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Calculation of Nonradiative Electron Transition Rates in a
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We outline a method for the calculation of (nonradiative) electron transition rates between pure electronic
states (for an impurity or defect electron trapped in a crystalline lattice) which employs functions that
may be directly correlated with the radiative spectral functions obtained from the interaction of the elec-
tron with an externally applied electromagnetic field. In order to handle a possibly strong electron-lattice
distortion Vd, we have introduced a canonical transformation Lexp fdic(H, +Vs)Lexp( —f60) to H, +Vs,
our unperturbed Hamiltonian, to insure the use of pure electronic states with our transition-inducing per-
turbation V„. %e have chosen Cr'+ and V'+ in corundum as a physical example for the theory, since
their d electrons appear experimentally to exhibit a strong Vz type of coupling to the 194-cm E„mode
of the AI203 lattice. Particular emphasis has been given to the temperature dependence of the 'T2 ~ 'E
and 4Tg -+ 4A2 transition rates for Cr~+.

I. INTRODUCTION

E should like to calculate the (nonradiative) elec-
tron transition probability per unit time between

pure electronic states for an impurity or defect electron
trapped in a crystalline lattice. As a simple model we

choose a two-component electron-phonon system con-
sisting of a single trapped electron interacting with the
surrounding lattice. The Hamiltonian operator H for
such a system in quantized form may be expressed as

H=H'+V, H'=He+Vs, Hp E4+Hn, ——(ia)

Hg Pe,a,ta;, ——Hn=g ce (b tb +,'), -(lb)

Ve ——P e; „a,"a,(b„+b t), n;, „real

(as done for the case of shallow impurity levels in Ge
and Si by Kane'). Although Vs and V„may be identi-
fied separately with two physical extremes (e.g., F
centers and shallow impurities in Ge and Si), they com-
bine to form the total electron-phonon interaction which
is linear in the phonon coordinate, and should both be
considered in the majority of calculations.

In calculating a transition probability per unit time

by means of perturbation theory we are given a pertur-
bation, in our case U„, and a pair of Schrodinger
equations

s(~/~f) I+(f))= HI+(f) &, s(~/~f) I
C'(f) &= H'I C'(f) & (2)

H=H'+V, k=1,

and are expected to derive a solution incorporating the
matrix elements

V~= Q 'vgj ~op cj(bw+byF)& vgj, ~='v)~, ~ i'eal
~ ~

f)Q,Si'
(ld)

(3)

between two states of the Hamiltonian H'. As long as
we are interested in calculating a transition probability
between two states of H' the procedure can be relatively
simple. In our case, however, we are dealing with a two-

component system A, 8 and are interested in a transi-
tion probability involving only one component A, the
electron. Since H' contains a potentially strong interac-
tion Vs between 2 and 8 so that

I
4

&
is not directly

factorable into IA&IB&, we must first introduce a ca-
nonical transformation

(4)

subject to the requirement

Hs= e'~H'e '~=Hg+I—Ie

in order to insure the use of pure electronic states with

V„. If it is possible to satisfy (5) we can express our

matrix elements (3) using (4) and (5) as

(~'I (&'I v(&) I &y& I ~~&, («)
' K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406

I'1950).
2 M. Lax, J. Chem. Phys. 20, 1752 (1952}.
3 R. C. O' Rourke, Phys. Rev. 91, 265 (j.953).
'J. J. Markham, Rev. Mod. Phys. 31, 956 (1959). ' E. O. Kane, Phys. Rev. 119, 40 (1960).
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where b & and b are the standard. raising and lowering

operators for the emission or absorption of a phonon in

mode n and a;t and a, are the creation and annihilation

operators for electrons in the state i—the quantities
co„and e; being the respective phonon and electron en-

ergies. The interaction U~, linear in its phonon coordi-

nates, whose matrix elements v;, connect like electronic
states is the electron-phonon interaction operator re-

sponsible for the displacement of the centers of oscilla-

tion of the phonons by the electron —considered for the
case of the Ii center by Huang and Rhys, ' by I.ax, ' by
O' Rourke, ' and by Markham, 4 among others. The in-

teraction U, also linear in its phonon coordinates, whose

matrix elements v;;,„connect unlike electronic states,
is the electron-phonon interaction operator responsible
for nonradiative decay whose transition probability per
unit time we wish to calculate using perturbation theory



@&here

V(h) = LexpiHohJVLe( —iHoh) j V=e'~V e '@. (6b)

The advantages of the canonical transformation are
clearly demonstrated upon considering

P Po(c;)wo(c;,cr) =P Po(A;)I(to(A;, Ar), (7)

and the Hamiltonian

Ho =e'—(R(Ho+ Vo)e-'6( =Ho g—o;,„'a,tu;/o) (12a)

satisfying requirement (5), such that

Hrt =Hrt. Q I)—;, 'a;ta;/o), HH =HH. (12b)

an expression connecting the thermally freighted densi-
ties of states Po and transition elementso I(to of 4 with
those of A. Using an equilibrium freighting factor and
employing standard. methods~ for calculating a transi-
tion probability per unit time, are set

Po(~;)=«;Is-' 'I C"&/2 &Cr le-' 'I C'I&,

Note that the subscript o (as used in this paper) indi-
cates the initial state of the system only vrhen it is used
in conjunction with the subscript f which indicates the
6nal state of the system; other@rise it is a general index
equivalent to j or k.

G. TRANSITION PROBABILITY

T 'T

wo(c;, cr) =lim (1/o) Ch Ch'

0 0

p = 1//kH T, (Sa) The emphasis in this paper is on simplicity. Thus @re

shaB accept a loss in generality and introduce the simpli-
fying assumption that

)(' &ct.
I

eiH'tv e iH't
I
@ &&—@

I

eiH't'v e-iH't'
I
c, .) (sb)

It is now necessary that we make explicit use of (4) in
(Sa), (Sb), and (7) in order to establish that

po(A;) = (A; I exp( —PHg) I A;)/

P (A;I exp( —PIIg) I A;), (9a)

It)o(A; Ar) = lim — Ch dh'
T~00

0 0

X&(A'IV(h) IAr&&ArI V(h') IA')&, (9b)

&" )=2 &~'Iexp( —PHH) "IIl')/

~Z &Il'I exp( —PHH) IIl'), (9c)

I Br) has been removed by summing over 6nal states,
and e sH)t has been absorbed by I(to(A;Ar). A brief
sketch of the canonical transformation as applied to our
electron-phonon system is presented in Appendix A and
vrill be referred to occasionaBy in Secs. II and III of
this paper. It states briefly that given the transformation

(R=g g;tl;ta;=P C„(b„b„t), —

g;=i Q o; „(b„—b t)/io„, C„=iP It; „a;ta;/ oo(10b)

vre obtain the set of transformed operators

a;—=e'a;e '+= e "*'tl;, (I;t=e"'a;t, (11a)

b„=et' e '@=b +iC, —b t=b t+iC, (11b)
' All transition elements mo appearing in a given representation

of P) are of the same order in the perturbation strength.' See, e.g. , L. I. Schi8, Qtctttthttttt Mochttttw'os (McGraw-Hill
Book Co., New York, 1949), Chap. 8,

It;;, ~X;to(I);,„—er, ~), X;re= —Xr;o are real (13)

into our calculation. Requirement (13) is a form of elec-
tron-phonon decoupling approximation frequently en-
countered in electron-lattice theory' under various
guises and becomes meaningful when n is restricted to
a speciied set of allovrable phonon modes. We shall as-
sume in using (13) that our interaction (Vg+ V„) can be
restricted to a set of phonon modes capable of satisfying
this approximation.

Returning to (1d) we write, using (13),

V = g XitotVg, aitarj;

and upon replacing Vs by (H' —Ho) we obtain, with the
aid of (6b), (1b), and (11a),

V(h) = —Z &'t'I o—+~'r l(o"(h)dr(h)) ~r'= e'—er (14)
jr. c

")

PllttlIlg (14) lllto (9l)) alld llslllg (11a) (12a) and
(12b), we can express It)o(A, ,Ar) as

Itto(AitAr) =11111— dh dAtr l(rt
0 0

(.d
~I I—+(or' I

I—+(o'r
I

Edh Edh'

Xeior'(t t') &oil o'(t) or(t)1 or(or (t') —ot (t') I'i —
( 15a)—

tr )

(15b)

8 Approximation (13) is based on the more rigid assumption that
the contribution V (q „r) of the nth lattice mode to the electron-
lattice perturbation potential can be approximated as V(r)X„q„,
where q„ is the lattice normal coording, te and )„is a parameter
hdependeqt of r,
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The integrand of (15a) is an oscillating function of
(t t'—), as the time and thermal development operators
within the trace commute. Since we will have no con-
tribution to wo(A;, Af) from terms involving C//Ck, d/Ch'

or ds/dt dt', expression (15a) may be rewritten as simply

wo(Ai&A f) 2gr(hfdf ) Mfi, Kif (ogf;) (16)

muting P past X in R;,'(X,V) with the aid of the opera-
tor exp[—iP(d/ds)], we obtain'

exp[ i—P(d/ds)]R .(X V) R .(X.—F.) (22)

Upon taking the inverse transform using (22), we can
equate integrands and write"

in terms of the spectral function R; "(XV)=e e"R;;"(X,V), (23)

00

E ( i)g=-
2x

ds e' 'E,go(s),

so that [inserting (20a) into (23)j
Po(A;) wo(A;, A;) =po(A;) wo(A;, A;),

(17a)
E . .0(e) —(ei[g;(s) gj(—g)]eiig j gi}—)

after transforming to the coordinates t and s= II
—t'. It is

sometimes convenient to express E;jo(s) as

showing that wo(A;, A, ) satisaes the conditions for
thermal equlibrium. But suppose that instead of letting
Y equal It', we let it equal II and express

R;,'(Q, H)—Pt(A;)wt(A;, A j) . (24)

E'jo(e) =N'js[1+L'g(x)l, (17b) If we can satisfy (24), relation (23) guarantees that

where Ã;, is the normalizing factor

(ei(gi gi))

and L,,(s) is a correlation function. In this case

(17c)

P&(A i)w&(A iTA j) Pt(A j)w&(Ai)A i) '

Following Van Hove, " we take the diagonal part of
exp(PHo) exp( —PH) and exp(iHos) exp( iHs) i—n (24).
As an approximation this is equivalent to letting

wo(A;, Af)=2gr(h, f )'igf pN f'Lif(Mfi)~ igf;NO (18)

where L;,(ig) is the transform of L,,(s). The function
wo(A;, Af) is the zeroth-order approximation to the elec-
tron transition probability per unit time.

By substituting (8a) and (8b) into expression (7),
we see that

+is;s —+ &is;s—I', ~s ~, Pe~ Pe (25a)

in the time and thermal exponentials of Po(A;)wo(A;, A,),
where 8; is the energy of the ith electronic state after it
has been shifted by both V„and V~, and"

21';= P wt(A;, As)+additional terms. (25b)

p Po(A;)wo(A;, Af)
If we are to satisfy (14) with H' replaced by H, we must
also rePlace ),jo, as defined in (13), by )t,,' such that

ds Tre e~'e' "V e ' "V„/Tre e~' (19)

(after changing coordinates and commuting the time
and thermal exponentials). The trace here can designate
the sum over any complete set of states for our system.
As IJ' does not alter the electronic state of the system,
we can write

Po(A') wo(A, A f)

ds Tre e~'e'~"Q, fe '~"Q /Tre e~', (20a)

where we have used (1d) and (19), and where

Q;f——p s;f, a;taf(b +b t). (20b)

Expression (20a) represents a special case of the function

to

R -(XV)=-
2K

ds e'"'R. '(X F)

(21)
R '(X Y)=Tre e"e' 'X; e 'r'X"/Tre e

where I and Y are time-independent operators, CoIn-

mijn ) ij (&,i,—n tjt, n)+ 2 (4j &isn) is &,sj,n) ~ (26)
kWi, j

Substituting (25a) into expression (16), we now obtain

wt(A;, A f)= 2gr();f') sigf sE;f'(ogf;), Sf; eef (2'———7a)

K;f'(s)=e &r;+rf&~g~Kfo(s), , (27b)

as a higher-order approximation to w(A;, A f).Expression
(27a), along with (16) and (18), provides the basis for
our consideration of the nonradiative electron transi-
tion probability in solids. Since both E;fo(a&) and K;f'(ig)
can be interpreted as radiative spectral functions —with

the argument ~ taken relative to the zero-phonon

' If 0 is a linear operator and A and B are analytic functions it
is trivial to show that (expO)AB=[(expO)A]X[(expO)Bj. To
arrive at {22) we set 0= —iPd/ds, A =exp( —pF+isF), B=X;;
y exp( —isI').

' Expression (23) can also be proved from methods developed
by D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English
transl. : Soviet Phys. —Usp. 3 328 (1960)j."L. Van Hove, Lecture Notes, University of Washington,
1958 (unpublished); Physica 21, 901 (1955); 22, 343 (1956); 23,
441 (1957).

1~ In expression (25b} we lump into the category of (additional
terms) broadening due to the existence of additional interactions,
strain, etc. In so doing we assume that these mechanisms cd by
approximated by a Lorentzian progy.
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position —we observe that our expressions for the non-
radiative transition probability closely parallel expres-
sions for the radiative absorption and emission proper-
ties of the system. In order to demonstrate this, we
shall brieQy discuss the radiative spectral functions as
they apply to our electron-phonon model. In particular,
we shall construct spectral functions based on the radia-
tive absorption coeKcient, contrast their description of
emission and absorption, and demonstrate their equi-
valence to E;f'((p) and E;f'((d).

where

G 'a(E H)

n12((p) ~—2 hm ImG12" ((p+zs, H),
e-+0

(28a)

2' 0

ds e'H'[E;;(s, H) E;;( s, —H)], —

ImE& 0, (28b)

III. RADIATIVE SPECTRAL FUNCTIONS

The dominant contribution to the absorption coefB-
cient n between the electronic states e» e& may be ex-
pressed in the Kubo formalism" as

a relation contrasting the emission and absorption
properties of the system. Had we used the spectral func-
tion E12((p, H')—with si replacing si in pi—we would
have arrived at

K,i(—(p, H') = exp[—P((p—(pis)] E12(op,H') (33)

instead oi (32). Assuming ss»si and confining ourselves
to temperatures below 300'I so that we may set p2 0,
p~ 1, we need only to calculate the absorption part of
G(E,H) in order to obtain n. In this case we find, after
inserting (29) into (28b),

nis((p) ~K(2((»,H) .
In place of E12( (,pH') and K12( (p, H) we prefer for

the purposes of this paper to use E12'((p—(pis) and
E12'((p—412) as defined in Sec. II. To demonstrate
their equivalence, we observe from (14) and (16) that
the effective part of Q;f in (20b) as far as the transition
probability per unit time is concerned may be expressed

(Qif)a(f )iif (pif(zit(sf ~ (34)

Substituting (31) into (23) we obtain

K21(—(p, H) = exp) —p((p —612)1 E12((p,H), (32)

E;;(s,H)

—Trp PHSiHa(Z. t—(ZS iHa(Z.Z(2 /T, rg-PH.
E;,(s iP, H)=—E;;( s, H), —

E;;(s,H) =E;,*( s, H), —

Substituting first (34) and then (28c) into (20a) and

(28c) dividing by pp(A;), we see that

Ps(A )e'"f"K f (s)=K;f(saH') (35)
(28d)

by comparing integrands with (16). Similarly for the
case of II we would obtain

express the difference between the radiative absorption
and emission characteristics of the system in terms of
temperature-dependent double-time Green's functions
of the variety introduced by Bogoliubov et ul."Dehning
a spectral-absorption function"

E12((p,H) = ds e'"'E12(s,H),
211pg

d(p K12((p,H) =1,
(29)

we see from a comparison of (28c), (29), and (21) that

such that for a one-electron system Lusing (9a) and
(25a)j

p;= Pi(A;) = [exp(—Pc;)1/P exp( Psa), —(30)

pi(A;) expfiQ f $)K f(s) '= K,'f(s, H) . (36)

Applying (29) and the analogous expression for
E1(2,(pH') to (35) and (36), we thus arrive at

E12 ((p 12) Klz ((paH) a

E12'((p—(pis) =E12((p,H') .
(37)

If we are to work with E;as((p) and E;,'(pp) we must first
construct expressions for N;; and 1.@(s) as defined by
(17a), (17b), and (17c).Derivations of Ego(s) are to be
found in the literature. ' ' We illustrate in Appendix 3-
an example from which we obtain

N ..—/pi[pi(a) pj(a)])-'sj

(zi;,„—vf, „)'
= exp —

2 P (2N„+1), (38a)
a cd 2

plK12((paH) +12 ((ztizaH) ~

(Si aa ii' a)
(31) L;;(s)=exp P

"R.Kubo, J. Phys. Soc. Qapau) 12, 570 (1957).
'4 N. ¹ Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk.

SSSR 126, 53 (1959) t English transl. : Soviet Phys. —Doklady 4,
589 (1959)j.

'5 Expressions relating Green's functions to spectral functions
are presented in Ref. 10.

where

X[N„s'""*+(N +1)e '""'j —1 (38b)

N =(e~""—1) '
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IV. AN APPLICATION: Cr'+ AND V'+
IN CORUNDUM

Associated with the transitions 4Am-+ 4T2 (Cr'+ in
A1203) and 'Ti ~ 'T~ (V'+ in A120~) McClure" has ex-
perimentally observed at 5'K well-defined spectra con-
taining regularly spaced vibrational structure indicative
of coupling to the 194-cm ' E„mode of the corundum
lattice. In applying our one-electron e&

—+ e2 model to
Cr'+ and V'+ (which have 3 and 2 electrons, respec-
tively, in the d state) we are confining ourselves to the
calculation of spectral functions and transition proba-
bilities arising from one-electron d-d transitions and
neglecting electron-electron coupling. To eliminate addi-
tional complications we shall also ignore splitting by the
trigonal field of the corundum lattice'~ and spin-orbit
effects.

A. Corundum Lattice (A1~0~)

We limit our consideration of the corundum lattice
to a band centered at 194 cm ' satisfying requirements
(13) and (26). From Eqs. (38a) and (38b), we conclude
that our interest in the matrix elements e;,„and the
phonon distribution function (implicit in the summation
over phonon modes) is through the expressions

(41a)

4'(P e) =2 (e' -—~~ -)2(&.+l+l)e"""'/~.2 (41b)

where
I;;+(P, s iP)=Ig~(P,——s),
I'1+(p,o)+I'i (p,o)=SU(p)

(41c)

We shall therefore [1]assume a continuous set of phonon
modes exerting a maximum in6uence at 194 cm ', [2]
require that I;,+(P,s) provide adequate convergence of
I.;,(s) to zero for large

~
s ~, and [3]demand that I;;+(P,s)

'6 D. S. McClure, J. Chem. Phys. 36, 2757 (1962); see also R.
M. MacFarlane, J. Chem. Phys. 39, 3118 (1963).

7 Since we choose to ignore the trigonal Geld splitting our tran-
sition 4A&~ 4T2 in Cr'+ will correspond physically to the spin-
allowed perpendicularly polarized component 4A2 —+ 4T&(4E). In
the case of V'+ our transition 'T~~ 'T2 will encompass both
polarizations.

in agreement with standard theory. It is obvious from
(38a) and (38b), and (17a) and (17b) that

K,P (co) =K; 0(ru);

and by substituting, in order, the second part of (37)
and then (39) into (33), we obtain

K12 ( +12)= e K12 (+12)y +12 & &» y (40)

a relation predicting the symmetry of the absorption
spectrum relative to the zero-phonon energy co~~. We
are now in a position to consider an application to the
theory.

satisfy requirement (41c). Writing"

da)((o —coi2) "K»'(co—a&i2)

=i" (d"/dt") dree '&" '"&'K '(co—ao )
—oo —4=0

for the eth moment of the absorption band associated
with an electronic transition ei —+ e2(e2) ei) in the im-

purity, we see (using (17a), (17b), and (17c), and (38a)
and (38b) along with assumption [1]and (41a)) that
the 6rst moment p, ~2' is

pin'= Q (&i,~—&2,~)'/~~~~S,

S=S»(~), a=194 crn—'.
Also using assumption [1]and (41a) one finds

Sim(P) —S[21V(co)+1], 1V(co) = (ee"—1) ' (42b)

Since we have not assumed an exact knowledge of either
the electron-phonon coupling or the phonon distribu-
tion function, it is useless to attempt an exact solution
of I»+(P,s). For low temperatures we shall modify
I»+(p, s) by writing

I»+(P s)~SX(co)eemi2 g e+a~"&w'en)/P 1 (43a

using assumption [1]and (41b). Letting

P e~'""'/P 1=exp[+icos r(~z—
~

—
~ Ims)] (43b)

and substituting (43b) into (43a) we obtain

I»+(P,s)=S($(co)+'~ '..)e+'m~r(l+—&PI I;&I& (44)—

a simple expression satisfying requirements [2] and
[3]"for some temperature range

T; (T=1/keP(T ~.
This compact formulation introduces an additional
parameter I' from which we can establish an effective
width of 2I' for our phonon band. It provides a reason-
able approximation to use with (38a) and (38b) as long
as T is not allowed to become too large" or too small. "

' When constructing moments we shall consider X; (co—cv;;}
as providing an adequate description of our line shape.

'OThe necessary condition that (44) satisfy the first part of
(41c) and thus t 3j is that the ratio E12'(—~12)/%12'(~12) calcu-
lated using (44} provide adequate agreement with relation (40).
The ability of (44) to meet this condition is discussed in Sec. IVC.

"Although @12' when computed using approximation (44) is
identical to (42a), higher moments of the line tend to become dis-
torted in this approximation with increase in temperature (see
Appendix C). Since the cutoff T~» is a function of F, it will be
determined in Sec. IVB.

In the limit of infinite P expression (44) becomes purely oscil-
latory over time, and its substitution into (38b} would yield a
series of 8-type functions rather than a continuous spectrum for
Ii»'(~ —~»l.
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I'= I'i+ I' s (46)

we see upon combining (27b), (17b), (38a) and (38b),
(41a) and (41b), (42b), and (44) that Eis'(a& —rois) and
Eis'(oi &o») a—re completely defined in terms of their
arguments and the parameters co, S, 1, and F.However,
at very high temperatures —inserting (45) in place of

(44)—they are defined in terms of their arguments and
the parameters co, S, and F.

B. Determination of Parameters

In order to determine S, r, and I' we return to the
experimental observations of McClure. ""Using (42a)
we estimate from the band structure of his experimental
curves for Cr'+ and V'+ at 5'K that upon setting ~~ ~ e2,

respectively, equal to A2 —+ 'T2 and 'Tj —+ 'T2,

S(Cr'+)~S(V'+)~6. (47)

Assuming F& F we conclude that the half-width of the
first vibrational component for Cr'+ and V'+ is charac-
teristic of F and estimate, using these same curves, that

1(Cr'+)=r(V»)=0. 15~.

The half-width F at 5'K we approximate directly from
the zero-phonon component and write

I'(Cr'+)~0.075'&, I'(V'+)~0.037'&. (49)

Although S and I'(like ~) may be taken as independent
of temperature, I' as de6ned by (46) and (25b) merits
further discussion.

For the sake of argument let us assume that I'(Cr'+)
is determined primarily from the transition elements
wi(A;, A s), which, though temperature-dependent,
should increase I'(Cr'+) only by a factor of 2.5 between
absolute zero and room temperature. "Since there are

"The "slow-modulation approximation" expands exp(+ice„s)
in (41b) to second order in s. It provides a more accurate descrip-
tion of F12" at moderate to high temperatures than (44) and is
preferable for use at all temperatures in calculations far out on the
high-energy wing. (See Appendix C.)' It is shown in Fig. 3 that w~(4T2, 'El, the prime contributor to
4T& relaxation, increases by a factor of 2.5 between 50 and 300'K.

We shall arbitrarily assign 2"; = 50'K Lsince an exact
expression for Its+(P, s), dependent as it is upon 1V,
should show little variation between 0 and 50'K] and
insert it into our calculation in place of the true tem-
perature when T(50'K. We shall consider T, in Sec.
IVB. For T))300'K we can come close to satisfying L2]
and L3] by invoking the "slow-modulation approxima-
tion"," in which case inserting (42b) into (41b) we

approximate

I "(~,~)+I--(~,~)=&L» ( )+1]
&& [1—-,'&v's'] —isro) S. (45)

When using expression (45) it is preferable to work di-
rectly with E,rs(s) )through (17b)] as (45) prevents the
possible formation of 8 character in E;; (ro) and elimi-
nates the need for L;,(s). Writing

no important contributions from the ground state, (49)
would indicate a zero-temperature lifetime (2cl's) ' for
'T~ of 1.2X 10 "sec. However, experimental measure-
ments by Pollack" ~' at room temperature appear to
indicate a much greater lifetime of the order of 2X 10 '
sec. We shall assume that this large discrepancy arises
primarily from the necessary inclusion of strain broad-
ening in any realistic estimate of I'(Cr'+). In fact, we

shall further assume that strain broadening is the domi-
nant contributing factor to both I'(Cr'+) and I'(V'+),
in which case (assuming no structural change in the
material), we can estimate that I' is essentially tempera-
ture-independent.

Having established S, I", and F we shall now deter-
mine T, . Proceeding as in the derivation of p, ~2 in
(42a) (see also Appendix C) we find that the dominant
contribution to p, ~2' at high temperatures comes from

At T=400 K and F=0.15' we 6nd a positive distortion
of 14% in tits by using approximation (44) instead of
the exact expression (41a) in conjunction with assump-
tion L1]. Since this distortion due to I' becomes even
more pronounced for higher even moments we shall
assign T, =400'K for F=0.15~. In fact, this tendency
of (44) to overestimate higher moments of the line-

shape limits its use to very low temperatures when
E'(a&) or E'(rd) must be evaluated far out on the high-

energy wing (ro& 20ro). In this region approximation (45)
with a 5% negative distortion of tits at O'K (Appendix
C) is preferable at all temperatures.

C. Low-Temperature Investigations:
Approximation (44)

We shall designate any temperature for which
T&300'K as a low temperature and shall use approxi-
mation (44) in all calculations applied to this range
where the argument of E'(rd) or E'(ro) is less than
20co. We found it desirable to Grst check the ratio
Eis'( —b, is)/Ets'(his) in this range in order to demon-
strate that this approximation is really consistent with
the symmetry requirement of L3]"and is thus justified.
Using (17a) and (17b), (38a) and (38b), (41a) and
(41b), (42b), and (44) in conjunction with (47) and (48),
the computation of Eis'(his) as a function of his was

performed numerically on an IBM 7094 (Mark I) com-
Puter. We comPared tabulated values of Eits( —his)/
Eiss(hi&) up through his= 2~ obtained by this procedure
with values derived from relation (40). Over the range
considered a suitable agreement to within a factor of 3
was found to exist between tabulated and derived
values even at temperatures as low as 50'K—substan-

'4 P. Kisliuk and C. A. Moore, Phys. Rev. 160, 307 (1967).
'~ S. A. Pollack, J. Appl. Phys. 38, 5083 (1967).
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tiating our argument. The spectrum of E»'(Ats) has not
been plotted since it differs only slightly from E»'(6»).

In order to illustrate the functional form of Ets'(6»)
prescribed by (44) we plot, in Fig. 1, E»'(6») versus
6» for Vs+ at 50 and 117'K. Using (27b) and (49)—in
addition to those relations used in the computation of
E» (6»)—the computation of E»'(Ats) wss performed
numerically at a rate corresponding to approximately 23
input values of the argument per minute. An increment
of 0.1~ was used over the range —2.5co&6~2&10~. We
notice in Fig. 1 a slight deviation of the energy (6»)
at the nth vibrational peak from neo. This deviation is
due principally to I" and becomes more pronounced for
the case of Cr'+(I'=0. 15&v). We define this deviation as
A„where

(4»)„=mrs+6„) rs) 0;

values of b, „/ts for Cr'" at 50'K are given in Table I.

These values were obtained from a numerical computa-
tion of Ets'(its) for Cr'+ using an increment of 0.01t0,
in order to more accurately establish the peaks. The
deviation 6„ is seen to 6rst rise positively and then re-
turn to zero at 36 in qualitative agreement with the
experimental 5'K spectrum for Cr'+ presented by
McClure. The line pro61e for V'+ at 50'K presented in
I'ig. 1 agrees quite well with McClure's experimental
data (Fig. 2) although the vibrational satellites do not
damp out as rapidly with increasing phonon number as
in the experimental case. No experimental comparison
is available at 117'K.The one-phonon annihilation peak
observable numerically at 50 and 80'K for E»'(6»)
appears abnormally suppressed for E»'(6») due to the
insufficient attenuation of phonon-creation elements by
the Lorentzian broadening factor used in the calcula-
tion of E»'(6»). For this reason we have not indicated
the presence of an annihilation peak in I'"ig. 1.

Before considering the question of transition proba-
bilities, we must 6rst determine );, and 0;;. Ignoring
coupling to states k~i,j and energy shifts due to V„,

o0.6-Z
I-

g 0.5—
Cl

4j&0.4-
I-

ao.s- ~

158
I

YAaLE I.Values for the ratio of A„(the deviation of the position
of the n-phonon peak from neo obtained from a numerical computa-
tion of the spectral function) to co for V'+ indicating the extent of
error in the calculation of the peak position.
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FIG. 2. Vibrational structure of the perpendicularly polarized
component of the 6rst strong absorption band of V'+ at about 5'K
as obtained experimentally by McClure (Ref. 16).
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we see from (26) and (25a) that we can set

Xg'= X;, dr@= o)g. (50) 14

Let us confine our discussion of transition probabilities
to Cr'+ and define an e~ such that

el(e2 ——e('T2) (51)

will include all states with energy less than e&. Ke ob-
serve from the combined experimental spectrum" of
Cr'+ that transitions involving only e~ are sharp lines.
Thus it is reasonable to conclude that the coupling

12

E

"o 10

4J

8
K
z
O

6
lh

4

4cm '

ni, „=0.
Using (52) we now write

(52)

(53)
0 2

L
6 8 10 12 14 16 18 20 tu

ENERGY (cm ')

+21 (co) +21 (co) +12 (co)

E21'(co) = E'21'(co) = %12'(co),

(54)

and inserting expressions (50) and (53) into (27a) we
obtain

w1(A2cAl) 22r()c21 ) (col2+co+) +21 (col2) (55)

Expressions (54) act as a bridge between the radiative
spectral functions previously determined for 'A

&
—+ 'T2

and the transition probability per unit time (55). In
Fig. 3 we have plotted wl(A2, A 1)/2(X21')' as a function
of co~~ for Cr'+ at 50, 117, and 300'K. At ~~~ 2300
cm ' (11.9co), which is the 'T2 —& 2E energy difference,
we have drawn a vertical line whose intercepts indicate
the temperature dependence of the 'T2 ~ 'E transition
rate. The transition rate T2 —+ 432 is not indicated, as
it occurs far out in the wings at co~~~86co. It will be con-
sidered, using approxima, tion (45), in Sec. IV D. Figure
3 is illuminating in that it exhibits not only the tem-
perature dependence for the rate of a nonradiative

by comparing (15b) with (42a). Also using (52),
(38a) and (38b), (17a) and (17b), (39), (27b), and
assuming F to be independent of l, we see that

Fro. 3. Plots of the transition rate roc(A2, Al)/2(4co)2 versus
w2~ for Cr'+ over the region 0~ 20co at 50, 117, and 300'K with
a vertical line at 11.9~ to indicate the transition 4T2 —+ 'E. The
transition rate may be expressed in inverse seconds by multiplying
its value in inverse centimeters by the velocity of light.

transition occurring in Cr'+ but also the dependence of
the transition amplitude on electronic energy-level
separation. Although the theory predicts transitions to
higher energy states, these have amplitudes derivable
from negative values of the argument cols in (55) and
as a result are suppressed. Ke have made no attempt to
consider them in this paper.

D. High-Temperature Investigations

Thus far in calculating wl(A2, Al) we have used ap-
proximation (44) at low temperatures in the region
~&2&20~. The question arises as to whether we can use
(44) in this region at temperatures T&300'K. In Fig. 4
we have plotted w1(A2, A 1)/2()csl')' as a function of cols

at 400'K using both approximation (44) and approxima-
tion (45). Since (44) comes much closer to satisfying
(41c) than (45) at 400'K it more accurately reflects
the shape of the envelope in the region of small co~2

l2

lo—
E
CP

0

Cr~+ '. 400'K
(L) = l94 cm '

Fxo. 4. Plots of the transition
rate coc(A2,Ac)/2(X212)' versus cost
for Cr'+ over the region 0-+ 22~ at
400'K obtained by using approxi-
mation (44) (dotted line) and ap-
proximation (45) (solid line).
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Fxo. 5. Plot of the transition rate
tsar(As)AI)/2(xs~')' for 4TQ + 8 of
Cr'+ as a function of temperature up
to the melting point of Al20g.
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(cols(1,2o1). Above 800 K olll' cRlculatlolls Indi-
cate that approximation (44) appears to have no ad-
vantage over approximation (45) in any region of the
spectrum. In Fig. 5 we have plotted tel(sTs&sE)/
2L)%,o('Ts, sE)]s ('Ts —+sE occurring at o11s 12ol) as a
function of temperature using (44) at temperatures up
through 400'K, and using (45) at temperatures above
400'K up to 2300'K (the melting point of AlsOs). We
observe a peak for wl('Ts, sE), occurring at around
800'K, which appears to be rather Qat. This peak lies in
that region where we have shifted from approximation
(44) over to approximation (45). The rise observed for
tol('Ts, sE) with increase in temperature between 50 and
800'K is gradual.

Ill tile cRse of tol( Ts, As)( Ts ~ As occllrllllg Rt

o11s 861'), the rise in amplitude with increase in tem-

perature is quite abrupt. For this reason in Fig. 6 vie

have Plotted tttl('Ts, 'As)/2P. '('Ts, 'As)]s versus tem-

perature (solid line) on a logarithmic scale so that we

might compare this rapid increase with the more stand-

ard temperature variation given by"

Pl(~)+ I](QI&BS)/s

the transition rate for the decay of an excited electron
of energy" cuIs+o15 by the excitation of (olls+105)/ol
quanta of energy ol (dotted line). Although we feel that
the perturbation methods leading to (56) are not directly
applicable to our case (5=6), Fig. 6 illustrates the fact
that our results predict even a greater change of
Ill('Ts, 'As) with temperature than is normally con-
sidered. Ke have therefore normalized the dotted curve
to agree with our solid curve at O'K.

One asPect of our calculation of wt('Ts, 'As) requires
further explanation, The Lorentzian broadening factor
e r~'~ appearing in (27b) is physically unacceptable to
use in calculating EI(ol) in the far wings, as it falls off
too slowly to use with approximation (45), which de-
scribes Z'(&o) as a Gaussian. We therefore replace
z
—ri i ln (27b) by e

—s s«'r'", lts Gaussian half-height
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"In this case Vs becolneS part of the perturbation and the Ilnpertnrbed energy &mls is given by (53),
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equivalent, so that, by use of (45), rv&(A2, A&) becomes

wg(A2, A ()= 2v"'0 '(X2p)'(~»+(oS)'
XexpL —(u)2 —(uS) '/0'$, (57a)

with
0= L2S(2N(u)+1)(v'+1.443I'j"' (5'/b)

For 5=6, F=0,15~ it was possible to obtain three-
figure accuracy in 0 at all temperatures by neglecting
the second term within the square root in (57b).

V. SUMMARY AND CONCLUSIONS

We have attempted in this paper to outline a method
for the calculation of the (nonradiative) electron-
transition probability per unit time between pure elec-
tronic states for an impurity or defect electron trapped
in a crystalline lattice. In order to handle a possibly
strong electron-lattice distortion V~ we have introduced
a canonical transformation

e'~(IIO+ Vg) e '~

of IIp+ Vg, our unperturbed Hamiltonian, to insure the
use of pure electronic states with our perturbation U .
To simplify our formalism and computation we have
permitted some loss in generality by introducing the
assumption that the matrix elements v;, ,„and v;,„of
V„and V& are related by the expression

v,;,„~X;P(v;,~—v;, ), X@'=—X,,v are real. (58)

In so doing we have restricted our consideration of the
lattice to a set of phonon modes satisfying this condi-
tion. As a result we obtain a simple expression for our
(nonradiative) transition probability per unit time,
which can be correlated to the radiative spectral func-
tion E;,(~) between the electronic states i and j with
argument co taken relative to the zero-phonon energy
position. Because of this fact we have discussed in gen-
eral the radiative spectral functions and developed their
properties. Of particular importance is the relation

E12 ( +12)—e e ~2E» (+») +»= M %12

predicting the symmetry of the absorption spectrum
(for the Hamiltonian IIv+Ve) relative to the zero-
phonon energy ~~2.

We have chosen Cr'+ and V'+ in corundum as a
physical example for the theory since their d electrons
appear experimentally to exhibit a strong V&-type cou-
pling to the 194-cm ' E„mode of the A1203 lattice. As
we have not assumed an exact knowledge of the form of
either the electron-phonon coupling or the phonon dis-
tribution for this example, we have used two approxi-
mations in order to develop the theory. In the 6rst
approximation we look for a simple algebraic form for
the expressions I»+(P,s), de6ned in (41b), which will
insure that they provide adequate convergence of
I.»(s) (our correlation function) to zero for large ~s~
and satisfy as far as possible the symmetry requirement

(41c).This procedure provides for the proper symmetry
of the spectral function in the neighborhood of the zero-
phonon line, in addition to permitting its numerical
calculation. The approximation is limited at very low

temperatures by the fact that one obtains a set of 8-

type functions for the function E»'(a&) at absolute zero.
Although this limitation does not alter the spectral
contour, it distorts the degree of resolution of the satel-
lite vibrational peaks at very low temperatures. In
order to compensate for this peculiarity we have estab-
lished a low-temperature cutoff of 50'K. It is to be ex-
pected that the exact expressions for I»+(P,s), as given

by (41b), should exhibit little change between 0 and
50'K. At high temperatures the approximation is
limited by its overestimation of the moments of the
spectrum. The problem here is more serious, with the
result that the approximation is not acceptable for use
with the chosen example at temperatures T)400'K.
It is also not acceptable for use in calculating spectral
amplitudes far out on the high-energy wing (as required
in calculating the T2 —+ A2 transition rate in Cr'+) at
any temperature. On the positive side (see I'ig. 1), the
spectral function E»'(a&) at 50'K for &o(202' compares
favorably with McClure's experimental data, although
the vibrational satellites do not damp o6 as fast with
increasing phonon number as might be expected. As a
result we have used this approximation to compute
rv&('T2 ~ 'E) occurring at an electron difference of 12~
at temperatures up through 400 K.

As a second approximation for I»+(P,s) we have in-
troduced the "slow modulation" formulation by ex-
panding exp(+is&„s) in (41b) to second order in s. Al-

though the line shape in the neighborhood of the zero-
phonon position is acceptable only at very high tem-
peratures in this approximation, its estimation for the
moments of the line at 5=6 is quite-good; and we have
used it at all temperatures where amplitudes far out on
the high-energy wing are desired. "From this approxi-
mation we obtain a Gaussian form for both E»'(a&)
and E»'(~) (upon requiring that strain and other re-
lated broadening mechanisms become Gaussian) and in
this manner we obtain a very simple and compact ex-
pression for w~(A2, A~), given by (52a) and (57b). The
temperature dependence of the transition rates for
4T2 —+ 2E and 472 —+ 432 in Cr~ plotted in Figs. 5 and
6 shows a Bat peak for 4T2 —+ 'E at about 800'K and a
rapid increase for 'T2~ 'A2 above 50'K. The rate for
'T2~ 'A2 peaks only at physically unrealizable tem-
peratures above 100 000'K. It is to be emphasized that
nowhere in our treatment o$ the electron-phonon in-
teraction do we require that the distortion V~ be a
perturbation.

We plan in a later paper to eliminate assumption (58)
and consider the more general case where more than

"At S=6 the spectrum peaks far enough to the high-energy
side of the zero-phonon position that a good approximation to the
higher-order moments should predict reasonable amplitudes fag
out on the high-energy @ring.
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one region in the phonon spectrum may be involved in
the calculation of transition rates. For example, v;,„
may show strong coupling at acoustic phonon frequen-
cies while v,;,„exhibits a maximum coupling at optical
phonon modes. Also, we shall consider a more exact
method for handling I)2+(P,s) involving some estima-
tion of the nature of the electron-phonon coupling co-
eKcients and phonon distribution function, along with
a numerical calculation of the summation over phonon
modes contained in I)2+(P,s)—missing in approxirna-
tions (44) and (45) of this paper.

APPENDIX A: CANONICAL TRANSFORMATION

Following a suggestion of Kane' we introduce a ca-
nonical transformation

a;=e'+a;e '~

—ebb e
—'(R

7

(R=Q g,a,ta;, g, =i Qv;„(b„b„t)/(o„,—

(Aja)

(Aib)

Lg', g']=o (A1c)

of the operators ut, a and b~,b of our system, such that

Ho =e' (Ho+Vd)e '—~=HO Pv 'a—ta/co . (A2)
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using (A1c) and a well-known identity, m'wherewehave
now eliminated the "annihilation" portion of g; from

Ic);. Finally, within the framework of our one-electron
system" we see from(1d), (A3), and (A4b) that we can
express

(A9a)V= ~ vg„q; e'«' g7)a;~a;
~ ~'tgt"i'

phonon operator exp( —ig,) may be designated as the
creation operator for the "phonon cloud" that surrounds
the electron in the ith state as a result of this distortion.
Comparing (A1c) with (A3), we see that a replacement
of C„byiv, ,„/s&„implies a replacement of (Rby g;. Thus,
using (A1b), we may replace (A4b) by

e"'b„e 'g'=b» v —/&o» e'g'b»te "'=b»t v —/co (A6)

and write the commutator expressions

'b»(t) e+"'(")]=+(vg»/co»)e '"»(' ')e+"'(') (A7a)

P„t(~) e+'g'(&')]'=~(v, „/&„)e'»»(& &')e—+'g* (&') '(A7b)
where

g.(i)—e Bvtg e LHB . b '(i) —e'B'tb e aHBt ——
e
—$»»b et(

Letting (A7a) operate on I0)—the vacuum state of our
system —we see that for an electron in the ith state,

b„Ic&;=(—v;,-/"„) Ic),, Ic&,=e-'O'I0&, (A8)

and Ic);is aneigenstateofb„with eigenvalue( —;,v„/"„).
Thus, a state of the "phonon cloud" is likewise an
eigenstate of the lowering operator b. If a simplified
form for Ic&, is desired we can write

Ic)'=exp( —~ 2 v .'/" ') exp( —2 v, „b„'/"„)Io)

Writing
V. . es(gs—gg)n. g.&g.

fA

tggQi'
C»b» b»', C—»=i v', »aPa'"», A3

in terms of a position coordinate operator

(A9b)

q;, =b+b„t 2v;, /(u„. —
it is a trivial matter to show, from the definition of (R in
(A1a), (A1b), and (A1c), that

a = e 'g'a u ~= e'g'a ~s

b =b+iC, bt=bt+iC„

Expressions(A9a) and (A9b) illustrate thefact thatitis

(A4a) therelative distortion characterized by expi(g; g;) tha—t
is physically important.

(A4b)

p»=p») q»=q» —2+v', »ai al/&» ~(A5)

If we picture b as an operator of the distorted lattice
and express our lattice momentum and position opera-
tors p, q in accordance with (1c) and (1d) as

p b bt, q b+bt, —
we can establish from (A3) and (A4b) that

00

E')(&o,8') =
2'

Se'("'2—")~f'7(')

APPENDIX 8: PROOF OF RELATIONS
(38a) AND (38b)

I ax' has demonstrated that the spectral function
E,;(a&,H')—which we have de6ned in expression (29)—
can be written (we use our notation) as

Expressions (AS) illustrate the fact that the distortion
arising due to V~ is that of position, not momentum,
and in terms of q has a value of 2iC. The exponential

'SWe employ the identity e'~=e &t"»e*e~, where the com-
mutator t:x,yg is a e number. See, e.g. , H. P. Baker, Proc. Math.
Soc. (London) 3, 24 (1905).

'9 The operator u;ta;'uI, ug acting upon one-electron stateS is rerq,
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where

&&Li sin(»„s—(2S„+1}(1—cos(»„s)j. (Bi)

Rcplaclllg 2 by —2 111 (81) Rll(l Rpplylllg (37) wc obtalI1

We shall now compute these moments for E» ((»—(»»)

using 6rst the exact expression for Iq(P, t) given by
(41b) (used in conjunction with assumption L1]),
using second approximation (44), and using 6nally the
"slow modulation" approximation (45). From the exact
expression )computing )|412(e)] we obtain

E;p((»—(»g) =—
2~

d2C4(~ rl'~)w-fc& ( 0) '-(E2)

It is now a simple matter to introduce (17R) and (17b)
into (32) and prove (38a) and (38b).

APPENDIX C: MOMENTS OF E»'((» —(»12)

Expl'csslIlg 'tile 22th IlloIIlcll't of E" ((»—(»") Rs

44»'(4') = 1,
""()= 5,
44»2(e) =(»2t 2$((»)+1jS+(»252,

44»2(4:)= (»25+3(»2t 2$((»)+1)52+(»252,

4 12'(e) = ~'LZV(~)+ 1)5+3~'L2cV (~)+1]5

y4~452+6~4PiV(~)+ 1j52+~454.

Using (44) Lcomputing )(4»(1)) we obtain

we obtain upon inserting (17a) and (17b}
1 2n. .f(—gn/gym)(, 8;;(P)»l -g (P, t)j'
I;,(8,&) =I;; (P,t)+I;,-(P,&),

where use has been made of (38a) and (38b) and the
de6nitions (41a) and (41b). The 6rst four moments are

44 '=2 I"(Pt)—
df )=0

-(f2 pd q
2-

~; =" —I;;(e)+I I;;(e) (-
dP )Ch )
d' fd q (d2

I';(O ~)+—3I I';(e ~) —
I I I';0'~) I—

dP ((E( ) )dP )

-d4 pd2 q
2

&;;4=24 —I,;(P,t)q3~ I;;(P,~) ~—
(Jh4 &dP

t'd ) (d' ) jd
+4I —I'J(@) I I I;;(P,~) I+61 ——I;;(g) I

ddt ) tdP ) tdt )
~d2 q ]d q4

&&)
—I;;Q,~) I+~ —I';QV) I

(dP ) &dh )

)»'(1)=»~'(~)

)»'(1)=~»'(e)

~»'(1}=4»'(~)+(21'/P)L2&(~)+ 1jS
4»'(1) =(»'(4')+(61"/P)~5+(61'/P)~L2&(~)+ 1jS'
u»'(1) = I »'(4)+(61'/P)~'L2&(~)+ 13'5'

+(12P'/P2) t 2'((»)+ 1]252+(24I'/P)(»252

+(12I'/P)(»2L2E((»)+ 1752

+D12I'/P)(»2+ (12P'/P2)+ (241'/P2)]

XL2E((»)+ 1)5,

and using (45) Lcomputing 44»(2)j we obtain

~»'(2) =)»'(~),
)2»'(2) =y»I(4:),

)»'(2) =~»'(~)
~

w~'(2) =w~'(~) —~'5,
44»4(2) =p»4(e) —(»4L 21V((»)+1]5—4(»'5'.

One sees immediately from these expressions that (44)
tends to overestimate and (45) tends to underestimate
the moments. Only at very low temperatures is (44)
preferred, (45) being superior at most temperatures
especially when used with large values of S.


