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A method for constructing a separable potential directly from the two-nucleon phase shifts is presented.
The solution of the inverse scattering problem is extended to include both a long-range attraction and
the important strong, short-range repulsion. The occurrence of both an attraction and a strong repulsion
in a single separable potential is shown to require that the phase shifts satisfy a modified Levinson theorem.
Construction of a noncentral separable interaction directly from known eigenphase shifts and coupling
parameters is also discussed. Using the construction procedure described in this paper, the task of repeated
phase-shift fitting is avoided, and one can more easily test the sensitivity of nuclear structure calculations

to various aspects of the two-nucleon interaction.

I. INTRODUCTION

N nuclear structure theory it is assumed that the
properties of nuclei can be understood and derived
from the basic nucleon-nucleon interaction. This inter-
action is characterized by the eigenphase shifts and
coupling parameters, which are now well known up to
350 MeV.! To solve the many-nucleon problem the
customary first step is to construct a nonrelativistic
potential, whose parameters are adjusted to fit these
phase shifts. Although it is possible to incorporate the
more dependable predictions of meson theory into the
potential, one cannot give a unique form because the
interaction is necessarily quite complicated. Indeed,
several potentials are available that represent the two-
nucleon data with various forms? and with different
precision.? Each potential includes not only a phase
shift fit, but also assumptions about the two-body
wave function (i.e., the off-energy-shell behavior of the
interaction). Since one cannot deduce a unique poten-
tial from two-nucleon experiments, it is difficult to know
whether the predictions of a given nuclear structure
calculation follow from the nature of the interaction or
from the calculational method. Thus we confront the
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dilemma of simultaneously testing the nuclear force
and the calculation methods.

Recently, great progress has been made in developing
valid methods for calculating the binding energy and
spectra of nuclei with several kinds of potentials.t
However, it has not yet been determined how sensitive
these predictions are to the two-body force. The main
difficulty in determining this sensitivity is that one must
face the task of repeatedly fitting the two-nucleon data
for a wide variety of potentials.

In this paper, a method for constructing a simple
separable potential directly from the phase shifts is
discussed. One advantage of solving the inverse scat-
tering problem and using the phase shifts themselves
to construct a potential is that phase shift fitting is
avoided. Another advantage is that one can test the
sensitivity of nuclear calculations to the phase shifts
for £<350 MeV and to the assumed phase shift
behavior for higher energies, £>350 MeV. The phase
shifts for E<350 MeV are mostly well determined, but
there are uncertainties; for example, the !P; phase
shifts are poorly known. It is therefore important to
determine the influence of such uncertainties upon
calculational results. One way of determining the im-
portance of phase shift uncertainties is to use a variety
of potentials that are constructed directly from the
phase shifts including their errors.

At higher energies, above the meson production
threshold, the phase shifts are essentially unknown.
Solving the inverse scattering problem is again advan-
tageous in that one can use a variety of high-energy
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phase shifts to alter and control the magnitude of
potential matrix elements off-the-energy-shell. The
effect of varying these off-energy-shell matrix elements
upon the calculation of nuclear binding energies and
spectra can then be studied.

The construction of a separable potential directly
from the phase shifts is not a new idea.® The emphasis
here is that the idea is a useful one, especially when
generalized to include tensor forces and the effects of
a strong, short-range repulsion, which are very impor-
tant for nuclear saturation. It is important to remember,
however, that the internucleon potential is not a
separable interaction, since it is known to approach the
local, one-pion-exchange potential at larger distances.
One of the major, and unproved, assumptions of this
paper is that by including the effects of a strong, short-
range repulsion and the tensor force one can closely
simulate the real interaction using separable forms. If
this assumption is true, then the use of separable
potentials constructed from the phase shifts offers many
practical advantages.

In Sec. II it is shown how to construct a central
separable potential directly from the phase shifts for a
purely attractive or purely repulsive force. This sim-
plified solution of the inverse scattering problem is then
generalized to include both an attraction and the effects
of a strong, short-range repulsion in a single separable
potential (Sec. ITT). The method used to introduce the
strong repulsion requires that the phase shifts obey a
modified Levinson theorem, which is derived in Sec. IV.
The extension of the solution to include noncentral
interactions is discussed in Sec. V.

II. CENTRAL SEPARABLE POTENTIAL

The method of constructing a separable potential
directly from the phase shifts is best understood by
considering the case of a central potential. In momen-
tum space, the separable potential® for two particles
with relative orbital angular momentum L is
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where M is the nucleon mass, 2%k=7%| k;—k,| and
2nk'=7 | ky'— k' | are relative momenta, and P, is a
Lengendre polynomial. The sign factor oz,=—1 for an
attraction and oz,=-1 for a repulsion. The potential
function g (k) is to be determined by the phase shift
61(k), which is assumed known for all energies E(Rel) =
3E(Lab) = (%#2/M) 2. For this potential, one can solve
the Schrédinger equation for the outgoing scattering
wave of relative motion

) 2 [odx kY
v =)~ 2 [" D 11y, (20
wJy K—k'—1e
where the off-energy-shell 7" matrix is
To(k| k) =or[gn(k)gr(k) /DD ()] (2b)

The asymptotic wave function and the phase shifts are
determined by the on-energy-shell 7" matrix

kT (k| k) = —exp[id.(k) ] sind. (k)
=ork[g:2(k) /DD (k) ]. 3)

Here 7., (kr) is a spherical Bessel function and Dy (z) is
defined by

2 [ dki?
Du() =14-01Go(s) = 1401, = P f ~ (0. (da)
T Jy K—3
The function D;® (%) is then given by
D (k) = Dr(k=ie)
=DM (—k). (4b)

One can therefore write G £(k) as

2 e dk k?gr2(k) .

(R =2 [ ZZEeL P 2
G = [ g =G Eiker B, ()
where Gr(k) is the corresponding principal value
integral. We use z to denote a complex variable and %
to denote a real variable. Knowledge of the analytic
properties of Dy(z) will provide us with a solution of
the inversion problem for Eq. (3), i.e., to find gr.(k)
from the phase shifts §;,(k). Therefore, let us consider
Dy, as a function of the complex energy variable w=2?:

o dk kg2 () . ©)

2
Dp(w) =14 - O'L/
™ 0 K'—w
This function has simple and useful analytic properties
in the complex o plane. For example, the function
D;(w) has the property

Di(B+ie) — Dy (R2—ie) = 2ikorg2(k),  (7)

which shows that Dy(w) has a branch cut on the real
® axis. For a single separable interaction, Eq. (7)
relates the discontinuity across this cut to the potential
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function
orkgi?(k) =ImD P (k). (8)

This equation will be very useful later.

Let us consider the additional properties of Dr(w).
For an attraction (¢z,=—1), a separable potential gives
a bound state if

2 [dk gr*(x)
z /o =1. 9)

™ K2+k32
This bound-state condition follows immediately from
the Schrédinger equation and shows that a bound state
will occur at the energy w= —*kg? provided Di(w) has
a zero at this negative energy. Since the left-hand side
of Eq. (9) is a monotonically decreasing function of
kg, only one bound-state solution may occur for a single
separable interaction. Thus, Dp(w) has at most a
single, simple zero at a negative, real value of w.

In addition to the bound-state zero and the right-
hand cut, D(w) can have additional “potential”
singularities on the second, or unphysical, Riemann
sheet of the cut w plane. These singularities on the
second sheet (Imz<0) can be quite complicated and
depend sensitively on the interaction. To discuss these
singularities it is more convenient to use the complex
variable z2=+/w, which maps the first (physical) sheet
of the cut w plane into the upper (Imz>0) half-plane,
while the second sheet is mapped into the lower
(Imz<0) half-plane. In this complex 2 plane, Di(z) is
an analytic function in the upper plane with a possible
bound-state zero at z=1ikp.”

The “potential” singularities in the lower plane can
be quite intricate. For example, a local Yukawa poten-
tial of range ¢! gives a potential cut from —ia to —i
and a strip — e <Imz<0, where D.(z) is analytic. Also,
a separable potential of the Yamuguchi form, g(k) =
a/(k*4-a?), gives a double pole at —ia, whereas g(k) =
a/(k*+a*)1? produces a simple pole at —ia. Mitra®
uses go(k) =ak™2 In[14 (k*/a?) ], which gives a Yukawa-
type cut from —ie to —iw. (Another example of the
singularities possible in the lower plane is generated by

g(k) = {BR*/[(k—d)*+¥*1[(k+d)*+*]}, (10)

which produces poles at k= —ib=4-d.) These examples
illustrate that for a general function g(%) the singu-
larities in the lower plane can be complicated. Fortu-
nately, we do not need to know these potential singularities
in order to solve the imversion problem for separable
potentials. The only information required is that Dy (2)
is analytic in the upper half-plane, with a possible
bound-state zero at z=-ikp. General proofs of the
analytic properties of Dp(3), which are illustrated in

“R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., New York, 1966). The modified Levin-
son theorem is also proved by A. Martin, Nuovo Cimento 7, 607
(1958), and M. Bertero ef al., Nucl. Phys. A113, 625 (1968).
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FiG. 1. The analytic properties of Dy, (z) in the complex z plane.
The Fredholm determinant Dy (z) has zeros at z=-ikp for a
bound state and at z=zk, to produce a strong repulsion [Eq.
(22)]. The complicated singularities in the lower half-plane
(Imz<0) are illustrated by a potential cut of the Yukawa type
from —ia to —iw and by the complex poles at d=d—3sb. The
contour C encloses the upper half-plane, where Dy, (z) is analytic.

Fig. 1, are given in Ref. 7. For convenience let us follow
the usual’ nomenclature and call Dy(z) a Fredholm
determinant.

Our task is to use the known analytic properties of
D1(z) to solve the inversion problem for separable
potentials. For this purpose, consider the quantity

In®(2) =In{[(z+ks) /(z—iks) 1Dr(2) }. (11)
From our previous discussion, we know that InDy(2)
is analytic in the upper half-plane, provided the only
zero of Dy, is the bound-state zero. Furthermore, we see
from Egs. (4) and (5) that Dp(z) approaches 1 for
large values of z; consequently, InDz(z) vanishes on
the infinite semicircle for Imz>0 (see Fig. 1).

The above properties of InD;, and the assumption of
no additional Dz (z) zeros suffice for the application of
Cauchy’s theorem

1nDz (2) = (2i) L InDy, (&) de’
c

3~z
o dF InD, @ (B
= (2riy [” SR hf?iz( L )

where the contour C is given in Fig. 1. Taking the real
part of this identity, one finds that for z—%&-7e (% real)

P [ dE BB
Re lniDL("')(k): _/ dk Im lnf,DL (k) .

TJeoo k—k (13)

To use Eq. (13), one must first note that the S
matrix can be written as
SL(k) =1— ZikTL(k) = CXPEZMSL(]Z)]

=D (k) /DD (k), (14)
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where Eqgs. (3)—(7) were used. We can also write
tandy, (k) = —ImD, P (k) /ReD, D (k).  (15)

It follows that the phase of the Fredholm determinant
is simply —o.(k), i.e.,

D (k)= | Dy | exp[—id.(k)]. (16)
Now using Eq. (16), we find
k
DL (k) =In | Dy | —-uSL(k)-Hn( J”z’f). ()
B
Combining Egs. (13) and (17), we have
dr’ k' +ikp
== - (),
In| Dy | Ar(R)+ — P Ve (18)
where Ar(k) is the principal value integral
dwou (k)
== [ =222 1
VORI (19)

The second principal value integration in Eq. (18) can
be completed by the method described in the Appendix.
The Fredholm determinant is found to be

k2tkg?
DW= (5
At this point Eq. (8) is very useful and we find that
the potential function is
k2+k32)““"”/ 2 sindz (k)
k? k

)exp{—[AL<k>+¢aL<k>J}. (20)

exp[— AL(k) ],

(21)

with gp,=—1 for an attraction and oz=-1 for a
repulsion. Equation (21) defines a separable potential
directly from its phase shifts and bound-state energy.

For a purely attractive potential we have op=—1,
and the phase shift is positive, 6,>0. One might con-
clude from Eq. (21) that it is impossible for a single
separable potential to produce both an attraction and
the short-range repulsion required by the .S, two-
nucleon phase shifts. However, in Sec. ITI, we show how
to generalize Eq. (21) to include both an attraction and
a repulsion in a single separable potential.

—orgit(k) = <

III. INVERSION PROBLEM WITH A REPULSION

The solution of the inversion problem presented in
Sec. IT applies to a purely attractive or purely repulsive
separable potential. However, the two-nucleon interac-
tion is known to have a long-range attraction and a
short-range repulsion; for example, the .S, and 3P,
phase shifts become repulsive at high energies.! One
must include this repulsion since it does appear in the
interaction and because it plays a decisive role in
determining nuclear binding energies and spectra.” Let

FRANK TABAKIN
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us now consider how one may introduce both an attrac-
tion and a repulsion with a single separable potential.

The essential assumption needed to introduce a
short-range repulsion is that the Ferdholm determinant
has additional, simple zeros and 2=k, where E,=
2(#*/M) ks is the laboratory energy at which tandy (k)
changes sign. It is completely consistent with the gen-
eral analytic properties of Dr(2) to assume that

D (Lk) =0. (22)

This assumption is equivalent to the requirements

gL(kc) =0 (233,)
and
Gr(ke) =

=1,  (23b)

2P /w dk kg2 (k)

T Jy ke
which have been used successfully in a numerical
example.® (We have now set or,=—1.)

In this numerical example® it was shown that the
above condition [Eq. (22)] introduces an extra node
in the scattering wave function at 2,'~0.45 fm. The
extra node at short distances arises from the fact that
Eq. (22) is the condition for the occurrence of a bound
state at the positive energy E.. The extra zero in the
wave function has the effect of reducing the integrated
probability of finding the nucleons at short distances.
This average reduction in the wave function at short
distances is the sense in which Eq. (22) introduces the
effects of a strong short-range repulsion.

To see that Eq. (22) introduces a sign change in
tandz, consider Egs. (5), (8), and (15), which give
the phase shift

tandz (k)
=kg2(B) /[1—GL(k) ]
dr g2 (k) >

=t [ (0-7[_tig)
(24)

Since gz.(k) is assumed to have simple zeros at k= +£,,
we can write gr,(k) = (k2—k?) hr(k), and hence

tandr (k) = (k2—k?)
di 2gr* ()

thLz(k)/( o (= k) (P— kZ)) (25)

The integral in Eq. (25) is positive at k=Fk. and we
see that tand;(k) changes sign at the energy E.; this
sign change corresponds to a repulsion. Therefore, Eq.
(22) provides a means of including both an attraction
and a repulsion in a single separable potential. Of
course, we could apply this condition [Eq. (22)] to a

8 F. Tabakin, Phys. Rev. 174, 1208 (1968).
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set of Ny, points &, ke, * **, ke, and thereby generate
Ny sign changes in tandz.

The possibility of Dp(z) having zeros on the real
axis is usually rejected because it is thought that the
wave function would become either unbounded or zero.”
However, in the present case the ratio gr(k.) /D™ (k)
is nonzero and bounded; correspondingly, the wave
function given by Eq. (2) is well behaved at all energies.
Hence, it is permissible for Dz (z) to have zeros on the
real axis.

The introduction of additional zeros in D (2) requires
that we reconsider the previous solution of the inversion
problem. Instead of D.(z) given by Eq. (11), we must
now define

Dr(z) = (

224 A2 z+iA)(z+ ikp

22—k 2—iA/\z—ikp

)mw,am

where the possibility of a bound state is included, and
A is an arbitrary real number. The function D(z) is
free of zeros both on the real axis and throughout the
upper half-plane. Furthermore, ©.(z) is analytic in
the upper plane (Imz>0) and approaches 1
[®r(z—x)—1] on the upper infinite semicircle.
Hence, InD can be used in Cauchy’s residue theorem

m&@=mw%£%m&m, (27)

where the contour is the same as before (Fig. 1). From
Eq. (27), it follows that, for z—%-ie,

P = g
Reln DM (k) = - / C TmInDiP().  (28)
T k—F
Since In DL is given by
BP4A%\
In D, P (k)=In (l D] m) —10r,
k+iA k+ikp
~+1In (k—iA) +In (k—ik3> , (29)
the Fredholm determinant is now
kZ___kc2 k2+kB2
DO (k) = (__k2 )( . )
Xexp[—id.(k) Jexp[—AL(k)]. (30)

Here AL (k) is again given by Eq. (19), and the contour
integration which is presented in the Appendix has
been used twice.

Using Egs. (8) and (30), we conclude that the
potential function given by

E2— 2\ K+ Fs?\ sindy,(B)
2 =
8* (k) ( 7 )( 7 ) %

exp[—AL(k)]

(31)
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will produce the phase shifts 6,(%). Equation (31)
is a solution of the inversion problem for op=—1,
including a bound state of energy Ep= (#2/M)kg? and
a repulsion which causes tand.(k) to change sign at
the energy E,=2(%%/M)k2. Clearly, the solution given
by Eq. (31) is valid only if the product (k*— &) sinéy, (k)
is positive. This product is indeed positive, provided
one uses the modified Levinson theorem described in
Sec. IV and also observes that both tand,(k) and
sindz (k) change sign at the energy, E.. Another feature
of Eq. (31) is that the arbitrary number A does not
appear. The potential function g;2(k) is thus well
defined; it satisfies the condition g(%.) =0 and can be
calculated from the phase shifts 6,(k) once the phase
shifts are given absolute meaning by the modified
Levinson theorem (Sec. IV). The potential function
for a pure attraction [Eq. (21)] is obtained from Eq.
(31) by setting k—0; the case of no bound state is
obtained by setting k3—0 in either Eqs. (21) or (31).

Our solution of the inversion problem can be extended
to the case of 2IVy, real zeros of Dy (z), with the result
that

ML (B2 b2\ B+ ks?\¥e” sindy, (k)
2 k -
8i(#) g( 7 )( 2 ) %

Xexp[—Ar(k)].

Recall that a single separable potential permits at most
one bound state in each partial wave so_that N;2=0
or 1. Equation (32) defines a separable potential that
produces Ny sign changes in tand;(%) at the energies
Eo= 21/ M) ko,

(32)

IV. MODIFIED LEVINSON THEOREM

The solution of the inversion problem for separable
potentials, as expressed by Egs. (31) and (32), is not
complete until the phase shifts are given absolute
meaning so that Az(k) and gr(k) can be evaluated
without ambiguity. Let us adopt the usual convention
that the asymptotic phase shift is zero, é,(w)=0.
Then the phase shift at zero energy is fixed by the
requirement that lims.ok~%gy(k) be finite. [Of course,
if one is willing to deal with a singular potential, then
limyo%k~Lg, (k) may be unbounded and the zero-energy
phase shift will not be determined by the following
discussion. ]

The potential function %~%g.(%) might appear to be
singular as k—0 because of the 22 factors in Eq. (31).
However, Az(0) can have a logarithmic singularity
which, for the proper choice of §2(0), keeps #Lg. (k)
bounded. The proper value for 6,(0) is deduced simply
if we consider the relation

“*L_k:k”_l —exp {1_; I F(x/kz)} , (33)
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where F(k/k,) is defined by
F(k/ks)=—F(—k/ks) =7 for k<k,
=0 for k>k, (34)

and %, denotes either kg or k.. Using Eq. (33), we can
rewrite the potential function [Eq. (32) ] for small % as
kp*k?

B
grt(k) = (—1)NeHij2L (m) ar(k) cosdy (k)

Xexp [—- é./_: x(f(k SL(K)} , (35a)

where
ar(k) = —tand. (k) /k?LH (35b)

and
5.(k) =6.(k)— N.BF (k/kp)— iF(k/kcf) . (36)

Since a1(0) is a finite constant (the scattering length),
the choice of 6,(0) which gives a finite positive limit
for kLg% (k) is 6,(0) =0 or

0.(0) —05(0) = (N B+Nyp)m. (37)

Here the number of bound states is N.Z=0 or 1, and
the number of nodes in g;2(k) is Ny. This choice for
8.,(0) gives

limk~2g;2(k) = (—1) N BHay
k-0

-0

X exp {— i:/“’ d—K"SL(K)} , (38

which implies that for a;>0 only one bound state
occurs and for ¢;,<O there is no bound state. This
property agrees with the known 15, and 3S; two-nucleon
scattering lengths.

Equation (37) is a modified form of Levinson’s
theorem, which can also be derived directly from the
appearance of additional zeros of Dp(z) on the real
axis.” In our presentation, it is emphasized that Eq.
(37) follows not only from these additional zeros, but
also from the requirement that kZg.(k) be bounded.
The standard Levinson theorem is obtained by setting
Np=0 in Eq. (37), i.e., for a monotonic separable
potential the standard Levinson theorem holds.

The modified Levinson theorem [Eq. (37)] is a
restriction on the high-energy behavior of the phase
shifts which can be handled by the construction pro-
cedure. This restriction follows from the manner in
which a repulsion has been introduced. Nevertheless,
there is still considerable lattitude in the models that
one can assume for the high-energy phase shifts. For
example, the specific dependence of the phase shifts on
energy can be greatly altered within the restriction of
the modified Levinson theorem. Also one can vary Ny
and control the number of sign changes in tand. (k).
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A great advantage of the construction procedure
offered by Egs. (1) and (32) is that the off-energy-shell
behavior of the interaction is stipulated simply by
making appropriate models for the high-energy
(E>350 MeV) phase shifts. In this way, the role of
off-energy-shell behavior could be studied without the
need for repeated phase shift fitting. In Sec. V, this
desirable feature of solving the inversion problem is
extended to the case of noncentral forces.

V. INVERSION PROBLEM-NONCENTRAL
FORCES

The construction of a separable potential directly
from the eigenphases and coupling parameters for non-
central forces is a direct generalization of our previous
discussion. Let us follow the suggestion of Bolsterli and
MacKenzie® and introduce a separable potential in the
“diagonal representation” of the 7' matrix.

For noncentral forces, the T matrix is determined by
the Lippmann-Schwinger equation for coupled channels

Trp(k/k') =V (k/k)

2 > /°° dx 2V (k/x)

T (K/kl) , (39)

T T Jy K2—k?— e

where « denotes JST, the total angular momentum,
spin, and isotopic spin of the two-nucleon system. The
relative orbital angular momenta L=J=1 are coupled
in nucleon-nucleon scattering; for example, the 35;4-3D;
and 3P,+3F, states are coupled. Matrix elements be-
tween states of different parity are, of course, equal to
zero: Vyu1,7=0. Correspondingly, the L=L'=J states
(such as 3D, and %P;) are uncoupled and Eq. (39)
reduces to Eq. (2). Equation (39) is obtained directly
from the Schrodinger equation with outgoing wave
boundary conditions ‘and using the partial-wave de-
compositions®

(k| V| X)=(2/m) (#/M) (MZw)iL'“LVLL'“(k | &)

XYL (k) Yprs?+ (k') Py (40a)
and

(k| T| &)= (2/m) (/M) ( MZLL , LT (k| F)

XYz (k) Yrrs'™* (k') Pz, (40D)

where the sum extends only over the allowed two-
nucleon states and Py is an isospin projection operator.
For coupled states, the diagonal representation of the

S matrix
SLLI“(k) =6LL’_ 2ikTLL'a(k l k)
= ZU;L“(k) EXPEZiBIQ(k)]UlLa(k) (41)
l
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is defined by a real orthogonal matrix U:

J—-1 J+1 J

J—1[ cosey, sine, O
Urp*(k)=J+1| —sine, cose, O (42)

J 0 0 1

The matrix U makes the S matrix properly symmetric
and unitary. Here 8;41* and ¢, are the Blatt-Biedenharn
eigenphases and coupling parameter. It is the coupling
parameter ¢, that especially characterizes the nature
of the tensor force.

Now let us assume that the potential is also diagonal-
ized by U and that it is a single separable term in the
diagonal representation

Ve (k | B) =D Un(k) Vir (k| ) Usp(F)
LL!

=oduwg (k) g (k). (43)

The choice of over-all sign, ¢;= =1, is based on knowl-
edge of the eigenphases. For example, the proper choice
for the 351+3D; coupled channel is 0o=—1 and go=-1
(see below). For the uncoupled cases (*D., 3P;), Eq.
(43) reduces to

Vi (k| ®) =osgs%(k) g2 (k') (44)

and the results of our previous discussion [Egs. (21),
(31), or (32)] can be used to construct g;(k) from the
phase shifts, ;757 (k). Let us therefore concentrate on
the coupled-channel part of Eqs. (39)-(43).

The assumption that the potential is diagonalized by
the orthogonal matrix U is equivalent to expressing
Vi as a special, two-term separable potential. If we
define g7, and 4, for coupled states by

(k) =Us1,.(k) gra(k),
hi(k) = Ussa, (k) graa(R),
then the potential consists of two separable terms:

Viw (k| F)= ;Uu(k)gl(kmgz(k') U (F')

(45)

=078 (B) g (F) Forphn (k) h (K'). (46)

Equations (45) and (46) have considerable practical
significance which will be discussed later (Sec. VI).

It is well known that for a sum of separable poten-
tials the Schrodinger equation can be solved exactly.®
For a potential that is also separable in the diagonal
representation, the solution of the Lippmann-Schwinger
equation is simply

Tpo(k| k)= ;U;L“(k)tﬂ(k [B)Uwa(R'), (47)

where (k| k') is determined on and off the energy
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shell by the potential function g;(%)
12 (k| B) =g (k) g (K') /DiH (F').  (48)

The function D,P (%) is given by Eq. (4). The eigen-
phase shift §;(k) is obtained from the on-energy-shell
¢ matrix

ke (k | k") = —exp[i6,2 (k) ] sindi*(k)
=aikgl? (k) /Di (k). (49)

These expressions provide a means of solving the inver-
sion problem for noncentral forces. Use of the diagonal
representation assumption [Eq. (43)] has simplified
our task to constructing gy;*(k) directly from the
eigenphase shift §;_;%(k) and separately finding g1%(k)
from 6r41%(k). The great advantage of the diagonal
representation assumption is that the construction of
gs2(k) is completely analogous to the case of a central
potential and independent of the coupling parameter
es2(k). It is only at the final stage of writing the full
T matrix [Eq. (47)] that one must introduce the
known coupling parameter.

If follows from the similarity of Eqgs. (3) and (49)
that the previously described construction procedure
can be used to find the potential functions gyy; from
the eigenphases 8s11. To completely establish this simi-
larity, one must examine the analytic properties of
the function D;(z), which appears in Eq. (49). As
before, D;(2) is analytic in the upper half z plane and
can have complicated singularities in the lower plane
(Imz<0) (Fig. 1). If tand;4,* is known to change sign
at an energy E,, one must again assume that D;(z) has
real zeros at z=+%, [Eqgs. (22)-(31)]. If there is a
bound state (the 3514-3D; state of the deuteron), then
Di(z) may have a zero at z=-1ikp. For the case of
coupled states this bound-state zero requires further
discussion.

Consider the Schrodinger equation in momentum
space for a bound state of energy Ep= — (#2/M)kg?

(et Wis®) == 2 3 [ de @Vane(h | QW)
0

(50)

For two nucleons a bound state occurs only when
a=(JST)=(110) and L=0, 2, corresponding to the
351+3D; state of the deuteron. Introducing the diagonal
representation of Vyz and the wave function ¢;=

tUuWi, we find that the /=0 and /=2 equations
are decoupled:

(B*+ks®) 1= —a12:(F) C1. (51)
Here C; depends only on %z and is given by
2 [
€= - [ aeatoaito (52)
0

(no sum on 7). It follows from Eqgs. (51) and (52) that
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F16. 2. The 35; and 3D, Blatt-Biedenharn eigenphase shifts and
cougling parameter e (k) (Ref. 1). This case has a bound state
(NVB=1) and an S-wave repulsion (Ny=1, N;=0); see Eq. (57).
Correspondingly, 8 (3S1) becomes repulsive at E,~360 MeV, and
t(k| k§ has a pole at Ep=~17 MeV, where tando(Ep) = ». The
low-energy behavior of e (k) is related to the deuteron’s quad-
rupole moment Q and the triplet effective range 7,. An S-wave
repulsion is indicated by the dotted curve.

the condition for a bound state is
CzDz(’I:kB) =0. (53)

Now one must consider the actual behavior of the
85 and 3D, eigenphases §*(k) and 8;%(k) (Fig. 2). It is
known that the 3S; eigenphase has a positive scattering
length and an effective range, which are related to kg
by ks'=a"'+4-3kgr. Correspondingly, tans(3S;) be-
comes infinite at the collision energy of Ep~17 MeV
and §(3S1) reveals a bound-state pole in #(k|k). It
follows that Dy(¢kg) =0 is the proper way to satisfy the
bound-state condition for /=J—1=0 [Eq. (53) ]. How-
ever, for the 3D, eigenphase tand(®D;) is known to be
finite at all energies below 350 MeV (Fig. 2). In fact,
6(3Dy) is relatively small and negative in the range
0<E<350 MeV (Fig. 2). Thus the bound-state condi-
tion for /=J41=2 must be satisfied by having
D:(ikg) #0 and C,=0. Also, to produce the negative
8(®Dy) eigenphase the sign oo must be positive (s2=-1),
whereas the 35; bound-state zero implies that go=—1.

The bound-state wave function is now determined:

Wi(k) =CoUro(k) go(k) /[K*+ k5], (54)
and G, is fixed by normalization to be
o goz( K) szK)—1/2
Co= —
= ([ (55)
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An interesting consequence of the condition Cy=0 is
that the D-state probability is determined from ¢ and
60 by

@ o d k2(sin%; (k) ) g® (k)
Pp= /0 dx W4 (k) = C? _/; (Kz_}l.sz)zo

(56)

Therefore, the bound-state properties (the binding
energy, quadrupole moment, D-state probability, and
wave function) are completely specified by this con-
struction procedure.

We have therefore established that Dy(z) does have
a bound-state zero at z=1kp, whereas D,(2) does not.
The analytic properties of D;(z) are now completely
revealed and the results of the previous discussion
(Secs. II-1IV) can be applied. The potential functions
gr* are determined from the corresponding eigenphases
d741% using either Egs. (21), (31), or (32). For example,
the 35; eigenphase determines go(%) using Eq. (31),
which includes the bound state and a possible repulsion
at high energies. Equation (21) is useful for determining
—orgi2(k) from the 2D, eigenphase shift.

A modified Levinson theorem also applies to the
eigenphases. If one requires that k~!g;(k) be bounded,
then the proper choice (Sec. IV) for the eigenphases is
given by

8:2(0) —82(0 ) = (NB+Ny)m. (57)
It is only for the 35; eigenphase that N®=1. The num-
ber of sign changes in tand;, and, correspondingly, the
number of nodes in g;*(k) is given by N, [We always
assume that 8,*(e)=0]. For N;=0, Eq. (57) reduces
to the standard Levinson theorem with eigenphases
67-1%(0) +6741%(0) = NBz.” The modified Levinson theo-
rem again arises from the manner in which a repulsion
has been introduced [Eq. (22)]. The applicability of
the construction procedure presented in this paper is
therefore restricted by Eq. (57).

Once the potential functions gs.,® have been con-
structed from the eigenphases, the complete potential
[Eq. (46)], T matrix [Eq. (47)], and wave function
can be given. This last step requires that we know the
coupling parameter €, (k).

VI. CONCLUSION

A flexible and convenient solution of the inversion
problem for separable potentials has been presented.
For each allowed two-nucleon state, only one principal-
value integration is needed to construct a separable
potential from the phase shifts. This integral can be
found numerically once the phase shifts are given. Of
course, the phase shifts are only known up to 350 MeV
and one must assume the phase-shift behavior above
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this energy. An important feature of separable interac-
tions is that the higher-energy phase shifts automatically
stipulate the off-energy-shell structure of the interac-
tion. Therefore, the construction procedure provides a
convenient means of studying the role of the assumed
phase shifts, and the corresponding off-energy-shell
matrix elements, in various nuclear structure calcula-
tions (Sec. I).

The construction of a separable potential has been
extended to include the effects of a strong, short-range
repulsion.? This essential repulsion is incorporated by
permitting the Fredholm determinant to have zeros on
the real axis [Eq. (22)]. As a consequence of introduc-
ing these zeros, the phase shift behavior is restricted by
a modified Levinson theorem’ [Eq. (37)]. Only when
this theorem is satisfied by the phase shifts can one
apply the construction procedure described in this
paper. However, the modified Levinson theorem can
be satisfied formally at extremely high energies. For
example, the phase shifts of a local potential up to, say,
5 BeV could be used to construct a separable interaction
provided the phase shifts above 5 BeV were forced to
conform to the modified Levinson theorem. Therefore,
from a practical viewpoint, the construction procedure
is quite flexible.

It has also been shown in Sec. V that a separable
potential can be constructed from the eigenphases and
coupling parameter in the case of coupled two-nucleon
states. This treatment of noncentral forces is made
possible by the use of the “diagonal representation”
suggested by Bolsterli and MacKenzie.! As a result of
using the diagonal representation, constructing a
separable potential from the eigenphases requires no
more work than for a central potential. Therefore, by
using this construction procedure and various models for
the high-energy eigenphases and coupling parameter,
one can conveniently test the sensitivity of nuclear-
structure predictions to the noncentral aspects of the
two-nucleon interaction.

There are other practical advantages to using a
separable potential in the diagonal representation
[Eq. (43)]. Several authors have used two-term separa-
ble potentials to fit the nucleon-nucleon scattering data.®
The four potential functions gs41 and /yys are then
parametrized as convenient analytic functions and the
parameters are adjusted to fit the eigenphases and
coupling parameters. This task is greatly simplified by
using the diagonal representation, since one needs to
parametrize only three functions gy, and e; to fit the
known quantities 8711 and e,(Exp). Also, the diag-
onal-representation assumption decouples the curve-
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fitting problem into three distinct and quite simple
tasks [see Eq. (49)].°

The main point of this paper is that one can easily
construct a separable potential directly from the phase
shifts, including a strong repulsion and noncentral
forces. The task of fitting phase shifts is then avoided
and tests of nuclear structure predictions can be made
with relative ease.
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APPENDIX

The solution of the inversion problem involves evalu-
ating the integral
P [ dx i (K-I-ikg)

T k—k

Al
k—1ikp (A1)
The integrand has a branch cut from -+ikp to —iks.
Although it is possible to use a contour around this cut,
an easier yet correct way of integrating (A1) is to use
the limit of

. P o dk (K-I-ikB K-—iS)
lim — —In{—— -
k+1S k—1kp

S0 T Jeoo k—F
—lim {5 [ % ("Hk”)
g0 mi o k—E k+1S8

_ P [~ dk 1n<K—ik8>}. (A2)

T o k—k k—1.S

The first integrand in (A2) is now analytic in the
upper half-plane; the second integrand is analytic in
the lower plane. Thus we can close the corresponding
contours with the upper/lower infinite semicircles and

use Cauchy’s theorem. The principal value integral
(A1) is therefore

_ ktiky h—iks B by
L‘fé[m(kws)““(k—is)]”ln( 5 ) (43)

9 The repulsion introduced by Eq. (22) is a very strong inter-
action. In Ref. 8 it was shown that perturbative methods cannot
be used and, therefore, Brueckner theory is required for this
strong potential. However, a smooth potential with a weak repul-
sion can be generated by appropriate choices for gy, and %y
inEq. (46) (Ref.6). The diagonal representation greatly simplifies
the curve-fitting problem for these smooth interactions.



