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Using the Faddeev formalism for the three-body problem with two charged particles, with separable
nuclear interactions and an approximate form for the Coulomb wave function and Coulomb Green's function,
a simplified model is set up for p-d scattering. The diBerential scattering cross section is calculated
numerically for diBerent incident proton energies from 2.08 to 14.0 MeV. The calculations are repeated
with the Coulomb potential turned off, and the results are compared with the Coulomb scattering.

I. INTRODUCTION

E consider a system of three spinless particles of
equal mass M, of which two are charged and the

third is uncharged. Initially, we consider the two
charged particles to be distinguishable bosons, and then
symmetrize. Particles 1 and 2 are charged, particle 3
is uncharged. The aim of this paper is to set up a model
for elastic proton-deuteron scattering with separable
short-range interactions between any pair of particles,
plus the Coulomb interaction of particles 1 and 2. We
use the word "model" in the sense that a realistic
physical model, with spin included, can be based on the
present analytical treatment. It is not implied that
in the absence of the Coulomb potential our present
treatment would be a model for n-d scattering. For
convenience and brevity, we shall refer to our particles
as protons and neutrons although this is not strictly
true, since we are treating them as bosons.

Our approach to the problem consists of using separa-
ble short-range potentials in the Faddeev equations,
which are modified to incorporate the Coulomb poten-
tial between the protons. The use of nonlocal separable
potentials enables us to reduce the integral equations
for the three-body scattering amplitudes to equations in
one vector variable. A partial-wave analysis will then
reduce these equations to one-dimensional linear inte-
gral equations, which can be solved numerically. For
the three-body problem without Coulomb forces, the
Faddeev formalism with separable potentials has been
considered by a number of authors. ' ' In our case, the
Faddeev equations can be solved, provided we can find

a suitable representation for the Coulomb Green's
function. In this paper, we make use of an approximate
form for the Coulomb wave function in momentum

space, suggested by Schulman. 4 The resulting repre-
sentation for the Green's function, which of course is

only an approximation, can be used to obtain a set
of Coulomb-modified Faddeev equations. ' These ap-
proximations were used in an earlier paper' to obtain
the binding energy of He'. The Schulman approxima-
tion for the Coulomb Green's function gave too much

*Supported in part by the National Science Foundation.
' C. A. Lovelace, Phys. Rev. 135, 81225 (1964).
2 J. Hetherington and L. Schick, Phys. Rev. 156, 1647 (1967).' D. Harrington, Phys. Rev. 14'7, 685 (1966).
4 L. Schulman, Phys. Rev. 156, 1129 (1967).
' J. Noble, Phys. Rev. 161, 945 (1967).' S. Adya, Phys. Rev. 166, 991 (1968).

Coulomb repulsion in the He' case; an "improved"
version of this approximation was found to give a
better result. In this paper, we shall make use of the
former approximation only. It is of course possible to
do the scattering problem with the improved version
also; but in view of the exploratory nature of this paper,
and the extensive calculations involved, we have used
Schulman's approximation only.

Even with this simpli6cation, the p-d scattering
problem is a hard one to solve. The main difhculty in
our treatment of the problem arises from the asym-
metrical charge distribution of the deuteron. It there-
fore becomes necessary to treat the Coulomb-distorted
wave function, which describes the p-d scattering, in
some reasonable approximation scheme. This is con-
sidered in detail in Sec. UI.

In this paper, our main interest lies in showing that
it is possible to solve the p-d scattering problem
approximately, within the framework of the Faddeev
formalism and separable interactions. In principle, the
method is straightforward. In practice, the solution of
the Faddeev equations is extremely complicated, since
the Coulomb-distorted wave functions occur in the
inhomogeneous terms of the integral equations. Using a
more realistic model with spin and improved nuclear
potentials, and perhaps with a better approximation
for the Coulomb-distorted wave function, it may be
possible to improve upon the results obtained here. We
wish to emphasize that the problem, although laborious
and complicated, is a straightforward one.

In this paper, the short-range interaction between
any pair of particles is taken to be of the separable
Yamaguchi type

where

We use this simple form for convenience, since our main
interest lies in seeing how we can include the Coulomb
force within the framework of Faddeev equations plus
separable interactions. The parameter P is chosen to be
1.33 F ', which is approximately the mean value of the
singlet and triplet valuesr P, = 1.16 F ' and P& = 1.44 F '.
The parameter X, which is the coupling constant, is
determined by the condition that the two-body T

' Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). We use the low-
energy n-p scattering data quoted in this reference.
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matrix 7.'(E) have a pole at E=—eq, where cq is the
deuteron binding energy. This gives

satisfy

I
—i7", + V]u„(r) =-~„u„(r).

iVX=g~PD3+(M ( e, ))'1&g'. (2)

Having chosen these parameters, we proceed as follows:

(1) The symmetrized wave function for both the
incoming and outgoing channel is

&2 'I:4(1, 2, 3)+0(2, 1, 3)3 (3)

The total symmetrized scattering amplitude for the
process can be written in the form

1"= 1'ii+ 1"2i

F'ii is the amplitude for the reaction 1, (23)~1, (23),
where we have taken particle 1 to be free initially; Y»
is the amplitude for the process 1, (23)—+2, (13), in
which the two charged particles exchange places.

(2) F'ii can be written as the sum of two parts, one
involving the Coulomb potential only (and which
includes the Rutherford scattering amplitude), and the
other, TD, involving the short-range potentials. The
Coulomb potential manifests itself in TD also through
it's presence in the Green's-function operator.

F2~ can also be expressed as the sum of two terms. In
this case, however, the term involving U' explicitly, is
of an order of magnitude which is vanishingly small as
compared to the short-range term. Y2~ is therefore
simply Tz, where the operator Tz is the nuclear part
of the exchange amplitude V2~. Tg in V2~ corresponds to
TD in Fii.

(3) We introduce three auxiliary operators Zi, Z2,
Z3. It is possible to express TD and Tg in terms of the
Z's, and the short-range potential V». The Z's satisfy
a set of three simultaneous equations which are of the
Faddeev type. ' These equations can be further simpli-
fied by expressing the matrix elements of the Z; in
terms of functions h;. The h; are functions of a single
vector variable, and may be called the "reduced
amplitudes. "

(4) A partial-wave analysis is made of the set of
simultaneous equations satisfied by the h;. The partial-
wave components Ii,&" (i=0, 1, 2, ~ ~ ~ ) are now func-
tions of a single scalar variable. This enables us to
numerically solve the equations. Since this work deals
with low-energy scattering, it was considered sufhcient
to take the first three partial waves only.

(5) A suitable representation must be found for the
Coulomb-distorted wave function. This is one of the
major difhculties of the problem, since we require that
the ) orm chosen for the wave function should make the
prob em amenable to a numerical solution. In the pres-
ent 1ase, we expand the exact wave function in terms
of th: complete set of two-particle states N„(r) which

II. COULOMB WAVE FUNCTION AND COULOMB
GREEN'8 FUNCTION

The Schulman' approximation for the Coulomb wave
function uses the fact that p-p scattering is strongly
peaked in the forward direction. In momentum space,
the Coulomb wave function is approximately (see
Ref. 4)

where
4.(p) =C(&)~(&—p),

C(k) =exp( ——,'mp) r(1+ip)

=8'"(r) j=o p= p~/&

(6)

exp(2irpe'/k) —1

where Pq'(r) is the wave function in configuration
space. This approximation is valid in the sense that if
f(p) is a smooth function of p

Here, as elsewhere, carets denote that the operators are
in the two-particle space.

Although the coefficients of the N„(r) can be written
down formally, it is not possible to solve the problem
numerically without making some approximations.
Some of these approximations are unavoidable; others
were made to reduce the complexity of the problem.
The details are left for Sec. VI.

After inverting the integral equations numerically on
a computer, we calculate the differential scattering
cross section for different incident proton energies.

Finally, the calculations are repeated for the case
where the Coulomb force is taken to be absent, although
particles 1 and 2 are still treated as similar, and differ-
ent from particle 3.

In Sec. II, we brieQy consider the approximation
which is made for the Coulomb Green's function and
Coulomb wave function. Assuming a Hulthen wave
function, we write down the relation between X and P.
The kinematics of the problem are also discussed.

Section III deals with the total scattering amplitude,
which is the sum of a direct and an exchange part.

The operators Z, (i =1, 2, 3) and the coupled equa-
tions which they satisfy, are considered in Sec. IV.

Section V deals with the reduced amplitudes h;. We
also consider how these equations are solved numer-
ically; in particular, the avoidance of singularities. The
Coulomb-distorted wave function is treated in detail
in Sec. VI.

Finally, the results and conclusions are summed up
in Sec. VII.

8 R. G. Newton, Scatterieg Theory of lVaves and Particles
(McGraw-Hill Book Company, Inc., New York, 1966), Chap.
17, Sec. 4.3.

e.(p)y(p) d p=c(u)y(f ).
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H=Ho+U'++V;,
&,

I
G, (E) I )

&(p' —p) I c(P) I'

E—(lo'/2u)
where U' is the Coulomb potential acting between
particles 1 and 2. The Green's function Go'(W)—=

(W—Ho U')—' can be represented by the approximate
form

Go'(E) = (E—Ho —U')-'.

The Coulomb Green's function is then approximately therefore
given by

This approximation to the Coulomb Green's function
vras used in the solution of the bound state problem,
i.e., the binding energy of He', in Ref. 6.

Let p; (i=1, 2, 3) denote the momenta of the three
particles in the c.m. system. %e denote the relative
momenta of any pair of particles by q;, so that qua=

o(po —po). It is customary to use the cyclic notation
g2g—=q», etc. The kinetic energy part of the Hamiltonian
ls

Ho=P"/2n+g"/2~,

where we can use any of the pairs (pi, qi), (po, qo),
or (p q ).

Here

The short-range two-body forces are denoted by V;;,
or, using the cyclic notation, by V~ where i, j, k form
a cyclic permutation.

%e assume here that the two-body interactions are
of the s-wave separable type

(q''
I V' I q'&=»(v'') o(a'),

where o(tt) = (P'+q') —'.
In configuration space, the two-particle bound state

wave function corresponding to this potential is the
Hulthen function

~ =2plo, l.

The two-body T matrix satis6es

F;=V~+V,GoT;,

b(po' —po)~(qo' —qo) I C(qo) I'
po'qo' Go' W poqo

W (Po'/—2n) —(Co'/2~)

(9)

where the arrow means "can be approximately replaced

III. AMPLITUDE FOR ELASTIC y-d. SCATTERING

Using the symmetrical wave function

(1/v2& Lg(1, 2, 3)1$(2, 1, 3))
for the in and out channels, it can be shown that the
total amplitude for the "p-d" elastic scattering can be
written

V= V»+Voi,

where V» is the amplitude for the process 1, (23)—+

1, (23) and Voi fol' 1, (23)~2, (1, 3)) since pal'tlcles 1
and 2 are similar.

Consider first the direct amplitude I'»». The total
Hamlltonlan is

H= Ho+ U'+ Vi+ Vo+ Vo.

Let
I g, ) be the eigenstates of Ho+Vi, and I x;) those of

Ho+ U'+ Vi. Then V» is given by

(fl v»l')
=&~

I U+V+(U+V)G(W)(U+V) l~;&, (10)

G'(W) =(W—H) '

G'(W) =(W—H —O' —V)—'

Go(E) =(E—Ho) '.

with
&q'' I &' I q') =o(v'') o(v') r(E)

Using (1), the solution of (Sa) can be written

and define the operator Tz by
(Sa)

G'(W) =Gi'{W) +Gi'(W) Tr Gi'(W) . (12)

From (11) and (12), we have an integral equation for
the operator T~'.

TD =V+V+'Tr).

7(E) = X ' —(2n.) ' oo(q) d'q

E (q'/2p) +oo—
Since T; has a pole at E=—eq, the deuteron binding

energy, Eq. (Sb) gives the desired relation between X

and P.
iVZ=S~PD3+(M I.g I)'i')o

For the three-body system, the total Hamiltonian is

Equation (10) can be simpli6ed to give

&/I V» I')=&or I U'Ix"+'&+&xf' 'I 2'D Ix""& (14)

The first term (pr I
U'

I x;) includes the Rutherford
scattering amplitudes plus a correction term which
takes into account the fact that the deuteron charge is
not at the center.

The second term (xfi &

I Tri I x, i+'& would reduce,
as U'—+0, to the amplitude for the chargeless problem.



Thc cxchangc amplltudc I yj ln which particle 1 ls
incident and particle 2 emerges is

&f I v- I'&=(~ I U+W+(U+W) G (w)(U+V) I ~;&,

(15)

where
I &t)& is the eigenstate of H0+V2 and

of Tn are to be taken between the eigenstates
I xr) and

I xr), and those of T@ between the eigenstates
I xr)

and
I x;).

DC6ning the auxiliary operators Z2 and Z3 by

Z2 = V2+ V2%'Tr), Z3 = V8+ VsGg'Tr) (21)

we note from (20) that Tn can be written as

In the exchange amplitude, the direct Coulomb ampli-
tude is of an order which is vanishingly small compared
to the direct nuclear term. To see this, let

I
4') be the

eigenstate of the total Hamiltonian H, and de6ne Tg by

Tg =W+WG&'Tg). (17)

Let
I x) be the eigenstate of H0+U+V2. From (15)

= &y, I
ir +w I 4.)

=&~I ~+Wl+;&-&x I ~G(W)(U+W) I+;&,

&4 I
= &xr I

—&xr I
~'Gm

with
G2(W) =(W—Ho —V2) ',

(f!v. I'&=&-
I wl+'&

+&xr I
~LI-G.(W) (U+W) j I~,&

= &xr I «1+G T-) I x;&

~1 ~lcl ~ay

Z;= Vr+V,G)'Tg), j=2, 3.

In terms of the Z;, we can write Tg as

(23)

Tz =Vi+Zi+Zs. (24)

Equations (23) can be transformed so that they
contain the two-body T matrices rather than the tvro
body potentials V;. The method is analogous to the
usual procedure of obtaining the Faddeev equations.
Using the relations

T;=V+VG V;,

G'=Go'+Go'V G' (25)

G =(W—Ho —U V) '—G0' = (W—Ho —U)
—'

We introduce a third operator Zr = V)Q'Tr& and obtain
the set of equations

using
+~'&xr I ~G& I+'& we can transform Eqs. (23) into the form

I+')= I x'&+Gi'Tn I x'). T,GO'(Zg+Zs),
Finally,

&f I V» I i& = (xj& '
I T~ I

x'&"&+~'&xr I ~G2 I +'&
Z;= T;+T;Go (Z;+Zp), «=2, 3; ~WjNk. (26)

We now have a set of three coupled integral equations
for the operators Z; (i=1, 2, 3).

In terms of the Z's, the term &x& I Tn I x;) which
occurs in the scatterin am li )j can be

The second term can be neglected, and we get

&fl V. I')=&-'-'IT. lx'")&
g p tude IEq. (19

The total amplitude is therefore

&f I
I'

I i& = Qv I
U'

I
x*"))+&xr& '

I Tn I x,"'&

&») f &xi' '
I ua'a~'&&@ 'a.'

I
&

I &'~a &&a a I x ')

The operators T~ and Tg can be decomposed into
component operators Z;, which satisfy a set of coupled
equations. We consider this in Sec. IV.

IV. FADDEEV EQUATIONS FOR THE
NUCLEAR AMPLITUDES

We now return to Eqs. (13) and (17) of Sec. III.

Tz) =P+VG&'Tr),

Xd pp d g2 d pmdarl2

+ &xr& 'I p'qa'&&p3'qa'Iz3lpq~&&yq Ix;&+)&

X 'ds' Pqd'3Pd~ad, Ifa(27)

with an analogous expression for the term

V. SOLUTION OP THE INTEGRAL EQUATIONS
Tp =W+WGg'Tr&, W = Vg+ V3, (20)

To solve Eqs (26), we use our approximate form for
where it is to be understood that the matrix elements the Coulomb Green's function 60, and the known forms
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~

e three-body sPace,atri( es In the

W)g(p, & p') (&(qi) &

for the two-b &

W)
~ p q, ) I&(q, ') r p'&p, 'q''

I T'
wh. ere

P' q
~ ]C(q) I'd'q(2 ) 'f & & ( 2&

p2 q ]C(py —qq/) ldq

and
—8 p )/W—., 2'(P =

d„„d,mpl)tudesh' &' '" ' "d &e now de6ne the reis understooI th t g"l',
g, (w) I yq)="(q')f'

t ehmi«~'"
(p''q''

(2S)

(29)

i equa, tions &» thef"

(2 ) 3 d»P2» g(pm & PI &W) =r('(PI' W)f, (PI & P» q(&

„~(, y, ', W)f3(P3 & p" q"—(2n) '

1
q )g I pm

—(—2 pl+ qw) =r2'(P' w) 'f2(p2 & pl& ql&

q, W„~(» p2& W)f&)(p&» P» q»q, W) —(2~)(2&r) ' p, ', W)f((»

(,P,—qI) I) (8P —q()()IP3(, q W)= 3(P3

, ,", P(, qI W)„T(p,» p, ', W)f~(p»2~

w) 0—Q dp~ »~(y» PI W)hg (P

(31)

h(")(y(' W) ="
(+)( &) QghI Q 8]&

?1 1 ) ~1) Ql)
» y, & W)f((PI &

~

~

~ ~(34) +le multp 0li

(2m) ' ' '

t rsr'included) I q
b the same,

d T are given ()vv)th P
f r both TD and Tzh PP

ropaga or
a ens to e

o~ kernels +p ~
~ ] wage functio

~ w) h (")(PI".w)

) and integr

) Q yP,"S(P3"
& P

gl(P» q' '

(~),",5'—

where
Q=(2 ) ' „w)x.(p q»h, (")(y'' W = gp (Pql f&(P»' PI& q»

( +Iy/) X~IP +(P +2PI ("(y') = d p ' y '

the notat)oII »
litudes h, )&reca»(,

)d»p 'd,q, (32a)

h„etc., ls o
n writethe red'u(e(l amp

( ) &q )(&(qg )hs P

n terms

,)ds pq, '+ (x~( )
~

&q,&)(&(q,')h2( '(P2x, (-) IT-IX"')= x

g1 ~,;„;„th ii st o& Eq' (3pe appearing in
~

ndense rni fo] jntegra sa,nd
I

3, ) &,&)(&(q,') h((")(PI )„)
,) ( &)h o)(P,')d'Pads&. (32b)(+))+ (-„,(—)

) pg'qm I' q&'



The natural coordinates of
~

xr& &) are (pi, qi) since particle 1 is free in this 6nal state; those of
~ xy )»e (ps, qs)

since particle 2 is free in this final state. Thus, for instance, (xr& &

~
ps'qs'} means Q {

—spi'+qi', —spi' —sqi'}
using the kinematical results given in Appendix A.

Making a partial-wave analysis of Eq. (31), we get for the 1th partial wave, the set of equations

(33)

with

imp" ri,~'(p, W) +'dxI'i(x)M(p, p', x){exp{M(p, p', x) I
—1) '

(PP')' — r~(p P')+xr&(p P')+*jÃ(p P')+xj '

M(P P', x) =Ei(p P')ILDi(P P' x)j'"

~(p P') =(P'+P"+025P')IPP'

&(P P') =~(p' P) C(P P') =(P'+P"—WM)IPP'

@(P P') =4 'l(2PP')" D (P P' ) =(P"+P')I2PP' —*.

~s(p P')= Fs(p P')—=~i(p P')I&

Ds(p P' *)=L(4P'+P")I4PP'3+x, Ds(p P' *)=Ds(p' P' *}.

For 5'(p, p'), P(p, p'), we replace ri,s', Di(p, p', x),
Ej by ~&,2', D2, E2 and vs', D3, J 3, respectively. A slight
inaccuracy in the kernel, as it appeared in Eq. (32) of
Ref. 6, is corrected by Eqs. (33) and (34) in this work.
The numerical results of Ref. 6 arc unchanged since
the correct equations were used in the calculations.

Consider the kernel Ei(u, v, W) LEq. (34)j. It has
branch points at A (u, v) =a 1, B(u, v) =a1, C(u, v) =
+1.The first of these relations gives

or
P'+ v'+su'= +uv

-p'= (veau)',

a relation which cannot be satis6ed for real values of
v and u. The same is true for the case of B(ss, v) .

The third relation C(u, v) =&1, however, can be
satis6ed for real values of I and e. This is so because
C(u, v) =+1 can be rewritten in the form I'+v'+
(u+v)' —2tnW=O, or (u+v)' —2urW(0 for real u, v.
This relation can be satis6ed for real I, e; hence if wc
integrate Eqs. (33) along the real axis, we would expect
to cross the singularities of the kernel.

In order to surmount this difhculty, we allow both
the variables I and e to become complex. o"Lct

N~e '&, e—ee '&, (35)

when the condition on p is discussed below. We now
solve the integral equations, and obtain h;(us '&). In
order to obtain h;(u), we let v alone become complex in

& J. Hcthcrington and L. Schick, Phys. Rcv. 137, S93S (1965).
is R. Aaron and R. D. Amado, Phys. Rev. 150, 85'1 (1966).

us'+v'+usv-WM cos(2&) =0,

WM sin(2&) =0,

Qs +v +upv+P cos{2$)=0&

P' sin(2&) =0,

(36a)

(36b)

(36c)

for a fixed value I=us. This gives, from (36a) and
(36c),

sin(2&) =0 and {WM—p') cos(2&) =0,

and sIncc

Thcrcforcq if wc choose @ to lic between 0 RIll 4Ã~ %'c

can avoid thc singularities of thc kernel.
In this discussion, we have assumed that the only

singularities are those of the kernels E.', 5', P, and
that the reduced amplitudes h; themselves have no
singularities.

Having deformed the contour as explained above, we
now replace the integrals by sums, using Gaussian

the next step
N~, V~ee @'.

The quantities h;(ve '&) occurring inside the integral
signs having already been obtained in the 6rst step;
we thus get the Ir;(u) .

The transformation u—+ue '&, v—+M '&, when sub-
stituted into the branch-point relations A(u, v) =+1,
etc., implies that
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hg p

VI. COULOMB-DISTORTED VfAVE FUNCTION
FOR y-d, SCATTERING

e2
~(S)= ~" ( (~) I'~l(

—S+ [S—'r~~)'

1412

Qn 3 Consid ei' the in" graqu adratures, an so ved 1 the equations numerica y on a
i h-s eed electronic computer.

0 the Coulomb-distorteds section, we consi er eIn this s-

wave function leak(p, Q)
attering process; we ca e i X i

function Ck~gR,

n the roton an neu r
an

'
f the externaland E is the distance rom

ofth d t o . e (R, r)proton (1) to the c.m. system o e
satisfies the equation

+v -(L —
I "I)

For R)-', r, V(E) —=0 since N()(r) is spherically sym-
metric. singU the expansion for E&~r

E'
=4Irg Q VI *(QII) F'1„(0,)

I
R —sr I I () I 2l+1

the l=o term survives the inte-and noting that only t e
gration, we finally get

2

V()()=4 s' u'(r) (
—— 2i)cir.

We use the Hulthen. wave function

XCI,(R, r) =0. (37)

he distance between the two protons, an
—

I c~ I. I
c~ I

is the deuteronthe total energy E=Ez—
I~o(r) =Co

e—Pr e
—ar

binding energy and

(38)Ex E'/2g. ——

it the mass factors assoc iated withFor brevity, we omi

Eqution (37 can e rewri

' —&,'+(c'/~) +V —(& —
I

~ I) ]@~(R,r

= ("/&)-L"/(IR-l l)3I+.(R, ).
I()l) e seek a solution of the form"

n'=2) leg!, c, =~P(~+P)/2~( P) . —

a() k,R) therefore satisfies the equation

[VII'+Es —(e'/E) —V(E) lac, I,(R) =0.

In momentum space

& ——~o,.(p) — d'p' U'(p, p') ~,~(p')
2

O, k p

(39b) — d' ' V(p, p') bs..(p') =o, (44)

where

e),(R, r) =ga„.I,(R)N. (r),
nm

re - e m counter artswhere the summation inc
continuous sta es.

—V'+V,sj, ana Ns(. r Is

ther with the Sc u man

+
' proximation, toge

tion for the Coulomb

stituting the assume

we et the following equa ion

(44):

' k I' 1 ice'/k) j, (46)

from the rst term o

dr V r sin r sin
i

' ' '
n E . (40) becomesWith this approximation, Kq. e

0e2 e2

m hasized that both terms on the 'ghaslze a ri ht of
() I ( -+(„

the wave function, respective y.tion an t e
tCZCI1CC t0 StU@' 'thC SCStteljllgA similar approach is used in this reference o s

of a deuteron by a point charge.
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deuteron wave function

where

—
LI « I +(P'/21 )](p +P') '

E' =np (n+p) '/4s'p'

gives the first approximation to fq(p, q):

f.-(p, q)=fo..(p)&o(q). (47)

~here we have assumed

fq'(R)~C(k) exp(ik R) Coulomb wave function

(Schulman approx. ) . (53)

(54)

Consider the terms for e/0 in Eq. (39b). The I (r)
are now the two-body scattering states, satisfying

V,'—+V„(r)5N,„(r)=e„u„(r). (48)

Using Eq. (48), we derive an equation for each of the
a (R), just as we did for ao(R):

L
—Vs'+ (e'/R) —Es1(e„+ I « I) ga, q(R)

8 8
d'r I *(r) —— C~(R, r). (49)

I
R—xr

I

For e = —
I « I

(deuteron case), we get back the ao(E)
equation.

On the right-hand side of (49), we approximate
4'z(R, r) by ao(R)NO(r), and use the orthogonality of
uo(r) and I (r), to obtain the following approximate
equation:

P's' —(e'/R) +Eq (e + I « I)
—ja,~(R)

d'r N.*(r)No(r)
ao, g(R) e' ", . (50)—

2

To solve Eq. (50), we need to know the following:
(1) ao,q(R) which occurs on the right, (2) N„*(r),

(3) the Green's function G'(R, R', W), and

The D&'&(E) are given in Appendix B.
In our case, we take the 1=0 term only in the sum-

mation in Eq. (54); this simplification is a result of our
choice of the two-body short-range potential.

Substituting Eqs. (51)—(54) into (50), and using the
relation

sink
I
R—R'

I = g(21+1)j((kE)jt(kR') P((B g'),
lM

we can write the formal solution (with EI, ,„EI, ——

a„,k(R) ~u„,t,'(R)

+ d'R' G'(R, R', Eq,„)C(k) exp(ik R')D„&'&(R'),

where a„,q'(R) is the solution of the homogeneous
equation corresponding to Eq. (50) . We choose
a„,q&'(R) =0, so that C~(R, r) satisfies the correct
boundary conditions, i.e., the incoming part of C z(R, r)
should contain only a term which represents a proton
incident on a deuteron. The break-up terms should be
in the outgoing part only.

The total wave function is then

(4)
N,*(r)e'eo(r) d'r C'~(R, r) =co,~(R)ND(r)+(2s) ' d'ma, ,~(R)N (r).

VII. RESULTS AND CONCLUSIONS

ao, g(R) ~fg'(R) Coulomb wave form

C(k) exp(ik R) Schulman approx.

(2) I (r) =QN„&'&(r)Pg(ri r) (21+1), (52)

where I„"~(r) are given in Appendix C.
(3) Green's function

Gc(R R' W)

1 ~ k'
I C(k) I' sin(k

I
R—R'I)

2m', W—(k'/2g)+is (k
I
R —R' I)

(1) ao, z is given by Eq. (43). For the present pur-
pose, it suKces to take the approximate equation

LVg'+Eg —(e'/E) ]ap, t, (R) =0.
Therefore,

For incident proton energies of E„,i,b =2.08, 3.0, 5.2,
9.7, and 14.0 MeV we calculate the diGerential scat-
tering cross section as a function of the c.m. angle. The
results are shown by the solid lines in Figs. 1 to 5.
Experimental results for 2.08-, 3.0-MeV protons are
given in Ref. 12, for 5.2-MeV protons in Ref. 13, for
9.7-MeV protons in Ref. 14, and 13.93-MeV protons
in Ref. 15.

The calculations are repeated for the case in which
the Coulomb potential is "switched oG." The results

'~ R. Sherr, J. N. Blair, H. R. Kratz, C. L. Bailey, and R. F.
Taschek& Phys. Rev. V2, 662 (1947)."Lou&a Rosen and J. C. Allred, Phys. Rev. 82, 777 (1951).

~4 J. C. Allred, A. H. Armstrong, R. O. Bondelid, and L. Rosen,
Phys. Rev. 88, 433 (1952).

~' S.Kikuchi, J.Sanada, S. Suwa, I.Hayashi, K. Nisimura, and
S. Fukunaga, in Nuclear Iiorces end the Pew-ENcleon Problem,
edited by T. C. GriS,th and K. A. Power (Pergamon Press,
London, 1960), Vol. 2, p. 669.
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Now the term (Xk.
~

V&
~
xk+), which is the exchange

term, predominates in the backward scattering as com-
pared to all other terms which occur in the scattering
amplitude.
To a first approximation,

—IC(~) I'
(Xkr I Vl

~
Xk)non-Coulomb

for k'=k
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APPENDIX A

If p; (i= 1, 2, 3) are the momenta of the 3 particles
in their c.m. system, and q; (i= 1, 2, 3) are the relative

the factor
~ C(k) ~2 arising, of course, from the Schulman

approximation for the Coulomb-modified wave func-
tions x, which occur in the numerator on the left.

If we refer back to Eqs. (32a) and (32b), Sec. U, we

see that the following approximations were made: (i)
The use of an approximate Coulomb Green's function
in solving the integral equations for the h;; the Green's
function appears in the kernels. (ii) The use of an
approximate Coulomb wave function in the initial and
final states.

Our results suggest that the anomaly in the backward
scattering can be traced largely to approximation (ii)
above. In other words, 6' with Schulman's approxima-
tion is probably good enough for solving the integral
equations for the h s; the main difhculty lies with the
wave function, since the ratio is

~
C(k) ['.

In principle, at least, step (ii) could be improved
upon by a better approximation than Schulman's,
perhaps even by using the exact Coulomb wave. This
might reduce the disparity in the backward direction.
Our calculations were carried out with the Schulman
approximation only.

In the forward direction, the Coulomb-less problem
shows no peak, even at 14.0 MeV. Ho~ever, the results
of our calculations verify that unitarity is satis6ed. Our
Coulomb-less problem is not of course a model for n-d
scattering since we have symmetrized between particles
1 and 2 only.

D„&'&(R) =4ni' 2. 'f&.'' ' dr r'+'u„&" (r) up(r)

+(—)'2' 'f&." drr '+'u &" (r)u, (r)
2B

APPENDIX C

The
~

u ) satisfy the equation

[FIp+Vj i
u )=p i u„)

[P"„'-V „]rr„(r) fV(rr')=rr. (r')td, r'.

A formal solution is, using

V(p, p') =»(P) p(p')
and

(C1)

V(r, r') =(2 ) 'f(r(p)V(p p')(p'
I

r')d'pd'p',

u. (r) =exp (in r)

+(d ) 'f d'r'd'r" - V(r', r")rr.(r").„exp(ipi ( r r' ()—

(C2)
In our case, we require the solution to consist of the
outgoing part only. A partial-wave expansion gives an
integral equation for u '(r), of the form

u„& ) (r) = K(r, r') u„&"(r') dr',
0

u„&"(r) =0 (1&0). (C3)
This simpli6cation results from our s-wave Yamaguchi
potential. The eigenfunction equation (C3) was solved
numerically, to obtain the eigenfunctions.

momenta, using the notation of Sec. II, then

p = —-'p —q.= —-'p+q,
q,l = 4P3 gg3= &P2 g Q

Pp 2 pp %3 2 pl+ qlr

q2= —4Pl —2ql = 4P3—gga

pp = —
2P&

—
&b = —

2 P2+ qir

93=—-P2—2q2=4Pl —Qql.

APPENDIX B

The D «)(R) which occur in Eq. (54), Sec. UI, are
given by

2R


