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Inverse Scattering Problem for Separable Potentials*
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A method for constructing a separable potential directly from the two-nucleon phase shifts is presented.
The solution of the inverse scattering problem is extended to include both a long-range attraction and
the important strong, short-range repulsion. The occurrence of both an attraction and a strong repulsion
in a single separable potential is shown to require that the phase shifts satisfy a modiled Levinson theorem,
Construction of a noncentral separable interaction directly from known eigenphase shifts and coupling
parameters is also discussed. Using the construction procedure described in this paper, the task of repeated
phase-shift Gtting is avoided, and one can more easily test the sensitivity of nuclear structure calculations
to various aspects of the two-nucleon interaction.

dilemma of simultaneously testing the nuclear force
and the calculation methods.

Recently, great progress has been made in developing
valid methods for calculating the binding energy and
spectra of nuclei with several kinds of potentials. '
However, it has not yet been determined how sensitive
these predictions are to the two-body force. The main
difhculty in determining this sensitivity is that one must
face the task of repeatedly fj.tting the two-nucleon data
for a wide variety of potentials.

In this paper, a method for constructing a simple
separable potential directly from the phase shifts is
discussed. One advantage of solving the inverse scat-
tering problem and using the phase shifts themselves
to construct a potential is that phase shift 6tting is
avoided. Another advantage is that one can test the
sensitivity of nuclear calculations to the phase shifts
for E&350 MeV and to the assumed phase shift
behavior for higher energies, E&350 MeV. The phase
shifts for 8&350 MeV are mostly well determined, but
there are uncertainties; for example, the 'I'~ phase
shifts are poorly known. It is therefore important to
determine the inQuence of such uncertainties upon
calculational results. One way of determining the im-
portance of phase shift uncertainties is to use a variety
of potentials that are constructed directly from the
phase shifts including their errors.

At higher energies, above the meson production
threshold, the phase shifts are essentially unknown.
Solving the inverse scattering problem is again advan-
tageous in that one can use a variety of high-energy

I. INTRODUCTION

N nuclear structure theory it is assumed that the
. . properties of nuclei can be understood and derived
from the basic nucleon-nucleon interaction. This inter-
action is characterized by the eigenphase shifts and
coupling parameters, which are now well known up to
350 MeV. ' To solve the many-nucleon problem the
customary 6rst step is to construct a nonrelativistic
potential, whose parameters are adjusted to fit these
phase shifts. Although it is possible to incorporate the
more dependable predictions of meson theory into the
potential, one cannot give a unique form because the
interaction is necessarily quite complicated. Indeed,
several potentials are available that represent the two-
nucleon data with various forms' and with diferent
precision. ' Each potential includes not only a phase
shift 6t, but also assumptions about the two-body
wave function (i.e., the off-energy-shell behavior of the
interaction) . Since one cannot deduce a unique poten-
tial from two-nucleon experiments, it is difEcult to know
whether the predictions of a given nuclear structure
calculation follow from the nature of the interaction or
from the calculational method. Thus we confront the
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phase shifts to alter and control the magnitude of
potential matrix elements oR-the-energy-shell. The
eRect of varying these oR-energy-shell matrix e1ements
upon the calculation of nuclear binding energies and
spectra can then be studied.

The construction of a separable potential directly
from the phase shifts is not a new idea. ' The emphasis
here is that the idea is a useful one, especially when
generalized to include tensor forces and the eRects of
a strong, short-range repulsion, which are very impor-
tant for nuclear saturation. It is important to remember,
however, that the internucleon potential is not a
separable interaction, since it is known to approach the
local, one-pion-exchange potential at larger distances.
One of the major, and unproved, assumptions of this
paper is that by including the eRects of a strong, short-
range repulsion and the tensor force one ca.n closely
simulate the real interaction using separable forms. If
this assumption is true, then the use of separable
potentials constructed from the phase shifts oRers many
practical advantages.

In Sec. II it is shown how to construct a central
sepa. rable potential directly from the phase shifts for a
purely attractive or purely repulsive force. This sim-

plihed solution of the inverse scattering problem is then
generalized to include both an attraction and the eRects
of a strong, short-range repulsion in a single separable
potential (Sec. III) . The method used to introduce the
strong repulsion requires that the phase shifts obey a
modi6ed Levinson theorem, which is derived in Sec. IV.
The extension of the solution to include noncentral
interactions is discussed in Sec. V.

II. CENTRAL SEPARABLE POTENTIAL

The method of constructing a separable potential
directly from the phase shifts is best understood by
considering the case of a central potential. In momen-

tum space, the separable potentia16 for two particles
with relative orbital angular momentum L is

»(I
~

I ) =.,(Ss/~) (1/2~s)

y (21.+1)gr, (k) gl, (k') Pl, (fe k'), (1)
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also found in Ref. 7 and in R. Jost and W. Kohn, Phys. Rev. 8'7,
977 (1952), and V. Bargmann, Rev. Mod. Phys. 21, 488 (1949) .
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where M' is the nucleon mass, 25k=&&i
~

kt —ks
~

and
25k'=fi

~

kr' —ks'
~

are relative momenta, and Pr. is a
I.engendre polynomial. The sign factor o.&= —1 for an
attraction and or, =+1 for a repulsion. The potential
function gr, (k) is to be determined by the phase shift
8r, (k), which is assumed known for all energies E(Rel) =
—', E(I.ab) = (ks/M) k'. For this potential, one can solve
the Schrodinger equation for the outgoing scattering
wave of relative motion

The asymptotic wave function and the phase shifts are
determined by the on-energy-shell T matrix

kTr, (k
~
k) = —exp[ibr. (k) 7 sinbr. (k)

= or.kLgr, '(k) /Dr, &+& (k) 7. (3)

Here jr, (kr) is a sPherical Bessel function and Dr, (s) is
de6ned by

2 ~ dwx2
Dr, (s) =1+o.r,Gr, (s) =1+or, —P gr, '(s) . (4a)

0 K z

The function Dr, i+& (k) is then given by

Dr, &+& (k) =DI.(kris)

=Dr, &+& (—k) . (4b)

One can therefore write Gl,+(k) as

2 ds s'gr. '(s)
Gr+(k) = —,, =Gr, (k) +ikgr, '(k) ) (5)

0

where Gr. (k) is the corresponding principal value
integral. We use z to denote a complex variable and k
to denote a real variable. Knowledge of the analytic
properties of Dr, (s) will provide us with a solution of
the inversion problem for Eq. (3), i.e., to 6nd gr, (k)
from the phase shifts br, (k). Therefore, let us consider
DI, as a function of the complex energy variable co=z'.

2
DI (o&) = 1+ 0'r,

"d&r s'gr, '(s)
(6)

7l 0 K M

This function has simple and useful analytic properties
in the complex cu plane. For example, the function
Dr. (o&) has the property

Dr. (k'+is) Dr, (k' t's) =—2ikog —'(lk)r, . (7)

which shows that Dr, (o&) has a branch cut on the real
o& axis. For a single separable interaction, Eq. (7)
relates the discontinuity across this cut to the potential

where the oR-energy-shell T matrix is

Tr, (k
~

k') =or.[gr, (k) gr, (k')/Dr, &+&(k') 7. (2b)
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function

oLkgc'(k) = ImDzt+&(k).

This equation will be very useful later.
Let us consider the additional properties of Dc(~).

For an attraction (or, = —1), a separable potential gives
a bound state if

2 "ds ssgr, '(&r) =1.
ss+kes

(9)

This bound-state condition follows immediately from
the Schrodinger equation and shows that a bound state
will occur at the energy o&= —kes, provided Dr, (o&) has
a zero at this negative energy. Since the left-hand side
of Eq. (9) is a monotonically decreasing function of

kz, only ore bound-state solution may occur for a single
separable interaction. Thus, DI, (o&) has at most a
single, simple zero at a negative, real value of co.

In addition to the bound-state zero and the right-
hand cut, D(co) can have additional "potential"
singularities on the second, or unphysical, Riemann
sheet of the cut or plane. These singularities on the
second sheet (Ims&0) can be quite complicated and
depend sensitively on the interaction. To discuss these
singularities it is more convenient to use the complex
variable s= Qo&, which maps the first (physical) sheet
of the cut o& plane into the upper (Ims&0) half-plane,
while the second sheet is mapped into the lower
(Ims&0) half-plane. In this conspiez s Plane, Dc(s) is
an analytic function in the rspper plane with a possible
holed-state sero at 2,'= ik~.'

The "potential" singularities in the lower plane can
be quite intricate. For example, a local Yukawa poten-
tial of range a ' gives a potential cut from —ia to —i ~
and a strip —ia &Ims& 0, where Dl. (s) is analytic. Also,
a separable potential of the Yamuguchi form, g(k) =
a/(k'+a'), gives a double pole at —ia, whereas g(k) =
cr/(k'+as)"' produces a simple pole at ia. Mitras-
usesgs(k) =nk ' 1nL1+ (k'/a')], which gives a Yukawa-
type cut from ia to i—~. (A—nother example of the
singularities possible in the lower plane is generated by

g(k) = I Bk'/$(k d)'+b'j[(k+—d)'+ b'$}, (10)

which produces poles at k= ib+d. s) These ex—amples
illustrate that for a general function g(k) the singu-
larities in the lower plane can be complicated. Portl-
nately, we do not need to know these potential singularities
in order to solve the inversion Problem for seParable
potentsals. The only information required is that Dr, (s)
is analytic in the upper half-plane, with a possible
bound-state zero at s=+ik» General . proofs of the
analytic properties of Dr, (s), which are illustrated in

X
-d-ib

X
+d-ib

FrG. 1.The analytic properties of DL, (z} in the complex 2 plane.
The Fredholm determinant Dl, (s) has zeros at s=+ik~ for a
bound state and at s= +k, to produce a strong repulsion PEq.
(22)$. The complicated singularities in the lower half-plane
(Ims&0) are illustrated by a potential cut of the Yukawa type
from —ia to —i ~ and by the complex poles at +d —ib. The
contour C encloses the upper half-plane, where Dc (s) is analytic.

Fig. 1, are given in Ref. 7. For convenience let us follow
the usuaP nomenclature and call Dr, (s) a Fredholm
determinant.

Our task is to use the known analytic properties of
Dc(s) to solve the inversion problem for separable
potentials. For this purpose, consider the quantity

in', (s) =lnI /(s+iko)/(s —ik») )Dr, (s) I. (11)

(12)

where the contour C is given in Fig. 1. Taking the real
part of this identity, one 6nds that for s-+k+is (k real)

To use Eq. (13), one must first note that the S
matrix can be written as

From our previous discussion, we know that lnX)r, (s)
is analytic in the upper half-plane, provided the only
sero of Dz is the bognd state sero. F-urthermore, we see
from Eqs. (4) and (5) that Dr. (s) approaches 1 for
large values of s; consequently, 1nSz, (s) vanishes on
the infinite semicircle for Ims&0 (see Fig. 1).

The above properties of lnSL, and the assumption of
no additional Dr, (s) zeros suKce for the application of
Cauchy's theorem

in')r, (s') ds'
lac s = 2'

R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., New York, 1966). The modihed Levin-
son theorem is also proved by A. Martin, Nuovo Cimento 7, 607
(1958), and M. Bertero et al. , Nucl. Phys. A113, 625 (1968).

Sc(k) =1—2ikTr. (k) = exp[2ibr, (k) ]
=Dct-& (k) /Dr, t+& (k), (14)



where Eqs. (3)—(7) were used. We can also write

tanbl, (k) = —ImDI. (+& (k) /ReDI, (+) (k) . (15)

It follows that the phase of the Fredholm determinant
ls SIIIlply —bl, (k), I.e.,

Dz'+&(k) =
~

Dz,
~

expL i—bl, (k) j.
Now using Eq. (16), we find

}nX)1,(+&(k) =ln
~

Di,
~

—Ql, (k)+1n . (17)
k+ikz
k—kg

Combining Eqs. (13) and (17), we have

I' " dk' k'+ikz
ln

~
D,

~

= —~,(k)+ —. , ln, , (18)k' —ok~

where 61,(k) is the principal value integral

I' " dk'bl, (k')
AI, k=-

k' —k

The second principal value integration in Eq. (18) can
be completed by the method described in the Appendix.
The Fredholm determinant is found to be

k'+kI&'
D~'+&(k) =, expl —L~~(k)+@~(k)jI (2o)

At this point Eq. (8) is very useful and we find that
the potential function is

k'+kz' (' »I' sinbz(k)
~,g, (k) = ' '

expL —~,(k) 3,k'

us now consider how one may introduce both an attrac-
tion and a repulsion with a single separable potential.

The essential assumption needed to introduce a
short-range repulsion is that the Ferdholm determinant
has additional, simple zeros and z= +k., where E,=
2(5'/M) k,' is the laboratory energy at which tanbz(k)
changes sign. It is completely consistent with the gen-
eral analytic properties of Dz, (z) to assume that

Di, (+& (+k,) =0.

This assumption is equivalent to the requirements

gi, (k.) =0

(23b)

which have been used successfully in a numerical
example. ' (We have now set (rl, ———1.)

In this numerical examples it was shown that the
above condition LEq. (22)j introduces an extra node
in the scattering wave function at k, ' 0.45 fm. The
extra node at short distances arises from the fact that
Eq. (22) is the condition for the occurrence of a bound
state at the positive energy E,. The extra zero in the
wave function has the effect of reducing the integrated
probability of Gnding the nucleons at short distances.
This average reduction in the wave function at short
distances is the sense in which Eq. (22) introduces the
eBects of a strong short-range repulsion.

To see that Eq. (22) introduces a sign change in
tRllbi, , collsl(iel' Eqs. (5), (8), Rlld (15), wllicll give
the phase shift

with o'y, = —1 fol' Rll R't'tl'Rctloll Rlld O'I, =+1 foi' R

repulsion. Equation (21) defines a separable potential
directly from its phase shifts and hound-state energy.

For a purely attractive potential we have 0-1.———1,
and the phase shift is positive, 81,&0. One might con-
clude from Eq. (21) that it is impossible for a single

separable potential to produce both an attraction and
the short-range repulsion required by the 'So two-

nucleon phase shifts. However, in Sec. III, we show how
to generalize Eq. (21) to include both an attraction and
a repulsion in a single separable potential.

The solution of the inversion problem presented in
Sec. II applies to a purely attractive or purely repulsive
separable potential. However, the two-nucleon interac-
tion is known to have a long-range attraction and a
short-range repulsion; for example, the 'So and 'E'o

phase shifts become repulsive at high energies. ' One
must include this repulsion since it does appear in the
interaction and because it plays a decisive role in
determining nuclear binding energies and spectra. Let

=kg~'(k)/L1 —G~(k) 3

= kgr, '(k) ((k.'-0') — . . . , ).d««'gl, '(k)

X khan'(k)
P " d«K'gz'(K)

(«'—k ') («' —k')

The integral in Eq. (25) is positive at k=k, and we
see that tanbi, (k) changes sign at the energy E„ this
sign change corresponds to a repulsion. Therefore, Kq.
(22) provides a means of including both an attraction
and a repulsion in a single separable potential. Of
course, we could apply this condition LEq. (22)j to a,

' F.Tahakili, Phys. Rev. 174, 1208 (1968).

Since gi, (k) is assumed to have simple zeros at k= +k„
we can write gi, (k) = (k,'—k') ki, (k), and hence

tangly, (k) = (k,s—k')



set of ÃI, points k,g, k,p,
~ ~ -, k,g, and thereby generate

El. sign changes in tanbl, .
The possibility of Dz(s) having zeros on the real

Rxis is usURlly re/ected bccRuse it 1s thought thRt thc
wave function would become either unbounded or zero. ~

However, in the present case the ratio gz, (k,) /Dzl+'(k. )
is nonzero and bounded; correspondingly, the wave
function given by Eq. (2) is well behaved at all energies.
Hence, it is permissible for Dz(s) to have zeros on the
I'Cal axis.

The introduction of additional zeros in Dz(s) requires
that we reconsider the previous solution of the inversion
problem. Instead of Sz(s) given by Eq. (11),we Inust
now de6ne

vfhcrc thc posslblllty of a bound stRtc is included and
h. is an arbitrary real number. The function K)z{s) is
free of zeros both on the real axis and throughout the
upper half-plane. Furthermore, Sz(s} is analytic in
the upper plane (Ims& 0) and approaches I
L~,(s~~)~G on the upper Inf»«scmici«lc.
Hence, in% can be used in Cauchy's residue theorem

will plodllcc tile phRsc shifts 8z, {k). EqllRtloll (31)
is a solution of the inversion problem for OL,

———].,
including a bound sta, te «cn«gy ~&= (P/~) k&' a.nd
a, 1'cplllM011 wlllch CRllscs tanks, (k) 'to cllRllgc slgll Rt
the energy E,=2(P/M) k,'. Clearly, the solution given
by Eq. (31) is valid only if the Product (k'—k,') Sinliz(k)
18 posltlve. T1118 pl"odllct ls indeed posltlvc, provided
one uses the modi6ed Levinson theorem described in
Sec. IV and also observes that both tanbz(k) and
sin1iz, (k) change sign at the energy, E,. Another feature
of Eq. (31} is that the arbitrary number A does not
appear. The potential function gz'(k) is thus well
defined; it satisfies the condition g(k, ) =0 and can be
calculated from the phase shifts bz(k) once the phase
shifts are given absolute meaning by the QmdiGcd
Lcvillsoll thcol'cIn (Scc. IV) . Thc po'tcIltlal fuIlctloll
for a pure attraction LEq. (21)j is obtained from Eq.
(31) by scttlllg k,~0; thc CRsc of Ilo boulld state 18
obtained by setting kir 10 in either Eqs. (21) or (31).

OUI' solution of the 1nvcI's1OQ proMcIQ cRQ bc extended
to the case of 2' real zeros of Dz(s), with the result
that

k~—k 1 kl+kam)+& sing (k)g"(k) =II

where the contour is thc 8RIilc Rs before {Flg. ~) ~ From
Eq. (27), it follows that, «» 8~k+i~,

I'
Re ln nz, &+I (k) = — — Im ln Sz,&+& (II) . (28)x-k

XcxpL-Az(k) j. (32)

Recall that a single separable potential permits at Inost
onc bound stRtc 1n cRch part18I wave so thRt gL, =0
or 1. Equation (32) de6nes a separable potential that
produces Zz, sign changes in tanbz(k) at the energies
E„=(2P/M) k,P.

Since ln SJ.&+& is given by

k'+A.'
ln mz'+I (k) = ln

i i
D i ibz-

k' —k,'

k' k'

y exp/ if'(k) j—expL —hz, (k) j. (30)

Herc gz(k) is again given by Eq. (19),and the contour
integration %hich is presented in the Appendix has
been used twice.

Using Eqs* (8) Rnd (30)i wc collcllldc that
potential function given by

Thc solut1on of thc inversion problcIn for separable
potclltlR18, Rs cxpl'cased by Eqs, (31) and (32)
complete until the phase shifts arc g1v'CQ abso/Utc
meaning so that dz(k) Rnd gz, (k)
without ambiguity. I et us adopt the usual convention
that the asymptotic phase shift is zero, bz(oo) =0.
Then thc phase shift at zero energy is axed by the
requirement that limI, ~ ~gz(k) be fmite. LOf course,
if one is willing to deal with a singular potential, then
liml, ~k zgz(k) may be unbounded and the zero-energy
phase shift @rill not be deterInincd by the following
discussion. j

The potential function k z@,(k) might appear to be
singular as k—C because of the k ' factors in Eq. (31}.
However, hl, (0) can have a logarithmic singularity
which, for the proper choice of Bz(0), keeps k-zg&(k)
bounded. The proper value for 8z(0) is deduced simply
1f wc consider thc rclatlon

lk'-k I =exp + tc k»
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where F(k/k, ) is defined by

F(k/k. ) = F—( k/—k ) =z. for k&k,

=0 for k& k, (34)

and k, denotes either ks or k„. Using Eq. (33), we can
rewrite the potential function t Eq. (32)$ for small k as

t'ks2+ k21 ~a
g&'(k) = (—1)~r+'k'~

I I
ar, (k) cosbr, (k)

kka'

A great advantage of the construction procedure
offered by Eqs. (1) and (32) is that the off-energy-shell
behavior of the interaction is stipulated simply by
making appropriate models for the high-energy
(E&350 MeV) phase shifts. In this way, the role of
off-energy-shell behavior could be studied without the
need for repeated phase shift Qtting. In Sec. V, this
desirable feature of solving the inversion problem is
extended to the case of noncentral forces.

where

P ~ d~-
Xexp —— ee( jj, (35e)

—co K k

and
ag(k) = —tanbl, (k) /k'r+' (35b)

Nl,

br, (k) = br, (k) NzsF—(k/krr) QF (—k/k„) . (36)

P ~dK
Xexp —— —br.(~), (38)

which implies that for az,)0 only one bound state
occurs and for ul, &0 there is no bound state. This
property agrees with the known 'So and 'S& two-nucleon

scattering lengths.
Equation (37) is a modified form of Levinson's

theorem, which can also be derived directly from the
appearance of additional zeros of Dz(z) on the real
axis. In our presentation, it is emphasized that Eq.
(37) follows not only from these additional zeros, but
also from the requirement that k ~gr, (k) be bounded.
The standard Levinson theorem is obtained by setting
N&=0 in Eq. (37), i.e., for a monotonic separable

potential the standard Levinson theorem holds.
The modified Levinson theorem LEq. (37)) is a

restriction on the high-energy behavior of the phase
shifts which can be handled by the construction pro-
cedure. This restriction follows from the manner in

which a repulsion has been introduced. Nevertheless,
there is still considerable lattitude in the models that
one can assume for the high-energy phase shifts. For
example, the specific dependence of the phase shifts on

energy can be greatly altered within the restriction of
the modified Levinson theorem. Also one can vary 1',
and control the number of sign changes in tanbr, (k) .

Since ar, (0) is a finite constant (the scattering length),
the choice of br, (0) which gives a finite positive limit
for k '

gr.'(k) is br. (0) =0 or

br, (0) br, (~) =—(Nr,s+NI, )x. (3. 7)

Here the number of bound states is Xl. =0 or 1, and
the number of nodes in gl,'(k) is Nr, This ch.oice for
8L, (0) gives

limk-'~gl, '(k) = ( 1)N s+'a—
It:-+0

V. INVERSION PROBLEM-NONCENTRAL
FORCES

The construction of a separable potential directly
from the eigenphases and coupling parameters for non-
central forces is a direct generalization of our previous
discussion. Let us follow the suggestion of Bolsterli and
MacKenzie' and introduce a separable potential in the
"diagonal representation" of the T matrix.

For noncentral forces, the T matrix is determined by
the Lippmann-Schwinger equation for coupled channels

0

where a denotes JST, the total angular momentum,

spin, and isotopic spin of the two-nucleon system. The
relative orbital angular momenta I=J+1 are coupled
in nucleon-nucleon scattering; for example, the 'S~+'Dq
and 'P2+'Fz states are coupled. Matrix elements be-
tween states of different parity are, of course, equal to
zero: VJ+],J—0. Correspondingly, the L=L'=J states
(such as 'D2 and 'F&) are uncoupled and Eq. (39)
reduces to Eq. (2). Equation (39) is obtained directly
from the Schrodinger equation with outgoing wave

boundary conditions and using the partial-wave de-

compositions'

(k
~

V
~
k')=(2/vr) (5'/M) Q i~' Vr, r, (k

~

k')
(aMLL~)

and

(k
~

T
~

k')=(2/pr)(5'/3/I) Q i~' ~Ter. (k
~

k')
(aMI,I.I)

X'ti s~~(fc)'jj ~ ~~+(k') E, (40b)

where the sum extends only over the allowed two-

nucleon states and J'& is an isospin projection operator.
For coupled states, the diagonal representation of the

S matrix

Sr.r. (k) =4r..—2ikTr. z, (k
~

k)

=QUU, (k) expt 2ibr (k)]Urr, "(k) (41)
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is de6ned by a real orthogonal matrix U:

J—1 /+1
J—1 cose +sine 0

ULL. (k) =7+1 —sine cose 0 . (42)

J 0

The matrix U makes the 5 matrix properly symmetric
andunitary. Hereby+& and& are the Blatt-Biedenharn
eigenphases and coupling parameter. It is the coupling
parameter c that especially characterizes the nature
of the tensor force.

Now let us assume that the potential is also diagonal-
ized by U and that it is a single separable term in the
diagonal representation

Vti (k
~

k') =—QUiL (k) VLL (k
~

k') U,'L (k')
EA~

=~i&ii gi (k)gi (k'). (43)

,g (k)g .(k')+ +E (k)E (k). (46)

Equations (45) and (46) have considerable practical
significance which will be discussed later (Sec. VI).

It is well known that for a sum of separable poten-
tials the Schrodinger equation can be solved exactly.
For a potential that is also separable in the diagonal
representation, the solution of the Lippmann-Schwinger
equation is simply

The choice of over-all sign, a~= +1, is based on knowl-

edge of the eigenphases. For example, the proper choice
for the 'Si+'Di coupled channel is oe= —1 and am=+1
(see below). For the uncoupled cases ('D2, '&i), Eq.
(43) reduces to

VJJ (k
~

k ) 0JgJ (k)gj+(k ) (44)

and the results of our previous discussion [Eqs. (21),
(31), or (32)j can be used to construct gq(k) from the
phase shifts, 8J~sr(k). Let us therefore concentrate on
the coupled-channel part of Eqs. (39)-(43).

The assumption that the potential is diagonalized by
the orthogonal matrix U is equivalent to expressing
VL,L, as a special, two-term separable potential. If we
define gL and Ez, for coupled states by

gL(k) = U~-i, L(k) g~-i(k)

kL(k) UTIL(k) go+1(k,) t (45)

then the potential consists of two separable terms:

VLL. (k j k') = QUiL(k) gi(k)oigi(k') UiL (k')

shell by the potential function gi(k)

ti (k
~

k') =at gi (k)gi (k')/Di'+'(k'). (48)

The function Di'+'(k) is given by Eq. (4) . The eigen-
phase shift Bi(k) is obtained from the on-energy-shell
t matrix

kti (k ~

k') = —exp[itii (k) J sintii (k)

=0 ikgp (k) /Di&+& (k) . (49)

These expressions provide a means of solving the inver-
sion problem for noncentral forces. Use of the diagonal
representation assumption [Eq. (43)j has simplified
our task to constructing gz i (k) directly from the
eigenphase shift bg i (k) and separately finding go+i (k)
from be+i (k). The great advantage of the diagonal
representation assumption is that the construction of

gq (k) is completelv analogous to the case of a central
potential and independent of the couplirig parameter
ez (k). It is only at the final stage of writing the full
T ms, trix [Eq. (47) 1 that one must introduce the
known coupling parameter.

If follows from the similarity of Eqs. (3) and (49)
that the previously described construction procedure
can be used to find the potential functions gg+q from
the eigenphases 8J~&. To completely establish this simi-
larity, one must examine the analytic properties of
the function Di(z), which appears in Eq. (49). As
before, Di(s) is analytic in the upper half s plane and
can have complicated singularities in the lower plane
(Ims(0) (Fig. 1). If tanbq~i is known to change sign
at an energy E„one must again assume that D&(z) has
real zeros at s=+k, [Eqs. (22)-(31)]. If there is a
bound state (the 'Si+'Di state of the deuteron), then
Di(s) may have a zero at s=+ikii For the . case of
coupled states this bound-state zero requires further
des cuss&on.

Consider the Schrodinger equation in momentum
space for a bound state of energy Eii= —(ft'/M) ka'

Co

(k'+ks') WL (k) = ——Q d~ a'V L (k
~

i~)WL. (i~).
J,/ p

(5o)

For two nucleons a bound state occurs only when
n= (EST) = (110) and L=O, 2, corresponding to the
'Si+'Di state of the deuteron. Introducing the diagonal
re resentation of VLL and the wave function pi ——

&U&L,TVL,, we 6nd that the 1=0 and l=2 equations
are decoupled:

(k'+kii') yt = —o igi(k) Ci. (51)

Here C& depends only on k& and is given by

~LL"(k
I

k') = QU«(k) ti (k I
k') UiL"(k')

~ (4&)
CO

Ci= — di~ K'gi(g) yt(g)
p

(52)

where ti(k
~

k') is determined on and off the energy (no sum on t). It follows from Eqs. (51) and (52) that
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FIG. 2. The 'S1 and 'D1 Blatt-Biedenharn eigenphase shifts and
coupling parameter pq(k) (Ref. 1). This case has a bound state
(E =1) and an S-wave repulsion (fop 1, Ps=0)——; see Eq. (57).
Correspondingly, 8('SI) becomes repulsive at E,~360 MeV, and
tr(k ) k) has a pole at En~17 MeV, where tanbp(En) = ~. The
low-energy behavior of ~1{k} is related to the deuteron's quad-
rupole moment Q and the triplet effective range r~. An S-wave
repulsion is indicated by the dotted curve.

the condition for a bound state is

CtDt(iktt) =0. (53)

Now one must consider the actual behavior of the
'Si and 'Di eigenphases bp(k) and bP(k) (Fig. 2) . It is
known that the 'S~ eigenphase has a positive scattering
length and an effective range, which are related to k~
by kn '=u '+-', kii'rp. Correspondingly, tanb('Si) be-
comes inFinite at the collision energy of E&~17 MeV
and 8(sSi) reveals a bound-state pole 'in ti(k

~
k). It

follows that Dp(ik&) =0 is the proper way to satisfy the
bound-state condition for /=J —1=0 $Eq. (53)].How-
ever, for the 'Di eigenphase tanb(sDi) is known to be
finite at all energies below 350 MeV (Fig. 2). In fact,
8(sDi) is relatively small and negative in the range
0(E(350 MeV (Fig. 2) . Thus the bound-state condi-
tion for I=J+1 = 2 must be satisfied by having
Ds(ikn) WO and Cs ——0. Also, to produce the negative
8('Di) eigenphase the sign os must be positive (os ——+1),
whereas the 'S~ bound-state zero implies that op= —i.

The bound-state wave function is now determined:

Wz(k) =CpUrp(k) gp(k)/Pks+knsj (54)

and Cp is Fixed by normalization to be

f " gp'(s) «'da)-'t'

(„2+k s)sp

An interesting consequence of the condition C2=0 is
that the D-state probability is determined from e& and
bp by

"ds s'(sin'et(s) ) gps(~)

(ss+k ')'

(56)

Therefore, the bound-state properties (the binding

energy, quadrupole moment, D-state probability, and
wave function) are completely specified by this con-
struction procedure.

We have therefore established that Dp(s) does have
a bound-state zero at s=iktt, whereas Ds(s) does not.
The analytic properties of Di(s) are now completely
revealed and the results of the previous discussion
(Secs. II—IV) can be applied. The potential functions

gl, are determined from the corresponding eigenphases

hJ+& using either Eqs. (21), (31),or (32) . For example,
the 'Si eigenphase determines gp(k) using Eq. (31),
which includes the bound state and a possible repulsion
at high energies. Equation (21) is useful for determining
—orgr, '(k) from the 'Di eigenphase shift.

A modiFied Levinson theorem also applies to the
eigenphases. If one requires that k 'gt(k) be bounded,
then the proper choice (Sec. IV) for the eigenphases is

given by

8,"(0) bt (~) = (1—V~+Xt) w. (57)

It is only for the 'S& eigenphase that X~= 1. The num-

ber of sign changes in tanbl. and, correspondingly, the
number of nodes in gt (k) is given by Xt. t We always
assume that bt (~ ) =0j. For tV i =0, Eq. (57) reduces
to the standard Levinson theorem with eigenphases
bq i (0)+bq+t (0) =tVns. .'The modified Levinson theo-
rem again arises from the manner in which a repulsion
has been introduced LEq. (22) $. The applicability of
the construction procedure presented in this paper is
therefore restricted by Eq. (57) .

Once the potential functions gJyg have been con-

structed from the eigenphases, the complete potential
LEq. (46)j, 2" matrix fEq. (47) j, and wave function
can be given. This last step requires that we know the
coupling parameter e, (k).

VI. CONCLUSION

A flexible and convenient solution of the inversion

problem for separable potentials has been presented.
For each allowed two-nucleon state, only one principal-
value integration is needed to construct a separable
potential from the phase shifts. This integral can be
found numerically once the phase shifts are given. Of

course, the phase shifts are only known up to 350 MeV
and one must assume the phase-shift behavior above
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this energy. An important fcRtulc of scpR1Rblc lntclRC-

tions is that the higher-energy phase shifts automatically
stipulate the o6-energy-shell structure of the interac-
tion. Therefore, the construction procedure provides a
convenient means of studying the role of the assumed
phase shifts, and the corresponding OR-energy-shell
matrix elements, in various nudear structure calcula-
tions (Sec. I).

The construction of a separable potential has been
extended to include the CGects of a strong, short-range
repulsion. ' This essential repulsion is incorporated by
permitting the Fredholm determinant to have zeros on
the real axis LEq. (22)j.As a consequence of introduc-
ing these zeros, the phase shift behavior is restricted by
a modified Levinson theoremr Fq. (37)j. Only when
this theorem ls satis6ed by thc phRsc shifts CRn one
apply the construction procedure described in this
paper. However, the modified Levinson theorem can
be satis6ed formally at extremely high energies. For
example, the phase shifts of a local potential up to, say,
5 BeV could be used to construct a separable interaction
provided the phase shifts above 5 BeV were forced to
conform to the modified Levinson theorem. Therefore,
from a practical viewpoint, the construction procedure
is quite Aexible.

It has also been shown in Sec. V that a separable
potential can be constructed from the eigenphases and
coupling parameter in the case of coupled two-nucleon
states. This treatment of noncentral forces is made
possible by the use of the "diagonal representation"
suggested by Bolstcrli and MacKenzie. ' As a result of
using the diagonal representation, constructing a
separable potential from the eigenphases requires no
morc work than for a central potential. Therefore, by
using this construction procedure and various models for
the high-energy eigenphases and coupling parameter,
one can conveniently test the sensitivity of nuclear-
structure predictions to the noncentral aspects of the
two-nucleon interaction.

There are other practical advantages to using a
separable potential in the diagonal representation
LEq. (43)j.Several authors have used two-term separa-
ble potentials to 6t the nucleon-nucleon scattering data. 6

The four potential functions gg+r and Kg~i are then
parametrized as convenient analytic functions and the
parameters are adjusted to 6t the eigenphases and
coupling parameters. This task is greatly simplified by
using the diagonal representation, since one needs to
parametrize only three functions gJ+ and ~~ to 6t the
known quantities b~+, and e (Exp). Also, the diag-
onal-representation assumption decouples the curve-

6tting problem into three distinct and quite simple
tasks Lsee Eq. (49)j.'

The main point of this paper is that one can easily
construct a separable potential directly from the phase
shifts, including a strong repulsion and noncentral
forces, The task of 6tting phase shifts is then avoided
and tests of nuclear structure predictions can bc made
with relative ease.

APPENDIX

The solution of the inversion problem involves evalu-
ating the integral

P " d«»+iks
ln.-k' .-'k. (A1)

The integrand has a branch cut from +iks to —ik&.
Although it is possible to use a contour around this cut,
an easier yet correct way of integrating (Al) is to use
the limit of

I' " d««+iks « iS—
lirn —. ln
«~ «««« —k «+«S «—Q«)

I' " d» «+iks't
=lim —. In

s o 7ri — »—k «+iS~

I' d~ x—i'
ln . . (A2)

~—~S

The erst integrand in (A2) is now analytic in the
upper half-plane; the second integrand is analytic in
the lover plane. Thus we can close the corresponding
contours with the upper jlower infinite semicircles and
use Cauchy's theorem. The principal value integral
(A1) is therefore

' The repulsion introduced by Eq. (22) is a very strong inter-
action. In Ref. 8 it was shown that perturbative methods cannot
be used and, therefore, Brueckner theory is required for this
strong potential. However, a smooth potential with a weak repul-
sion can be generated by appropriate choices for gg+1 and kg~1
in Kq. (46) (Ref. 6) .The diagonal representation greatly simplifies
the curve-Gtting problem for. these smooth interactions,
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