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Using the Faddeev formalism for the three-body problem with two charged particles, with separable
nuclear interactions and an approximate form for the Coulomb wave function and Coulomb Green’s function,
a simplified model is set up for p-d scattering. The differential scattering cross section is calculated
numerically for different incident proton energies from 2.08 to 14.0 MeV. The calculations are repeated
with the Coulomb potential turned off, and the results are compared with the Coulomb scattering.

I. INTRODUCTION

E consider a system of three spinless particles of

equal mass M, of which two are charged and the
third is uncharged. Initially, we consider the two
charged particles to be distinguishable bosons, and then
symmetrize. Particles 1 and 2 are charged, particle 3
is uncharged. The aim of this paper is to set up a model
for elastic proton-deuteron scattering with separable
short-range interactions between any pair of particles,
plus the Coulomb interaction of particles 1 and 2. We
use the word “model” in the sense that a realistic
physical model, with spin included, can be based on the
present analytical treatment. It is not implied that
in the absence of the Coulomb potential our present
treatment would be a model for #n-d scattering. For
convenience and brevity, we shall refer to our particles
as protons and neutrons although this is not strictly
true, since we are treating them as bosons.

Our approach to the problem consists of using separa-
ble short-range potentials in the Faddeev equations,
which are modified to incorporate the Coulomb poten-
tial between the protons. The use of nonlocal separable
potentials enables us to reduce the integral equations
for the three-body scattering amplitudes to equations in
one vector variable. A partial-wave analysis will then
reduce these equations to one-dimensional linear inte-
gral equations, which can be solved numerically. For
the three-body problem without Coulomb forces, the
Faddeev formalism with separable potentials has been
considered by a number of authors.’™® In our case, the
Faddeev equations can be solved, provided we can find
a suitable representation for the Coulomb Green’s
function. In this paper, we make use of an approximate
form for the Coulomb wave function in momentum
space, suggested by Schulman.! The resulting repre-
sentation for the Green’s function, which of course is
only an approximation, can be used to obtain a set
of Coulomb-modified Faddeev equations.® These ap-
proximations were used in an earlier paper® to obtain
the binding energy of He®. The Schulman approxima-
tion for the Coulomb Green’s function gave too much
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Coulomb repulsion in the He® case; an “improved”
version of this approximation was found to give a
better result. In this paper, we shall make use of the
former approximation only. It is of course possible to
do the scattering problem with the improved version
also; but in view of the exploratory nature of this paper,
and the extensive calculations involved, we have used
Schulman’s approximation only.

Even with this simplification, the p-d scattering
problem is a hard one to solve. The main difficulty in
our treatment of the problem arises from the asym-
metrical charge distribution of the deuteron. It there-
fore becomes necessary to treat the Coulomb-distorted
wave function, which describes the p-d scattering, in
some reasonable approximation scheme. This is con-
sidered in detail in Sec. VL.

In this paper, our main interest lies in showing that
it 4s possible to solve the p-d scattering problem
approximately, within the framework of the Faddeev
formalism and separable interactions. In principle, the
method is straightforward. In practice, the solution of
the Faddeev equations is extremely complicated, since
the Coulomb-distorted wave functions occur in the
inhomogeneous terms of the integral equations. Using a
more realistic model with spin and improved nuclear
potentials, and perhaps with a better approximation
for the Coulomb-distorted wave function, it may be
possible to improve upon the results obtained here. We
wish to emphasize that the problem, although laborious
and complicated, is a straightforward one.

In this paper, the short-range interaction between
any pair of particles is taken to be of the separable
Yamaguchi type

@ V]g)=M(a")(g), (1)
v(q) = (B¢

We use this simple form for convenience, since our main
interest lies in seeing how we can include the Coulomb
force within the framework of Faddeev equations plus
separable interactions. The parameter 8 is chosen to be
1.33 F-1, which is approximately the mean value of the
singlet and triplet values” 8,=1.16 F~'and 8,=1.44 F~1,
The parameter A, which is the coupling constant, is
determined by the condition that the two-body T

7Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). We use the low-
energy n-p scattering data quoted in this reference.
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matrix T(E) have a pole at E= —e;, where ¢; is the
deuteron binding energy. This gives

M\=8aB[B+ (M | ea |) 2], (2)
Having chosen these parameters, we proceed as follows:

(1) The symmetrized wave function for both the
incoming and outgoing channel is

V27 [Y(1, 2, 3)+¥(2, 1, 3) 1. (3)

The total symmetrized scattering amplitude for the
process can be written in the form

Y= Y11+Y21. (4)

Y1 is the amplitude for the reaction 1, (23)—1, (23),
where we have taken particle 1 to be free initially; Yy,
is the amplitude for the process 1, (23)—2, (13), in
which the two charged particles exchange places.

(2) Y1 can be written as the sum of two parts, one
involving the Coulomb potential only (and which
includes the Rutherford scattering amplitude), and the
other, Tp, involving the short-range potentials. The
Coulomb potential manifests itself in 7p also through
it’s presence in the Green’s-function operator.

Y2 can also be expressed as the sum of two terms. In
this case, however, the term involving U® explicitly, is
of an order of magnitude which is vanishingly small as
compared to the short-range term. ¥y is therefore
simply Tr, where the operator T% is the nuclear part
of the exchange amplitude ¥Vy. Tx in Yy corresponds to
T D inY 11.

(3) We introduce three auxiliary operators Z;, Zs,
Z;. It is possible to express Tp and T in terms of the
Z’s, and the short-range potential Vs The Z’s satisfy
a set of three simultaneous equations which are of the
Faddeev type.® These equations can be further simpli-
fied by expressing the matrix elements of the Z; in
terms of functions /;. The k; are functions of a single
vector variable, and may be called the “reduced
amplitudes.”

(4) A partial-wave analysis is made of the set of
simultaneous equations satisfied by the %,. The partial-
wave components k;® (1=0, 1, 2, +++) are now func-
tions of a single scalar variable. This enables us to
numerically solve the equations. Since this work deals
with low-energy scattering, it was considered sufficient
to take the first three partial waves only.

(5) A suitable representation must be found for the
Coulomb-distorted wave function. This is one of the
major difficulties of the problem, since we require that
the ) orm chosen for the wave function should make the
prob em amenable to a numerical solution. In the pres-
ent « ase, we expand the exact wave function in terms
of th: complete set of two-particle states u,(r) which

8R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Company, Inc.,, New York, 1966), Chap.
17, Sec. 4.3.
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satisfy N
[=V24V Juu (1) =enn(r). (5)

Here, as elsewhere, carets denote that the operators are
in the two-particle space.

Although the coefficients of the u,(r) can be written
down formally, it is not possible to solve the problem
numerically without making some approximations.
Some of these approximations are unavoidable; others
were made to reduce the complexity of the problem.
The details are left for Sec. VI.

After inverting the integral equations numerically on
a computer, we calculate the differential scattering
cross section for different incident proton energies.

Finally, the calculations are repeated for the case
where the Coulomb force is taken to be absent, although
particles 1 and 2 are still treated as similar, and differ-
ent from particle 3.

In Sec. II, we briefly consider the approximation
which is made for the Coulomb Green’s function and
Coulomb wave function. Assuming a Hulthén wave
function, we write down the relation between X\ and 3.
The kinematics of the problem are also discussed.

Section III deals with the total scattering amplitude,
which is the sum of a direct and an exchange part.

The operators Z; (i=1, 2, 3) and the coupled equa-
tions which they satisfy, are considered in Sec. IV.

Section V deals with the reduced amplitudes 4;. We
also consider how these equations are solved numer-
ically; in particular, the avoidance of singularities. The
Coulomb-distorted wave function is treated in detail
in Sec. VL.

Finally, the results and conclusions are summed up
in Sec. VIL.

II. COULOMB WAVE FUNCTION AND COULOMB
GREEN’S FUNCTION

The Schulman? approximation for the Coulomb wave
function uses the fact that p-p scattering is strongly
peaked in the forward direction. In momentum space,
the Coulomb wave function is approximately (see
Ref. 4)

ox(p)~C(k)5(k—p), (6)
where
C(k) =exp(—3mp) T'(1+ip)
=[¥(r) Jmo,  p=ne’/k
and
_ 2wue?/k /2
lc® | = [exp(27m32/k)—-1] ’

where yi°(r) is the wave function in configuration
space. This approximation is valid in the sense that if
f(p) is a smooth function of p

Jotw)rw) dpcorpw).
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The Coulomb Green’s function is then approximately
given by

@ |Ge(B) | py= 2R [C) I

E—(p*/2u) ()

where N .
Gy (E)=(E—Hy—U°)",

This approximation to the Coulomb Green’s function
was used in the solution of the bound state problem,
i.e., the binding energy of He?, in Ref. 6.

Let p; (¢=1, 2, 3) denote the momenta of the three
particles in the c.m. system. We denote the relative
momenta of any pair of particles by q;, so that gs=
3(ps—p2). It is customary to use the cyclic notation
Q23={, etc. The kinetic energy part of the Hamiltonian
is

Ho=p/2+q2/ 20,

where we can use any of the pairs (p;, q1), (P2, Q2),
or (ps, Gs).
Here

n=3M, M.

Do

u=

The short-range two-body forces are denoted by Vi,
or, using the cyclic notation, by V where 4, 7, k form
a cyclic permutation.

We assume here that the two-body interactions are
of the s-wave separable type

(@' | Vi| gs)=no(g)(gs),

where v(g) = (6*+¢*) ™

In configuration space, the two-particle bound state
wave function corresponding to this potential is the
Hulthén function

e—-ﬂr —e—ar

u(’)N ——;_ ’

a®=2u|e |

The two-body T matrix satisfies
7=Vt VT,

Go(E) = (E—Ho)™ (8a)
Using (1), the solution of (8a) can be written
@ | T | qi)y=0v(gNv(gs)7(E),
with
I NP ¥(q)d% ]‘1
(E) = [)\ l— (2m) (020 T A R (8b)

Since T'; has a pole at E= —¢g, the deuteron binding
energy, Eq. (8b) gives the desired relation between A
and 8.

MA=8xB[B+ (M | & ).
For the three-body system, the total Hamiltonian is

SHRIKANT ADYA
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therefore
3
H=H+U+3V;,
t=]

where U° is the Coulomb potential acting between
particles 1 and 2. The Green’s function G(W)=
(W —H,—U¢)" can be represented by the approximate
form
Ps'—Ps)6(as'—qs) | Cgs) I

W—(p/2n) — (¢8/2) '

9

where the arrow means “can be approximately replaced
by'!)

III. AMPLITUDE FOR ELASTIC p-d SCATTERING

(05’0’ | Go*(W) | psgs)— d

Using the symmetrical wave function

AN, 2,3)+4(2, 1, 3)]

for the in and out channels, it can be shown that the
total amplitude for the “p-d” elastic scattering can be
written

Y= Ifu‘f‘ Y 21y

where Yy is the amplitude for the process 1, (23)—
1, (23) and Yy for 1, (23)—2, (1, 3), since particles 1
and 2 are similar.

Consider first the direct amplitude ¥Vy. The total |
Hamiltonian is

H=Hy+U+V+Vo+Vs.

Let | ¢:) be the eigenstates of Hy+V7y, and | x;) those of
Ho+U*4-V;. Then Yy is given by

(f1¥uli) ,
= (s | U+ V+(UAV)G (W) (U+TV) | ¢:), (10)

where

G(W)=(W—H)", V=VotVs
Let
Glc(W)=(W—H0—UC—V1)—1 (11)
and define the operator I'p by
G (W) =GE(W)+Ge (W) ToGe(W). (12)

From (11) and (12), we have an integral equation for
the operator I'p: '

Tp=V+VG¢To. (13)
Equation (10) can be simplified to give
(f1Vuli)={ps | U | xi)+ D | To | x:P). (14)

The first term {(¢; | U° | x:) includes the Rutherford
scattering amplitudes plus a correction term which
takes into account the fact that the deuteron charge is
not at the center.

The second term {x;7 | Tp | xsP) would reduce,
as U—0, to the amplitude for the chargeless problem.
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The exchange amplitude ¥, in which particle 1 is
incident and particle 2 emerges is

(f| Yu|i)=(§; | U+ W+ U+W)GW)U+V) | :),
(15)

where | $) is the eigenstate of Ho+V, and
W=Vi+Vs. (16)

In the exchange amplitude, the direct Coulomb ampli-
tude is of an order which is vanishingly small compared
to the direct nuclear term. To see this, let | ¥) be the
eigenstate of the total Hamiltonian H, and define T by

Te=W+WG¢Tp. (17)
Let | %) be the eigenstate of Hy+U-V,. From (15)
(f| Yald)
=(¢| Ue+W | ;)
=& | UHW | W)= G | UG(W) (UAW) | Ts),
where we have used
@l =Gs| =G| UG
G (W) =(W—Ho—V»)7,
(f1 V| i)=G | W | )
+Gr | UL1=Gy(W) (U+W) ]| ¥:)
=& | W(14+G*Tp) | x:)
+ielxs | UG, | ¥:)

| ¥:)= | xi)+GTo | x:)-

with

using

Finally,
([ Yali)=G& | Te | xiP)+ie(xs | UG | ¥:).

The second term can be neglected, and we get

(| Yal|d)=G& | Tr | x:P). (18)
The total amplitude is therefore
(F1Y]8)=¢s | U | xsP)+ 0o | Tn | x,P)
+GO | Tr [ x:P). (19)

The operators Tp and 7z can be decomposed into
component operators Z;, which satisfy a set of coupled
equations. We consider this in Sec. IV.

IV. FADDEEV EQUATIONS FOR THE
NUCLEAR AMPLITUDES

We now return to Eqs. (13) and (17) of Sec. III.
Tp=V+VGi¢Tp, V=Vyt+Vs,
Te=W+WGsTp, W=Vi+Vs, (20)

where it is to be understood that the matrix elements

COULOMB SCATTERING IN THREE-BODY PROBLEM
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of Tp are to be taken between the eigenstates | xs) and
| xr), and those of Tg between the eigenstates | %)
and { Xi)-

Defining the auxiliary operators Z; and Z; by

Zy=Vo+VoGi°Tp, Zs=Vs+V:GieTp  (21)
we note from (20) that T can be written as
Tp=2+2;. (22)

We introduce a third operator Z;=V1Gi*Tp and obtain
the set of equations

Zy= VG T,
Z;i=Vi+VG¢Tp, j=2,3. (23)
In terms of the Z;, we can write Ty as
Tr=V1+2Z:+2. (24)

Equations (23) can be transformed so that they
contain the two-body 7" matrices rather than the two
body potentials V;. The method is analogous to the
usual procedure of obtaining the Faddeev equations.
Using the relations

Ti=V+V.G#V,,

G =Goe+Go V.G, (25)

where
Ge=(W—Hy—U—-V;),
U=Ue

Ge=(W—H,—U)™,

we can transform Egs. (23) into the form
Zy= T.Ge(Zo+25),
Z;=T+T:Ge(Z+Zs),

i=2, 3; %%k, (26)

We now have a set of three coupled integral equations
for the operators Z; (i=1, 2, 3).

In terms of the Z’s, the term (x;|Tp | x:) which
occurs in the scattering amplitude [Eq. (19)] can be
written explicitly as

[ 6 | ma) @rar | 22| miaedmas | )
X B’ BPgo' dpadiqe
+ / O | 0’0’ y'as’ | Zs | Poda)(Dsdts | x:)
X d3py'dPqs' P psdsqs,  (27)
with an analogous expression for the term
GO | Tr | x:P).
V. SOLUTION OF THE INTEGRAL EQUATIONS

To solve Eqs. (26), we use our approximate form for
the Coulomb Green’s function Gy, and the known forms
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for the two-body T" matrices in the three-body space,
(/9 | To(W) | piga)=2(gs)rc(ps', W)8(ps' —pi)o(gs),

where
P? q2 —1 —1
rep, W)= [vi=r o0 (W= £ - L) clg) pa (28)
and
P2 q2 -1 s . -1
T1.2°(p, W) [ X1 = (2m) 7 [ 1*(g) <W" w7 5;) |C(I2p—3q ) Pdq| .
In the integrals, the limit e—0 is understood. We now define the reduced amplitudes 4;. We first define

(/9 | Z:(W) | pu@a) =v(q)fs(pS, Pr i, W) (29)
to obtain a set of equations for the f;:

B, B s 1) =i, W) [0 2 [ RCpe, 0, W, s 0 W)
= 205t S, 00, WD, o 3 W),
J2(pey p1, Qu, W) =72°(pa', W) [v(—%pl—%qﬂﬁ{pz’—(—%p1+q1)}
—(2m)~ / @p” R(p", po', W)A(py”, pr, @i, W) —(2m)7 f @ps” S(ps”, ', Wfs(ps”, P, Q, W)], (30)
Js(ps's p1, @i, W) =7°(ps', W) [v(%Pl—%QM{ P —(—2p— )}
—(2m)~8 / &p" T(p", ps', W)A(py", Py @, W) — (2m) 78 / @ps" T(p", 05, W)fa(p2”, P1y W)]-
The Ith partial waves of kernels R, .S, and T are given (with the propagators 7 included) in Eq. (34). We multpliy

each of these equations by xkx(ps, q1), since the initial wave function for both Tp and 7 happens to be the same,
xx(P1, q1), and integrate over p; and q;. This gives

h1(k)(P1'; W) =71° (Pl’; W) [0—9[d3P2N R(Pz": pl’: W)k2(k)(p2": W) _desp3” S(Ps": pll: W) hs(k)(le'- W)] ’

B (po!, W) =15°(pe', W) [ L™ (p2') —QRI—QShs], (31)
h® (ps, W) =75(ps/, W) [ 1 (ps') —QT I —QThs],
where

@=0m,  WO(ps, W) = [Epdafipd, by 0 Wxe(ey 0,

L9 @) = [ @ o(p-+1p)xulp, = (0'+1p)

and the notation Rk, Shs, etc., is a condensed form for integrals of the type appearing in the first of Egs. (31).
In terms of the reduced amplitudes %; we can write

G | Tp [ xaP)= / O™ | pe'ae)o( Q) ™ (pe’) dPpe'diqy’+ / O | p'as")o(qs’) Bs™ (ps') dPps'dsgs’,  (32a)

Gae ™ | Tr [ xcP) = / e | pra Yo(@) m® (p) @' gy

+ G | Va | )+ / G | po'qs" Yo (qs") 7is® (ps’) dBps'dags’.  (32D)
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The natural coordinates of | x;) are (py, q,) since particle 1 is free in this final state; those of | X,) are (pzi Q)
since particle 2 is free in this final state. Thus, for instance, {(x; | p,’qz’) means {x; | —3p/+a’, —ip/’—3q")

using the kinematical results given in Appendix A.

Making a partial-wave analysis of Eq. (31), we get for the /th partial wave, the set of equations

1 R S n' 0
R 1 & Bt | = I (33)
T8 1T 1 hgt rf [
where
Ri(p, pr, W)= L2 W) (¥ dx () M (p, ', 2) [exp{M(p, ¢, %)} —1]™
Y e (pp)® Jo [A(p, p))+210B(p, #)+21C(p, ) +2] °
with
M(Pr P'! .'XJ) =E1(P’ PI)/[DI(P: P’: x)]!l‘é”
where
4 (P, P,) = (62'{'?'2‘*‘0-25?2) /Pp,a
B(p, p)=A(p's ),  C(p, p) =(p*+p"—WM)/pp', (39)
Ei(p, p') =dmue®/ 2pp")"2,  Di(p, p', %) = (p"*+1) /2pp'—w.
Let
E2(P; Pl) EE3(p’ P,) =E1(P’ P’)/\/Qa
and

Du(p, p', %) =L (4p+p") /4pp' ]+,

For Sl(?» P'); Tl(P: P,)’ we repla’ce 71,2 Dl(Pa P,: x):
E, by 11,5°, Dy, E; and 75, D3, E;, respectively. A slight
inaccuracy in the kernel, as it appeared in Eq. (32) of
Ref. 6, is corrected by Egs. (33) and (34) in this work.
The numerical results of Ref. 6 are unchanged since
the correct equations were used in the calculations.

Consider the kernel R'(u, v, W) [Eq. (34)]. It has
branch points at 4 (%, v) ==1, B(u, v) ==+1, C(u, v) =
=+1. The first of these relations gives

B+ +1ut=4uv
or
"'ﬁ2= (2):&%%)2,

a relation which cannot be satisfied for real values of
v and ». The same is true for the case of B(#, v).

The third relation C(#, v) =41, however, can be
satisfied for real values of # and v. This is so because
C(w, v) ==1 can be rewritten in the form w21
(u42)2—2mW =0, or (u+v)2—2mW <0 for real u, .
This relation can be satisfied for real #, v; hence if we
integrate Eqgs. (33) along the real axis, we would expect
to cross the singularities of the kernel.

In order to surmount this difficulty, we allow both
the variables # and v to become complex.*¥ Let

u—sue™%,  v—ovee, (35)

when the condition on ¢ is discussed below. We now
solve the integral equations, and obtain A;(ue=*). In
order to obtain %;(x), we let » alone become complex in

? J. Hetherington and L. Schick, Phys. Rev. 137, B935 (1965).
W R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).

Ds(P: 7, x) =D2(P,’ P” x).

the next step

u—u, 1—ve9,

The quantities %;(ve~*) occurring inside the integral
signs having already been obtained in the first step;
we thus get the 4;(%).

The transformation #—wue™**, v—ve~*, when sub-
stituted into the branch-point relations 4 (#, v) =21,
etc., implies that

u+ vt ugw—WM cos(2¢) =0, (36a)
WM sin(2¢) =0, (36b)
and
ut 2L ugw-+62 cos(2¢) =0, (36¢)
82 sin(2¢) =0, (36d)

for a fixed value w=wuy. This gives, from (36a) and
(36¢),

sin(2¢) =0  and (WM —p?) cos(2¢) =0,
and since
WM =32, ¢=0 and ¢=1im.

Therefore, if we choose ¢ to lie between 0 and %r, we
can avoid the singularities of the kernel.

In this discussion, we have assumed that the only
singularities are those of the kernels R!, S, T%, and
that the reduced amplitudes %; themselves have no
singularities.

Having deformed the contour as explained above, we
now replace the integrals by sums, using Gaussian
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quadratures, and solve the equations numerically on a
high-speed electronic computer.

VI. COULOMB-DISTORTED WAVE FUNCTION
FOR p-d SCATTERING

In this section, we consider the Coulomb-distorted
wave function ¥x(p, q) which describes the proton-
deuteron scattering process; we called it x in Secs. III
to V. It is simpler to consider the corresponding wave
function @ (R, r) in configuration space, where 7 is the
distance between the proton and neutron which form
the deuteron, and R is the distance from the external
proton (1) to the c.m. system of the deuteron. (R, r)
satisfies the equation
[—VRL-VTQ"I— — +Vu— (=l e l)]

| ri—r |

X& (R, r)=0. (37)

[ ri—r; | is the distance between the two protons, and
the total energy E=FEx— |e|. |e| is the deuteron

binding energy and
=K?*/2. (38)

For brevity, we omit the mass factors associated with
the V2 operators.
Eqution (37) can be rewritten in the form

[—Ve2—Vi+(¢/R)+Vau— (Ev— | e |) J2:(R, 1)

={(¢/R)—[¢/(| R—3r ) ]} ®x(R, 1). (3%)
We seek a solution of the form!
Bi(R, 1) = 300 (R) (1), (39b)

n=0

where the summation includes the integration over the
continuous states. Here u,(r) are eigenfunctions of the
operator [ — V24 Vs3], and u(r) is the deuteron wave
function. Substituting the assumed form of ®(R, r)
into (39), multiplying on the left by #¢*(r), and inte-
grating over 7, we get the following equation for ao,x(R):

[Ve+Ee— (¢/R) Jao x(R)
- fuo*(r)[ !R !]cbk(R, Ddr. (40)

Equation (40) is an exact equation. In order to solve
it, we approximate ®x(R, r) on the right-hand side by
1o(r) @o x(R), since we expect the main contribution to
&, to come from the first term of the summation (39b).
With this approximation, Eq. (40) becomes

[v32+Ek—- == f d'r [ uolr) | ( ]Re:r I)]

Xaox(R)~0. (41)

1 J, B. French and M. L. Goldberger, Phys. Rey. 87, 89 (1950).
A similar approach is used in this reference to study the scattering
of a deuteron by a point charge.
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Consider the integral

VR) = [@r o) I (

e'~’>
TR

For R>%r, V(R)=0 since uo(r) is spherically sym-
metric. Using the expansion for R<3r

—ar3 Y

1=0 m—1 2H-1

and noting that only the /=0 term survives the inte-
gration, we finally get

i

I/vlm QR) Ylm(gr)

=g ()™

2
V(R) =4dre / u(7) (— —r]é +27> dr.  (42)
We use the Hulthén wave function
—Br _ p—ar
o(r) =Co
r
where
=2 e, =aB(a+p)/2r(a—B)*
aox(R) therefore satisfies the equation
[Vet+Ex— (¢¢/R) —V(R) Jao x(R) =0. (43)

In momentum space

(Ek— %) tosp) — [ 9" Ue(p, ) bos(w)

~ [ V0, 2)bos(2) =0, (4)

where b, U¢, V are the momentum space counterparts
of a, U°, V, respectively. We are going to treat the last
term [d®p’ V(p, p')box(p’) as a perturbation. This
approximation, together with the Schulman approxima-
tion for the Coulomb wave function and Green’s func-
tion gives the following approximate solution of Eq.
(44):
Mi(p) 1C(p) I*
box(p)=~C(k)o(k—p)+ (2m) 2 lim —————
0.k (p)>C(k)8(k—p)+(27) i (2 +ie”
(45)

C(k) =exp(—3mnet/k)T[1+(ine’/k) ], (46)

where
Mu(p) =20C(E) / " dr V(r) sin(pr) sin(kr).
0

It must be emphasized that both terms on the right of
Eq. (45) are approximate; this is due to our inability to
write down exact and closed forms for the Green’s
function and the wave function, respectively.

Using (45), together with the momentum-space
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deuteron wave function
N
Clea| + (22w ]+’

o(p) = —

where

N =af(a-t8)"/rt
gives the first approximation to ¥ (p, q):
¥x(p, 0)>box(p)%(q). (47)

Consider the terms for #50 in Eq. (39b). The #,(r)
are now the two-body scattering states, satisfying

[_Vr2+ V?S(") ]un (r) = e,,un(r) .

Using Eq. (48), we derive an equation for each of the
a,(R), just as we did for ao(R):

[=Ve+(¢&/R) — Eg+(ent | €2 |) Jon x(R)

=/d37 #,* (1) [-;—: - Tf{%ﬂ] (R, 1). (49)

(48)

For e,=— | ez | (deuteron case), we get back the ay(R)
equation.

On the right-hand side of (49), we approximate
P (R, 1) by ao(R)u(r), and use the orthogonality of
uo(r) and u.(r), to obtain the following approximate
equation:

[Ve—(¢/R) +Ex~ (eat | e |) Jan 1(R)

& w,* () uo(r)

R3] = OO

~aux(R)e [

To solve Eq. (50), we need to know the following:

(1) aox(R) which occurs on the right, (2) u,*(r),
(3) the Green’s function G*(R, R/, W), and

™ () Eu (1) dr

= [ 1O,

®=) TR

(1) aox is given by Eq. (43). For the present pur-
pose, it suffices to take the approximate equation

[VRZ—I-Ek— (62/R) ]ao,k(R) =0,

(4)

(51)

Therefore,
a0,x(R)241(R)
=~C(k) exp(ik-R) Schulman approx.

Coulomb wave form

2w =SmO@ PP (2+1),  (52)
=0

where %, (r) are given in Appendix C.
(3) Green’s function

G*(R, R, W)
Ni/“’ B|C(k) I sin(k|R—R’|)
o)y W—(®/2)+ie (¢|R—R']) ’

IN THREE-BODY PROBLEM
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where we have assumed

¥t (R)~C (k) exp(ik+R) Coulomb wave function

(Schulman approx.). (53)
4)
I.(R)= f @‘&(_’_)l——-—fil‘l"(—’) =e2§D,.(l)(R)P;(ﬁ-R).
(54)

The D, (R) are given in Appendix B.

In our case, we take the /=0 term only in the sum-
mation in Eq. (54) ; this simplification is a result of our
choice of the two-body short-range potential.

Substituting Eqs. (51)-(54) into (50), and using the
relation

ink | R—R’ = . .

Sk [ RR | S 1) (kR (R PR ),
k| R—R’]| =

we can write the formal solution (with Ej ,=E,—

en— | eal)

Qn x (R) >~a, 'ko (R)
+ f @R’ G*(R, R', E;.»)C(k) exp(ik-R") D,O(RY),

(55)

where a,°(R) is the solution of the homogeneous
equation corresponding to Eq. (50). We choose
anx@(R) =0, so that ®(R, r) satisfies the correct
boundary conditions, i.e., the incoming part of (R, 1)
should contain only a term which represents a proton
incident on a deuteron. The break-up terms should be
in the outgoing part only.
The total wave function is then

(R, ) =0 (R)to(r)+ (2) [ 1 00 (R} 1),

VII. RESULTS AND CONCLUSIONS

For incident proton energies of E,,14,=2.08, 3.0, 5.2,
9.7, and 14.0 MeV we calculate the differential scat-
tering cross section as a function of the c.m. angle. The
results are shown by the solid lines in Figs. 1 to 5.
Experimental results for 2.08-, 3.0-MeV protons are
given in Ref. 12, for 5.2-MeV protons in Ref. 13, for
9.7-MeV protons in Ref. 14, and 13.93-MeV protons
in Ref. 15.

The calculations are repeated for the case in which
the Coulomb potential is “switched off.” The results

12R. Sherr, J. N. Blair, H. R. Kratz, C. L. Bailey, and R. F,
Taschek, Phys. Rev. 72, 662 (1947).

18 Louis Rosen and J. C. Allred, Phys. Rev. 82, 777 (1951).

14 7. C. Allred, A. H. Armstrong, R. O. Bondelid, and L. Rosen,
Phys. Rev. 88, 433 (1952).

% S. Kikuchi, J. Sanada, S. Suwa, I. Hayashi, K. Nisimura, and
S. Fukunaga, in Nuclear Forces and the Few-Nucleon Problem,
edited by T. C. Griffith and E. A. Power (Pergamon Press,
London, 1960), Vol. 2, p. 669.
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Fic. 1. Plot of differential scattering cross section in b/sr,

against c.m. angle in degrees, for incident “proton” energy

Ey(lab) =2.08 MeV. Solid lines, Coulomb scattering; dashed
lines, scattering without Coulomb potential,
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Fie. 2. Plot of differential scattering cross section in b/sr,
against c.m. angle in degrees, for incident “proton” energy
E,(lab) =3.0 MeV. Solid lines, Coulomb scattering; dashed
lines, scattering without Coulomb potential.
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Fic. 3. Plot of differential scattering cross section in b/sr,
against c.m. angle in degrees, for incident “proton” energy
E,tlab) =5.2 MeV. Solid lines, Coulomb scattering; dashed lines,
scattering without Coulomb potential.
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do/dl In Barns /st
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Fic. 4. Plot of differential scattering cross section in b/sr,
against c.m. angle in degrees, for incident “proton” energy
E,(lab) =9.7 MeV. Solid lines, Coulomb scattering; dashed lines,
scattering without Coulomb potential.

are shown by the dotted curves in Figs. 1 to 5. As far
as the p-d scattering is concerned, our results show
qualitative agreement with experiment, so far as the
order of magnitude of do/dQ, and the general shape of
the curves are concerned. We expect no more, in view
of the simplifications we have made, and we have
therefore not drawn in the experimental curves. It is
more instructive to compare the Coulomb scattering
with the non-Coulomb scattering in our model. In the
backward direction, our results show that do/dQ for
the Coulomb-less problem is consistently larger than
for the Coulomb case; although the difference decreases
with increasing energy. At a c.m. angle of 180° the
ratio of do/d€ for the Coulomb and non-Coulomb prob-
lem is of the order of | C(k) | *

~ ! C(k)4[da/dQ]180° Coulomb
[da'/dQ]lSOO non-Coulomb™ i C(k) l4 ’
where C(k) is given by Eq. (43).
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F1c. 5. Plot of differential scattering cross section in b/sr,
against c.m. angle in degrees, for incident ‘“proton” energy
E,(lab) =14.0 MeV. Solid lines, Coulomb scattering; dashed lines,
scattering without Coulomb potential.
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Now the term (i~ | V1| xxt), which is the exchange
term, predominates in the backward scattering as com-
pared to all other terms which occur in the scattering
amplitude.

To a first approximation,

(Xk'_ | Vl | Xk>Coulomb
Xk~ l Vl ] Xk)non-(}oulomb

~|C(k) P, fork'=k

the factor | C(k) |? arising, of course, from the Schulman
approximation for the Coulomb-modified wave func-
tions x, which occur in the numerator on the left.

If we refer back to Eqgs. (32a) and (32b), Sec. V, we
see that the following approximations were made: (i)
The use of an approximate Coulomb Green’s function
in solving the integral equations for the %;; the Green’s
function appears in the kernels. (ii) The use of an
approximate Coulomb wave function in the initial and
final states.

Our results suggest that the anomaly in the backward
scattering can be traced largely to approximation (ii)
above. In other words, G° with Schulman’s approxima-
tion is probably good enough for solving the integral
equations for the 4;s; the main difficulty lies with the
wave function, since the ratio is ~ | C(k) |4

In principle, at least, step (ii) could be improved
upon by a better approximation than Schulman’s,
perhaps even by using the exact Coulomb wave. This
might reduce the disparity in the backward direction.
Our calculations were carried out with the Schulman
approximation only.

In the forward direction, the Coulomb-less problem
shows no peak, even at 14.0 MeV. However, the results
of our calculations verify that unitarity is satisfied. Our
Coulomb-less problem is not of course a model for #-d
scattering since we have symmetrized between particles
1 and 2 only.
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APPENDIX A

If p; (i=1, 2, 3) are the momenta of the 3 particles
in their c.m. system, and ¢; (=1, 2, 3) are the relative

COULOMB SCATTERING IN THREE-BODY PROBLEM
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momenta, using the notation of Sec. II, then

D= =3P~ Q=—3Ps+qs,
=il B={P—3Q,
Pr=—3ip—Qs=—3p1+qy
Q=—3p— 30 =1Ps—3Qs,
Ps=—3P— Q= —3P>+Q,
G=—1p:—3QL={p—3q.
APPENDIX B

The D,W(R) which occur in Eq. (54), Sec. VI, are
given by

2R
D, (R) =4t [2——1R—l—1/ dr r20,D () o (7)
0

+ (=) 1R mdr a0, D (r) uo(7) ] .
oR

APPENDIX C
The | u,) satisfy the equation
[ﬁo‘i‘?] | un>=€n I un)

[6n2+5n]u7t(r) =/V(r, r’)un(r’) ',

or (C1)

A formal solution is, using

V(p, p) =M(p)o(p")

and

V(s ) =0 [« | D)7 @, )0 | )Bpip,
. (1) =exp(in-r)

()1 [ [ sy eXp(mlr SREII=TD s 1y (e).

=]
(C2)
In our case, we require the solution to consist of the

outgoing part only. A partial-wave expansion gives an
integral equation for #,°(r), of the form

O = [~ K@, w0y,
0

D (r) =0 (1520). (C3)

This simplification results from our s-wave Yamaguchi
potential. The eigenfunction equation (C3) was solved
numerically, to obtain the eigenfunctions.



