponding to right-
handed circular polarization. The CGect of using the
helicity state corresponding to the left-handed circular
polarization of the photon is to project out lowering
operators corresponding to the orbital angular momen-
tum operator of 8 and the spin operators of 5K. The
results for the left-handed. helicity state follow in a
similar fashion to those developed above, where, for
example, the magnetic quantum number restriction
of Eq. (5.18) becomes Mr=M, —1.

The rescattering matrix elements expressed in this
section can be evaluated utilizing irreducible tensor
operators for the electromagnetic potential. The reduced
matrix elements can be obtained using the Wigner-

Kckart theorem eliminating some of the vector-coupling
coeKcients appearing in our formulas. These results
are presented elsewhere. "

VI. CROSS SECTION

In Secs. II-V the T matrix for the p-p-y process has
been formulated entirely in the barycentric system.
To compare to experimental results, which for the most
part are coplanar in the laboratory, Moiler's invariant
form" of the cross section is in, troduced. Since for the
p-p-y experiments of present interest the incident beam
and target are unpolarized and the 6nal-state spins and
polarizations are unobserved, the cross section contains
an average over initial spins as well as a sum over final
spins and polarizations, and. is given by

d~= 4 2 2 41(~r~~ I
2'.

I ~'~') I
Err'~~&'&'Ei''~i'')I fEi'&i. I Pi' Pi' I

—}
Ssvs8f vf

where the subscripted quantities correspond to the
initial and 6nal momenta, total energies, and spins of
the two protons, and the energy and momentum of
the emitted photon is given by E. The factor of 4 in
Eq. (6.1) arises because of the antisymmetrization of
the nuclear wave functions in Sec. IV corresponding
to the identity of the two protons. The sum over the
photon polarization extends over the two values of p,
and the normalization in the phase-space factor cor-
responds to that introduced earlier. The relativistic
energy E and the momentum y for a given proton state
as used in Eq. (6.1) are given by

E=p-'+m'=my and p=mpy. (6.2)

KRch term cncloscd in cully blRckcts is Rn invRliRnt'
the numerator containing the T matrix is calculated
in the baryccntric system where the energies have
been primed to distinguish them from laboratory

quantities, and the remaining two invariants are cal-
culated in the laboratory system.

The usual experimental situation is the coplanar
symmetric geometry introduced by Gottschalk et al. ,

'
referred to as the Harvard geometry, in which the final
protons are observed in coincidence, at equal angles to,
and in the same plane as, the incident beam, thereby
restricting the photon to this plane as well. The diagram
for the kinematics in the laboratory, which is now the
unprimed system, is shown in Fig. 2.

Of special interest is the di6'erential cross section
do/dQidgd8~ corresponding to the photon angular
dlstl lbutlon for 6xcd proton coplanar Rnglcs 1n the
Harvard geometry. The determination of this cross
section from the invariant form given in Eq. (6.1) can
be obtained by 6rst integrating over the photon azi-
muthal angle g~ and then over pir and p2r, using the
momentum 8 function, followed by the integration ovcl
E, using the energy 8 function, resulting in

=
f 2 2 I (~~~r I &. I ~'v') I'Ev'@7 &'Ei''&i''ff/&i'@'

I Pi' Pi,I—
d~~d~2p ~ s;.;8g.g

2
(2&)pirPv pissy&

I »n(a+ei)+Pie»n(&, —&) —Pr»n(e„+e, ) I

' (63)

where a factor of 2 is introduced to allow for the two
symmetric solutions corresponding to the photon being
emitted up or down with respect to the beam.

A calculational simplification exists in the evaluation
of the cross section for the present case, in which there

is no initial polarization or observation of 6nal spins.
Invariance requirements including conservation of
angular momentum, redection symmetry, and thc
identity of the two protons, coupled with the coplan-
arity of the three-body final state of p-p-y in the bary-
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FIG. 2. Kinematics of p-p-y in the Harvard geometry. Here
y~; is the incident proton momentum in the laboratory, p~f and
ymf are the anal momenta of the two protons, and K is the momen-
tum of the photon in the notation of Sec. VI.

centric system, result in a cross section which is helicity-
independent; consequently the cross sections for left-
and right-handed polarization of the photon are equal.
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VII. RESULTS AND DISCUSSION 0.8

The usefulness of p-p-y in distinguishing among
potentials is dependent upon the sensitivity of p-p-p to
the inner region of the nuclear interaction, which is not
suKciently probed by elastic scattering results. To
investigate this sensitivity we have compared the
results of the hard-core potential of Hamada and
Johnston to those of the momentum-dependent one-
boson-exchange potential of Bryan and Scott. The
latter potential is characterized by the exchange of six

0.4

30 60 90
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Fxo. 4. Coplanar symmetric cross section do/dQ~rKhde„calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 20 MeV with coplanar angles of
30', 35', and 40'.
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FIG. 3. Coplanar symmetric cross section da/dQ&A'&de„calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 10 and 30 MeV with coplanar
angles of 30' and 35 .
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Fto. 5. Coplanar symmetric cross section d~/daiklm&„calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 46 MeV (30', 35', and 40').
Experimental results at 30' are from Refs. 6 (circles) and 9
(squares}.
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mesons, and has been 6tted to 5 and higher partial
waves utilizing a linear Feynman cutoff parameter.

The coplanar symmetric cross section do/dQidQsd8v

has been calculated according to Kq. (6.3) for the
Bryan-Scott and Hamada-Johnston potentials at
representative incident laboratory energies E ranging
from 10 to 300Mev and coplanar symmetric angles
8(8r =Os) ranging from 20' to 40'. These results include
partial-wave contributions of the nuclear matrix ele-

ments up to J&4 as well as the exact determination. of
the rescattering contribution. The results for the two
potentials are presented in Figs. 3—11; experimental
results are included where available. The essentially
quadrupole shape of the photon angular distribution is
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I FIG. 7. Coplanar symmetric cross section dr/dQ~~d'g~ calcu-

lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 110 MeV (30', 35', and 40').
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Fxc. 6. Coplanar symmetric cross section do-/dQ&~d8~ calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 62 MeV (30', 35', and 40') . The
experimental results at 30' are from Ref. 8.

evident in most of the results presented in Figs. 3—11;
for coplanar symmetric angles of 40' the quadrupole
effect is most pronounced; this is suggested by Nyman"
to be a model-independent feature. For a fixed incident
laboratory energy E and photon angle 0~, a decrease in
the coplanar symmetric angles tII of the two final protons
corresponds to an increase in the photon energy, which
in turn corresponds to a decrease in the energy avai1able
for the final p-p system. In this sense, then, a decrease
in 8 corresponds to going farther oG the energy shell,
and there resu1ts, according to Figs. 3—11, a corre-
sponding Qattening of the quadrupole effect. In addi-
tion, a tendency for forward, and backward peaking at
158 and 300 Mev with a decrease of 8 to 20' is demon-
strated in Fig. 11.
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Pro. 8. Coplanar symmetric cross section da'/dO, ~ds~ calcu
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at";158 MeV~{30', 35', and 40'). The
experimental histograms and data points are from Refs. 3 and
4, respectively.
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Since a decrease in 0 corresponds to going farther oG
the energy shell, it is not surprising that there is a
corresponding increase in the difference of the results
of the two potentials, as can be seen by comparing these
results at a given energy for a decrease in 8 from 40'
to 30'. A further separation of the results as calculated
with the two potentials is not clearly evidenced at
8=20', as shown in Fig. 11. The manner of going off
the energy shell described here has a feature that is at
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FIG. 9. Coplanar symmetric cross section do jdQ&dQ~~ calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 200 MeV (30', 35', and 40').
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Fro 11. Coplanar symmetric cross section do/dQ&dQrde„calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve} potentials at 46, 62, 158, and 300 MeV with
coplanar symmetric angles of 20'.
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Fro. 10. Coplanar symmetric cross section d0/dQ&dQrd8„calcu-
lated with the Hamada-Johnston (dashed curve) and the Bryan-
Scott (solid curve) potentials at 300 MeV (30', 35', and 40') .

least consistent with this ostensible decrease in sen-
sitivity in the results of the two potentials at 20'. This
feature is obviously exhibited only by those nuclear
matrix elements that involve the final-state nuclear
wave function. Although a decrease in the coplanar
symmetric angle puts these matrix elements farther
oG the energy shell in terms of the relative separation
of the energies involved, due to the increase in photon
energy, the energy of the final-state nuclear wave func-
tion may be sufficiently small to be in a region where
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Fro. 12. Partial-wave and rescattering analysis of dr/d01dQgS„
calculated with the Hamada-Johnston potential at 158 MeV
(30'). Only that curve labeled RI includes rescattering. The total
angular momentum of the p-p system includes J&4, and for
those curves labeled ODNI the off-diagonal matrix elements are
not included.

there is little difference in the results of the two poten-
tials. For example, at 158 MeV with coplanar symmetric
angles of 20', the c.m. energy of the p-p system following
the emission of the photon is the same as that c.m.
energy that would correspond to an incident proton
energy of 16 MeV in the laboratory, which is in an
energy region in which there is little difference between
the results of the two potentials, as seen, for example,
in Figs. 3 and 4.

Presented in Fig. 12 is a partial-wave study of the
coplanar symmetric cross section do/dQ&dQ, di9~ at
158 MeV with symmetric angles of 30', using the
Hamada-Johnston potential. The effect of including the
rescattering-term contribution is also presented. The
individual curves are labeled according to the p-p states
that are included. For example, J=O includes the '$0
and the 'Eo states, while J&1 includes these states plus
the 'E~ state. Besides the 'D2 contribution for J=2,
there is a 2X2 transition matrix corresponding to the
mixing of the 'P2 and 'F2 states. To illustrate the size
of the oG-diagonal contributions to the cross section, we
present separately J&2 inclusive and J&2 ODNI
(off-diagonal matrix elements not included) . The effect
of including the off-diagonal matrix elements for the
photon emitted, for example, in the forward direction,
is to increase the cross section by a factor greater than
2. The curve labeled J&3 shows the effect of including
the 'F3 state. The effect of including the '64 and the
diagonal matrix elements corresponding to the mixing
of 'F4 and 'H4, which is given by J&4 ODNI, makes
little change in the cross section as compared to the

TABLE I. Coplanar symmetric cross section do./dO&d02 in
pb/sr' for incident laboratory energy E and coplanar symmetric
angles 8 as calculated in the present study with the Hamada-
Johnston and Bryan-Scott potentials. The experimental results
and corresponding references are given in the last two columns.

8 Hamada- Bryan-
(MeV) (deg) Johnston Scott Experiment Reference

20

30

46

62

30

30

1.47

2.05

2.09

3.19

3.01

1.47 1.3+0.4 12

1.97 1.85%0.25 11

1.91 3.3+1.4 6
1.37&0.29 9
2.12&0.36 5

2.93 3.04~0.44 5

2.65 2.27&0.73' 8
2.04&0.24b 8

30

40

30
35
40

9.15

13.2

33.0

12.1
17.5
49.1

8.06

12.3

31.3
10.7
16.4
45.8

7.8+1.5
(10.6a2'. 1)
12.4%2.5

(14.0&2.8)
23.8&4.8

13a2.4 7
14&2.7 7
29+6.0 7

~ These results are for the small-aperture geometry of Ref. 8.
These results are for the large-aperture geometry of Ref. 8.

J&3 results. However, the inclusion of the oG-diagonal
matrix elements given by J&4 shows a decrease in the
cross section which amounts to 20% for the photon
emitted in the forward direction. The importance of the
oG-diagonal matrix elements illustrated here suggests
(a) the consideration of partial waves with J'& 6
especially at higher energies and (b) the necessity of
calculating p-p-y with a potential for which the eGect
of the tensor force is included.

The e6ect of rescattering as a function of 8~ is
demonstrated explicitly in Fig. 12, where the curve
designated as J&4, for which rescattering is not in-
cluded, is compared to the curve labeled J&4RI
(rescattering included). The inclusion of rescattering
increases the cross section for all photon angles, but it
has its greatest effect for the photon emitted in the
forward or backward direction, where the increase is
10 and 8%, respectively. The effect of the rescattering
contribution on the coplanar symmetric cross section
integrated over the photon angular distribution
da/dQ, dQ, ranges from &0.2% for energies of the order
of 62 MeV and lower to 15% at 300 MeV. As we have
seen from J&4 RI of Fig. 12, the rescattering contribu-
tion to do/dQ~dQ, d8~ is dependent upon the photon
emission angle 0~; it is also dependent upon the coplanar
symmetric angles 8. For the results presented in this
study, the effect of the rescattering contribution in-
creases for decreasing 8 corresponding to a given
energy. For the Hamada-Johnston potential calculated
at 158 MeV, for example, the eGect of including the
rescattering contribution in the cross section da/dQ~dQ2
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for coplanar symmetric angles of 20', 30', 35', and 40'
is 5, 4, 3, and 2%, respectively.

The cross section do/dQ&dQ, , which is integrated over
the photon angular distribution, is calculated with the
Hamada-Johnston and Bryan-Scott potentials and is

compared to experimental results in Table I. The cal-
culations at 46 MeV are compared to the experimental
results of Slaus et a/. ,

' Mason et al. ,' and Warner' at
46, 47, and 48 MeV, respectively. It is noteworthy that
the experimental results at 47 MeV are somewhat lower
than the results at 46 and 48 MeV.

The integrated cross section do/dQrdQs is presented in
Figs. 13 and 14 for the Hamada-Johnston and Bryan-
Scott potentials as a function of incident laboratory
energy E and coplanar symmetric angles 8 of 20',
30', 35', and 40'. Certain experimental results included
in Figs. 13 and 14 are not included in Table I, since the
calculations have not been performed for precisely the
energies and angles involved. These include the experi-
mental results at 65 MeV of Mason et al."for 0 of 20'
and 30', and those at 99 MeV of Sannes et al." for
25', 30', 35', and 40'. An increase in the cross section

with 0 provides the identi6cation of these experimental
results with coplanar angle.

It is seen that for the most part the results of the
two potentials as presented in Table I and Figs. 13 and
14 fall within the experimental uncertainties. (These
results could be somewhat modified by the inclusion
of Coulomb effects, especially at lower energies. ) An

important source of experimental error is the aonco-
planarity correction due to the 6nite size of the detec-
tors. The noncoplam, arity corrections to the results of
Halbert et al.~" and Sannes et al. ,"as presented here,
are based on the Drechsel-Maximon" noncoplanar
p-p-y calculations. For the experiments of Halbert et a$.

the results of both potentials fall in the vicinity of the
upper limits of the experimental uncertainties. This
might be taken as an indication that the Bryan-Scott
potential, the results of which are consistently lower
than the results of the Harnada-Johnston potential, are
favored. On the other hand, the results of Sannes et cl.
tend to favor the Hamada-Johnston potential.

At present, the degree of the experimental uncer-
tainties coupled with the somewhat modest differences
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in the results associated with the tvro potentials do not
provide a basis for making a clear-cut distinction
between the two potentials as to the relative merits of
their off-energy-shell behavior as applied to p-p-y.
It is also important to realize that the difference in
the p-p-y results does not exactly represent the differ-
ence in the o6-energy-shell behavior of the two poten-
tials, since they are not identical on the energy shell.
What is needed within the framework of p-p-y is a
more sensitive manner (possibly via polarization studies)
of going oG the energy shell utilizing potentials that,
although fundamentally di6'erent, give identical on-
shell results. Further refinements in both theory and

experiment are needed before any conclusions about the
usefulness of p-p-y as a means of distinguishing among

potentials can be obtained.
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