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We outline a method for the calculation of (nonradiative) electron transition rates between pure electronic
states (for an impurity or defect electron trapped in a crystalline lattice) which employs functions that
may be directly correlated with the radiative spectral functions obtained from the interaction of the elec-
tron with an externally applied electromagnetic field. In order to handle a possibly strong electron-lattice
distortion Vg4, we have introduced a canonical transformation [exp sR](H,+ Va)[exp(—i®)] to Hy+Va,
our unperturbed Hamiltonian, to insure the use of pure electronic states with our transition-inducing per-
turbation V.. We have chosen Cr3* and V3* in corundum as a physical example for the theory, since
their d electrons appear experimentally to exhibit a strong V4 type of coupling to the 194-cm™ E, mode
of the Al,O; lattice. Particular emphasis has been given to the temperature dependence of the 4T’y — 2E

and 4Ty — %4, transition rates for Cr3t.

I. INTRODUCTION

E should like to calculate the (nonradiative) elec-

tron transition probability per unit time between

pure electronic states for an impurity or defect electron

trapped in a crystalline lattice. As a simple model we

choose a two-component electron-phonon system con-

sisting of a single trapped electron interacting with the

surrounding lattice. The Hamiltonian operator H for
such a system in quantized form may be expressed as

H=H'+V,, H'=Hy+Vs Ho=H;+Hg, (la)
HA:Z eiaﬂai, HB=Z wn(bn*b,.-f-%) y (1b)
3 n
Va=X vin0iai(batbat), vin real (1c)
Vu= Z vij,nardej(bn"l'bnT), Vij n="ji,n real (ld)
i,3m
i%j

where b,! and b, are the standard raising and lowering
operators for the emission or absorption of a phonon in
mode 7 and a;t and a; are the creation and annihilation
operators for electrons in the state i—the quantities
w, and ¢; being the respective phonon and electron en-
ergies. The interaction Vg, linear in its phonon coordi-
nates, whose matrix elements v;,, connect like electronic
states is the electron-phonon interaction operator re-
sponsible for the displacement of the centers of oscilla-
tion of the phonons by the electron—considered for the
case of the F center by Huang and Rhys,! by Lax,? by
O’Rourke,® and by Markham,* among others. The in-
teraction Vy, also linear in its phonon coordinates, whose
matrix elements v;,, connect unlike electronic states,
is the electron-phonon interaction operator responsible
for nonradiative decay whose transition probability per
unit time we wish to calculate using perturbation theory

1K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950).

M. Lax, J. Chem. Phys. 20, 1752 (1952).

3 R. C. O'Rourke, Phys. Rev. 91, 265 (1953).

4]. J. Markham, Rev. Mod. Phys. 31, 956 (1959).
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(as done for the case of shallow impurity levels in Ge
and Si by Kane?). Although V4 and V, may be identi-
fied separately with two physical extremes (e.g., F
centers and shallow impurities in Ge and Si), they com-
bine to form the total electron-phonon interaction which
is linear in the phonon coordinate, and should both be
considered in the majority of calculations.

In calculating a transition probability per unit time
by means of perturbation theory we are given a pertur-
bation, in our case V,, and a pair of Schrodinger
equations

i(3/3) | )y=H[¥(), i(0/3)|2(1)=H'|21)), (2)
H=H'+V, h=1,

and are expected to derive a solution incorporating the
matrix elements

(20| Vul 2,0)), )

between two states of the Hamiltonian H’. As long as
we are interested in calculating a transition probability
between two states of H’ the procedure can be relatively
simple. In our case, however, we are dealing with a two-
component system A4, B and are interested in a transi-
tion probability involving only one component 4, the
electron. Since H’ contains a potentially strong interac-
tion V4 between A and B so that |®) is not directly
factorable into |4)|B), we must first introduce a ca-
nonical transformation

|2(@)=e""""|D)

| ®)=e"%|4)| B) O]
subject to the requirement
f—loz——— 6imH/6—im= FIA*I—I?B ’ (5)

in order to insure the use of pure electronic states with
V.. If it is possible to satisfy (5) we can express our
matrix elements (3) using (4) and (5) as

(A[(Bil V(@) B Ay),

5 E. O. Kane, Phys. Rev. 119, 40 (1960).
1358

(6a)
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where
V(t)=[expiH o V[ e(— iH )], V=e®,e®. (6b)

The advantages of the canonical transformation are
clearly demonstrated upon considering

Zf Do(P:)wo(Ps,By) =-Z, po(A)wo(4:,45),  (7)

an expression connecting the thermally weighted densi-
ties of states po and transition elements® w, of ® with
those of 4. Using an equilibrium weighting factor and
employing standard methods? for calculating a transi-
tion probability per unit time, we set

Do(®)=(®:| 7’| B;)/3 (®;] 7’| ®j),
B=1/ksT, (8a)

wg(‘I>i,<I>f)=lim (1/1’)/ dl/ ar
T 0 0

X <‘I’il eiH’tVue—iH’tl ‘I’qu’fl eiH'z'Vue——iH'z' I 4’;) . (Sb)

It is now necessary that we make explicit use of (4) in
(8a), (8b), and (7) in order to establish that

po(As)=(A:|exp(—BH +)| 4:)/

T (4;lexp(—BHA) | 4;), (92)
wo(A ,',A/)=£i_fz‘1° 1 ' df/r ar
XA V()] 4047 V()] 4:)), (9b)
where
(=X (Bi|exp(—pHz)- -+ | B:)/
XX (Bi|exp(—BHz)|Bs), (9c)

| By) has been removed by summing over final states,
and ¢ fH2 has been absorbed by wo(4,4,). A brief
sketch of the canonical transformation as applied to our
electron-phonon system is presented in Appendix A and
will be referred to occasionally in Secs. II and III of
this paper. It states briefly that given the transformation

(R'——Z giaifai=z Cn(bn_bn*) , (103,)
gi=1 2 Vin(bn—0n")/0om, Ca=1 Z Vi,n@i'ai/wn, (10b)

we obtain the set of transformed operators
(11a)
bn=¢"%bne~C=b,+iCny bat=0,14+iCn, (11b)
6 All transition elements w, appearing in a given representation
of (7) are of the same order in the perturbation strength.

7See, e.g., L. I. Schiff, Quantum Mechanics (McGraw-Hill
Book Co., New York, 1949), Chap. 8,

di=e®ae%=¢"0ig;, at=civiat,
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and the Hamiltonian

Hoy=e®(H+Va)e ®=Ho—3 v; 2aia;/w, (12a)

satisfying requirement (5), such that

HA=HA—Z v;,,ﬁa,-"a;/w,., FIB=HB.

n,%

(12b)

Note that the subscript ¢ (as used in this paper) indi-
cates the initial state of the system only when it is used
in conjunction with the subscript f which indicates the
final state of the system; otherwise it is a general index
equivalent to j or k.

II. TRANSITION PROBABILITY

The emphasis in this paper is on simplicity. Thus we
shall accept a loss in generality and introduce the simpli-
fying assumption that

Vi 2N (Vin—05,0), ANi®=—N;? arereal (13)

into our calculation. Requirement (13) is a form of elec-
tron-phonon decoupling approximation frequently en-
countered in electron-lattice theory® under various
guises and becomes meaningful when # is restricted to
a specified set of allowable phonon modes. We shall as-
sume in using (13) that our interaction (V 4+ V) can be
restricted to a set of phonon modes capable of satisfying
this approximation.
Returning to (1d) we write, using (13),

Vu= 2 N'[Vaadaes];
i

and upon replacing V4 by (H'— H,) we obtain, with the
aid of (6b), (1b), and (11a),

V(t) = Z )\,-,-"(ii-i-w;j)(d.j(t)d'(t)) Wi;= €;— €5, (14)
dt 7 ) J J

£.7
i

Putting (14) into (9b) and using (11a), (12a), and
(12b), we can express wo(4,4;) as

1 T T
wo(4;,47)=lim - / dt / ANif\s 0
™7 Jo 0
d d

X <1:i;+wﬁ)<¢;t—,+wi/>

Xeiaf.'(t—t’)(ei[ai(t)-a.r(t))ei[w(t’)—ai(t')]> , ( 15 a)

(15b)

where _
@ri=wpi— 2, (Vi,n?—07,0%)/0n.
n

8 Approximation (13) is based on the more rigid assumption that
the contribution V,(ga,r) of the nth lattice mode to the electron-
lattice perturbation potential can be approximated as V(r)Auga,
where ¢, is the lattice normal coordinate and A, is a parameter
independent of r,
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The integrand of (15a) is an oscillating function of
(t—?), as the time and thermal development operators
within the trace commute. Since we will have no con-
tribution to wo(4,4y) from terms involving d/dt, d/dt
or d?/dt dt, expression (152) may be rewritten as simply

wo(A 5,4 1) =21 (\es®) %07 2K if%(07:) (16)
in terms of the spectral function
1 e ]
Kif(w)=— / ds e™°K%(s)
2 J
(17a)

Kijo(s) = (ei[gi(s)—ai(S)lei(oi—yi)>

after transforming to the coordinates { and s=¢—¢. It is
sometimes convenient to express K;;%(s) as

Ki°(s)=N*[14Li(s)], (17b)
where N;; is the normalizing factor
(gitoi—o) (17¢)

and L;;(s) is a correlation function. In this case
wo(4 5,4 7)=21(Nif*) 202N if?Lif(0r), @70 (18)

where L;j(w) is the transform of L(s). The function
wo(4 5,4 5) is the zeroth-order approximation to the elec-
tron transition probability per unit time.

By substituting (8a) and (8b) into expression (7),
we see that

Z,: po(d)wo(Ai,Ay)
_ / ds Tre-PH'gil's yo—i'sV, /Tre—bH'  (19)

(after changing coordinates and commuting the time
and thermal exponentials). The trace here can designate
the sum over any complete set of states for our system.
As H’ does not alter the electronic state of the system,
we can write

po(A)wo(4:,47)
= f ds Tre=BH'¢if'sQ,ie~H'sQ s,/ Tre fH' | (20a)

where we have used (1d) and (19), and where

Qir=2_ visnailas(bntba?). (20b)

Expression (20a) represents a special case of the function

1 0
Riiw(X: Y) = / ds eiwsRiJ's(ny) ’
2r J
(21)
R;*(X,Y)=Tre #¥e'Y:X ;je~i¥*X ;;/Tre b,

where X and ¥ are time-independent operators, Com-
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muting B past X in R;;*(X,Y) with the aid of the opera-
tor exp[ —iB(d/ds)], we obtain®
exp[—iB(d/ds)JR*(X,Y)=R;i*(X,Y). (22)

Upon taking the inverse transform using (22), we can
equate integrands and write!®

Rii_w(ny)z _BNRU&(X’Y):
so that [inserting (20a) into (23)]
po(4dwo(Ai,47)=po(Ad)wi(4545),

showing that wo(4,4;) satisfies the conditions for
thermal equlibrium. But suppose that instead of letting
Y equal H’, we let it equal H and express

R (Q,H)=pr(A wi(4,45) - (24)
If we can satisfy (24), relation (23) guarantees that
pr(Awi(A4A45)= pr(d Jwi(4;,44).

Following Van Hove,'! we take the diagonal part of
exp(8H ) exp(—BH) and exp(iHs) exp(—iHs) in (24).
As an approximation this is equivalent to letting

(23)

(25a)

in the time and thermal exponentials of po(4;)wo(44,4;),
where &; is the energy of the 7th electronic state after it
has been shifted by both V, and Vg4, and!?

2= 3" wi(A4:,4r)+additional terms.

k=i

+1&s— :l:iéis—I‘ils[, Be— Beé

(25b)

If we are to satisfy (14) with A’ replaced by H, we must
also replace \;;, as defined in (13), by A\;;* such that

Vij,w™Nij (V3,0 2j,0) + k; ‘ (Nej'ik,n—Nik 0k5,n) . (26)
2]

Substituting (25a) into expression (16), we now obtain
w1(44,A4 )= 2r(\if)2ws 2K (@ri), Gri=&—2, (27a)
Kif'(s)= e~ Tt INLIK ,(s) (27b)

as a higher-order approximation tow (4,4 s). Expression
(27a), along with (16) and (18), provides the basis for
our consideration of the nonradiative electron transi-
tion probability in solids. Since both K i;°(w) and K ;/*(w)
can be interpreted as radiative spectral functions—with
the argument w taken relative to the zero-phonon

9If O is a linear operator and 4 and B are analytic functions it
is trivial to show that (expO)AB=[(exp0)4]X[(expO)B]. To
arrive at (22) we set O=—iBd/ds, A=exp(—pY+isY), B=X;;
Xexp(—isY).

10 Expression (23) can also be proved from methods developed
by D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English
transl.: Soviet Phys.—Usp. 3, 328 (1960)].

11, Van Hove, Lecture Notes, University of Washington,
1958 (unpublished); Physica 21, 901 (1955); 22, 343 (1956); 23,
441 (1957).

12 T expression (25b) we lump into the category of (additional
terms) broadening due to the existence of additional interactions,
strain, etc. In so doing we assume that these mechanisms can be
approximated by a Lorentzian profile.
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position—we observe that our expressions for the non-
radiative transition probability closely parallel expres-
sions for the radiative absorption and emission proper-
ties of the system. In order to demonstrate this, we
shall briefly discuss the radiative spectral functions as
they apply to our electron-phonon model. In particular,
we shall construct spectral functions based on the radia-
tive absorption coefficient, contrast their description of
emission and absorption, and demonstrate their equi-
valence to K;;°(w) and K/ (w).

III. RADIATIVE SPECTRAL FUNCTIONS

The dominant contribution to the absorption coeffi-
cient a between the electronic states e2> e may be ex-
pressed in the Kubo formalism?!® as

()~ —2 lim TnG(artie, H),  (282)
where
G;i(E,H)
i 00
== f ds e’®[K;i(s,H)— Ki;(—s, H)],
w
’ ImE>0, (28b)
Kii(s’H)
=Tre fHeHqtg,e~Heg a;/ TreFPH, #h=1, (28c¢)
K;i(s—iB, H)=K;;(—s, H)
j ] ’ (28d)

Kji(s’H) = Kii*(—'s: H) )

express the difference between the radiative absorption
and emission characteristics of the system in terms of
temperature-dependent double-time Green’s functions
of the variety introduced by Bogoliubov et al.!* Defining
a spectral-absorption function!®

1 00
Ki(w,H)y=— ds e Kq5(s,H),
TPL J —w
(29)
dow Ki(w,H)=1,

-0

such that for a one-electron system [using (9a) and

(252)]
pi=p1(4:)=[exp(—p&) /L exp(—B¢), (30)

we see from a comparison of (28¢c), (29), and (21) that
p1K12(w,H) = Ry5(ata,H) . (31)

13R. Kubo, J. Phys. Soc. (Japan) 12, 570 (1957).

14 N. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk.
SSSR 126, 53 (1959) [English transl.: Soviet Phys.—Doklady 4,
589 (1959)7.

15 Expressions relating Green’s functions to spectral functions
are presented in Ref. 10.
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Substituting (31) into (23) we obtain
K21(—w, H)= exp[—-—ﬂ(w-—-&)m)] K]_g(w,H) ,

a relation contrasting the emission and absorption
properties of the system. Had we used the spectral func-
tion Kys(w,H')—with & replacing & in p;—we would .
have arrived at

Kn(—w, H')= exp[ —B(w—@12) ] K12(w,H")

(32)

33)

instead of (32). Assuming e2>€; and confining ourselves
to temperatures below 300°K so that we may set ps~0,
p1~1, we need only to calculate the absorption part of
G(E,H) in order to obtain a. In this case we find, after
inserting (29) into (28b),

0[12(60)’\' Km(w,H) .

In place of Kis(w,H') and Kis(w,H) we prefer for
the purposes of this paper to use Ki?(w—@12) and
K1 (w—®12) as defined in Sec. II. To demonstrate
their equivalence, we observe from (14) and (16) that
the effective part of Qys in (20b) as far as the transition
probability per unit time is concerned may be expressed
as

(Qif)ati=—Nisf*wisaslay. (34)

Substituting first (34) and then (28c) into (20a) and
dividing by po(4 ), we see that
po(A i)™ K ()= Ky(s,H") (35)

by comparing integrands with (16). Similarly for the
case of H we would obtain

p1(4,) explidsis 1K if'(s)= Kis(s,H) .

Applying (29) and the analogous expression for

Ki2(w,H') to (35) and (36), we thus arrive at
Klzl(w—@12)= K12((.0,H) )
K120(w—c:)12)= Klz(o),Hl) .

(36)

(37)

If we are to work with K,;;°(w) and K (w) we must first
construct expressions for Ny and Ly(s) as defined by
(17a), (17b), and (17c). Derivations of K;°(s) are to be
found in the literature.!~* We illustrate in Appendix B
an example from which we obtain

N ij= (etlos(e)—vi()])

('Uim""”j,n)2

—exp| 43 @vetD), @)

Wy
(vi,n—0j,n)?

2

Lij(s)=exp { 2

Wn
X [Naetens+ (N4 l)e"""’"‘]} —1, (38b)

where
N.=(efor—1)"1,
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in agreement with standard theory. It is obvious from
(38a) and (38b), and (17a) and (17b) that

Ki(w)=K;dw); (39)

and by substituting, in order, the second part of (37)
and then (39) into (33), we obtain

Klzo(— A12) = 8“ﬂAl2K120(A12), A12= w— (.-012 ) (40)

a relation predicting the symmetry of the absorption
spectrum relative to the zero-phonon energy ... We
are now in a position to consider an application to the
theory.

IV. AN APPLICATION: Cr3* AND V3t
IN CORUNDUM

Associated with the transitions ¢4,— 4T> (Cr3* in
AlLO3) and 3Ty — 3T, (V¥ in Al;O3) McClure!® has ex-
perimentally observed at 5°K well-defined spectra con-
taining regularly spaced vibrational structure indicative
of coupling to the 194-cm— E, mode of the corundum
lattice. In applying our one-electron e; — e; model to
Cr¥ and V3t (which have 3 and 2 electrons, respec-
tively, in the d state) we are confining ourselves to the
calculation of spectral functions and transition proba-
bilities arising from one-electron d-d transitions and
neglecting electron-electron coupling. To eliminate addi-
tional complications we shall also ignore splitting by the
trigonal field of the corundum lattice!” and spin-orbit
effects.

A. Corundum Lattice (Al:O;)

We limit our consideration of the corundum lattice
to a band centered at 194 cm™! satisfying requirements
(13) and (26). From Egs. (38a) and (38b), we conclude
that our interest in the matrix elements v;,, and the
phonon distribution function (implicit in the summation
over phonon modes) is through the expressions

Si(B) =2 (Vi,n—0;,n) 22N n+1)/wn?, (41a)
Iiii(ﬁys)=z ('vi,n_‘vj,n)z(Nn"‘%q:%)eiiw"s C\’n2y (41b)
where

Li*(8, s—iB)=1;7(8, —s), (41c)

Iii*(8,0)+1:;7(8,0)=S4(B) .

Wesshall therefore [ 1] assume a continuousset of phonon
modes exerting a maximum influence at 194 cm™!, [2]
require that I;;£(8,s) provide adequate convergence of
L(s) to zerofor large |s|, and [3] demand that I;;%(8,s)

1], S. McClure, J. Chem. Phys. 36, 2757 (1962); see also R.
M. MacFarlane, J. Chem. Phys. 39, 3118 (1963).

17 Since we choose to ignore the trigonal field splitting our tran-
sition #42— 4T, in Cr3* will correspond physically to the spin-
allowed perpendicularly polarized component ¢4;— ¢T3(*E). In
the case of V% our transition 37, — 3T will encompass both
polarizations.
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satisfy requirement (41c). Writing'?

12" = do(w—d12)"K 12%(0— &12)

—00

= i"[ (@n/dtr) | dwe i) K,0(w— &12):]
t=0

—00

for the #th moment of the absorption band associated
with an electronic transition e; — e(e2>€) in the im-
purity, we see (using (17a), (17b), and (17c), and (38a)
and (38b) along with assumption [1] and (41a)) that
the first moment uist is

ﬂ121=§: (vl,n—vz,n)2/wnﬁ-":’57
n (42a)

S=S12(°°), @=194 cm™1,
Also using assumption [1] and (41a) one finds
Su@)=S[2N(@)+1], N(@)=(H—1).

Since we have not assumed an exact knowledge of either
the electron-phonon coupling or the phonon distribu-
tion function, it is useless to attempt an exact solution
of Iy*(8,5). For low temperatures we shall modify
I,%(B,s) by writing

I125(8,5)~SN (&)efo/2 30 exienti#M /31, (43a)

(42b)

using assumption [1] and (41b). Letting
3 etionz /S 1 =exp[4iaz—I'(|z]| — |Imz|)] (43b)

and substituting (43b) into (43a) we obtain
Lt (8,)= SQV @)+ FF B)osis—Fertiad | (44)

a simple expression satisfying requirements [27] and
[37® for some temperature range

Tmin< T= 1/k36< Tms.x .

This compact formulation introduces an additional
parameter I' from which we can establish an effective
width of 2T for our phonon band. It provides a reason-
able approximation to use with (38a) and (38b) as long
as T is not allowed to become too large? or too small.*

18 When constructing moments we shall consider Ky;(w—a;j)
as providing an adequate description of our line shape.

19 The necessary condition that (44) satisfy the first part of
(41c) and thus [3] is that the ratio K12°(—A12)/K12°(A12) calcu-
lated using (44) provide adequate agreement with relation (40).
The ability of (44) to meet this condition is discussed in Sec. IVC.

20 Although ;' when computed using approximation (44) is
identical to (42a), higher moments of the line tend to become dis-
torted in this approximation with increase in temperature (see
Appendix C). Since the cutoff Tmax is a function of T, it will be
determined in Sec. IVB.

21 In the limit of infinite 8 expression (44) becomes purely oscil-
latory over time, and its substitution into (38b) would yield a
series of 5-type functions rather than a continuous spectrum for
K" (w—a12).
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We shall arbitrarily assign Tmin=S50°K [since an exact
expression for I15%(8,s), dependent as it is upon N,
should show little variation between 0 and 50°K] and
insert it into our calculation in place of the true tem-
perature when 7'< 50°K. We shall consider 7 'max in Sec.
IVB. For 7>>300°K we can come close to satisfying [27]
and [3] by invoking the “slow-modulation approxima-
tion”,22 in which case inserting (42b) into (41b) we
approximate

I+ (B,5)+ T~ (B,s)~{[2N (@)+1]
X [1—31a%2]—isa}S. (45)

When using expression (45) it is preferable to work di-
rectly with K;°(s) [through (17b)] as (45) prevents the
possible formation of § character in K;;*(w) and elimi-
nates the need for L;;(s). Writing

I'=T;+T, (46)

we see upon combining (27b), (17b), (38a) and (38b),
(41a) and (41b), (42b), and (44) that K2°(w—w12) and
Kyl (w—&19) are completely defined in terms of their
arguments and the parameters @, S, T, and T'. However,
at very high temperatures—inserting (45) in place of
(44)—they are defined in terms of their arguments and
the parameters @, S, and T'.

B. Determination of Parameters

In order to determine S, T, and T' we return to the
experimental observations of McClure.!®7 Using (42a)
we estimate from the band structure of his experimental
curves for Cr¥* and V3t at 5°K that upon setting e; — es,
respectively, equal to 44, — *T and 37, — 37,

S(Crit)>~S(Ve)~6. (47)

Assuming T'>T we conclude that the half-width of the
first vibrational component for Cr¥ and V3 is charac-
teristic of T' and estimate, using these same curves, that

T(Cr)~T(VH)0.156. (48)

The half-width T at 5°K we approximate directly from
the zero-phonon component and write

[(Cr¥)~0.0755, T(V#)~00375.  (49)

Although S and T'(like &) may be taken as independent
of temperature, I' as defined by (46) and (25b) merits
further discussion.

For the sake of argument let us assume that I'(Cr3*)
is determined primarily from the transition elements
w1(4,A4r), which, though temperature-dependent,
should increase I'(Cr®+) only by a factor of 2.5 between
absolute zero and room temperature.?® Since there are

22 The “slow-modulation approximation” expands exp(z=iw,s)
in (41b) to second order in s. It provides a more accurate descrip-
tion of ui2* at moderate to high temperatures than (44) and is
preferable for use at all temperatures in calculations far out on the
high-energy wing. (See Appendix C.)

23 It is shown in Fig. 3 that w:(*Ts,2E), the prime contributor to
4T, relaxation, increases by a factor of 2.5 between 50 and 300°K.
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no important contributions from the ground state, (49)
would indicate a zero-temperature lifetime (2¢I'2)~* for
4T3 of 1.2X 10712 sec. However, experimental measure-
ments by Pollack?*% at room temperature appear to
indicate a much greater lifetime of the order of 2)X10~°
sec. We shall assume that this large discrepancy arises
primarily from the necessary inclusion of strain broad-
ening in any realistic estimate of T'(Cr*"). In fact, we
shall further assume that strain broadening is the domi-
nant contributing factor to both I'(Cr®t) and IT'(V3t),
in which case (assuming no structural change in the
material), we can estimate that T is essentially tempera-
ture-independent.

Having established S, T, and T we shall now deter-
mine Tmex. Proceeding as in the derivation of 1! in
(42a) (see also Appendix C) we find that the dominant
contribution to wmis? at high temperatures comes from

d2
i2[——(1m+(ﬁ,t)+112‘(ﬁ,t))]
di? ¢

=0

At T=400°K and I'=0.150 we find a positive distortion
of 149, in p1:? by using approximation (44) instead of
the exact expression (41a) in conjunction with assump-
tion [17. Since this distortion due to T' becomes even
more pronounced for higher even moments we shall
assign T max=400°K for I'=0.15a. In fact, this tendency
of (44) to overestimate higher moments of the line-
shape limits its use to very low temperatures when
K%w) or K'(w) must be evaluated far out on the high-
energy wing (w>20&). In this region approximation (45)
with a 5%, negative distortion of ui2* at 0°K (Appendix
C) is preferable at all temperatures.

C. Low-Temperature Investigations :
Approximation (44)

We shall designate any temperature for which
T<300°K as a low temperature and shall use approxi-
mation (44) in all calculations applied to this range
where the argument of K°(w) or K'(w) is less than
20s. We found it desirable to first check the ratio
K12 (—A12)/K12(Arz) in this range in order to demon-
strate that this approximation is really consistent with
the symmetry requirement of [37'® and is thus justified.
Using (17a) and (17b), (38a) and (38b), (41a) and
(41b), (42b), and (44) in conjunction with (47) and (48),
the computation of K1:°(Az2) as a function of Ay, was
performed numerically on an IBM 7094 (Mark I) com-
puter. We compared tabulated values of K120(— A1)/
K15°(A1s) up through Ao= 2 obtained by this procedure
with values derived from relation (40). Over the range
considered a suitable agreement to within a factor of 3
was found to exist between tabulated and derived
values even at temperatures as low as 50°K—substan-

24 P, Kisliuk and C. A. Moore, Phys. Rev. 160, 307 (1967).
25, A. Pollack, J. Appl. Phys. 38, 5083 (1967).
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F16. 1. Plots of the spectral
absorption function Kjs!(Ags)
versus A;s for V¥ over the re-
gion —a»— 106 at 50 and
117°K  using approximation
(45). The spectral function may
be expressed in seconds by di-
viding its value in centimeters
by the velocity of light.

ENERGY (cm™)

tiating our argument. The spectrum of K12°(A;2) has not
been plotted since it differs only slightly from Ki5'(A1s).
In order to illustrate the functional form of K15'(A1s)
prescribed by (44) we plot, in Fig. 1, K1s!(A12) versus
Ays for V3 at 50 and 117°K. Using (27b) and (49)—in
addition to those relations used in the computation of
K12°(A12)—the computation of K15'(A12) was performed
numerically at a rate corresponding to approximately 23
input values of the argument per minute. An increment
of 0.1» was used over the range —2.50<A1:<100. We
notice in Fig. 1 a slight deviation of the energy (A1)
at the nth vibrational peak from #&. This deviation is
due principally to I' and becomes more pronounced for
the case of Cr*+(I'=0.150). We define this deviation as

A, where
(A12)n=nd’+An, ﬂ>0;

values of A,/® for Cr¥*t at 50°K are given in Table I.
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Fic. 2. Vibrational structure of the perpendicularly polarized
component of the first strong absorption band of V3* at about 5°K
as obtained experimentally by McClure (Ref. 16).
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These values were obtained from a numerical computa-
tion of Ki2'(Ays) for Cr3t using an increment of 0.01®,
in order to more accurately establish the peaks. The
deviation A, is seen to first rise positively and then re-
turn to zero at Ag in qualitative agreement with the
experimental 5°K spectrum for Cr#+ presented by
McClure. The line profile for V¥ at 50°K presented in
Fig. 1 agrees quite well with McClure’s experimental
data (Fig. 2) although the vibrational satellites do not
damp out as rapidly with increasing phonon number as
in the experimental case. No experimental comparison
is available at 117°K. The one-phonon annihilation peak
observable numerically at 50 and 80°K for Kis°(A1s)
appears abnormally suppressed for Ki2'(Ays) due to the
insufficient attenuation of phonon-creation elements by
the Lorentzian broadening factor used in the calcula-
tion of K15'(A12). For this reason we have not indicated
the presence of an annihilation peak in Fig. 1.
Before considering the question of transition proba-
bilities, we must first determine \;;* and &;;. Ignoring
coupling to states k74,7 and energy shifts due to V',

TasLE 1. Values for the ratio of A, (the deviation of the position
of the #-phonon peak from #a obtained from a numerical computa-
tion of the spectral function) to @ for V3* indicating the extent of
error in the calculation of the peak position.

An/fa

0.01+0.003
0.02+0.003
0.04-+0.003
0.06+0.003
0.05-+0.003
0.00+0.003

QAU W= | X
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we see from (26) and (25a) that we can set
it =Nif®

(50)

Let us confine our discussion of transition probabilities
to Cr® and define an ¢ such that

a<e=e(*Ty)

aij= (I)ij .

(S1)

will include all states with energy less than e;. We ob-
serve from the combined experimental spectrum?!® of
Cr® that transitions involving only e are sharp lines.
Thus it is reasonable to conclude that the coupling

17,,=0. (52)
Using (52) we now write
(53)

by comparing (15b) with (42a). Also using (52),
(38a) and (38b), (17a) and (17b), (39), (27b), and
assuming I' to be independent of /, we see that

Ky'(w)= Ko1"(w)= K12°(w) ,
Ky'(w)= Ko''(w)= K12'(w) ,

o= wp—aS

(54)

and inserting expressions (50) and (53) into (27a) we
obtain
w1(Ae,41)= 2r(A20)2(@1a+ @S) 2K o (@i2) . (S5)

Expressions (54) act as a bridge between the radiative
spectral functions previously determined for 44, — 47
and the transition probability per unit time (55). In
Fig. 3 we have plotted w;(44,4;)/2(X2;°)? as a function
of a; for Cr¥* at 50, 117, and 300°K. At w;»~~2300
cm™! (11.90), which is the 4T, — 2E energy difference,
we have drawn a vertical line whose intercepts indicate
the temperature dependence of the 7’y — 2E transition
rate. The transition rate 47> — 445 is not indicated, as
it occurs far out in the wings at @;;~86a. It will be con-
sidered, using approximation (45), in Sec. IV D. Figure
3 is illuminating in that it exhibits not only the tem-
perature dependence for the rate of a nonradiative

12
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TRANSITION RATE (10 cm™)
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Fic. 3. Plots of the transition rate wi(4s,41)/2(A\2i%)? versus
@y for Cr®* over the region 0 — 20 at 50, 117, and 300°K with
a vertical line at 11.9& to indicate the transition 4Ty — 2E. The
transition rate may be expressed in inverse seconds by multiplying
its value in inverse centimeters by the velocity of light.

transition occurring in Cr?+ but also the dependence of
the transition amplitude on electronic energy-level
separation. Although the theory predicts transitions to
higher energy states, these have amplitudes derivable
from negative values of the argument @ in (55) and
as a result are suppressed. We have made no attempt to
consider them in this paper.

D. High-Temperature Investigations

Thus far in calculating wi(42,4;) we have used ap-
proximation (44) at low temperatures in the region
@12< 20@. The question arises as to whether we can use
(44) in this region at temperatures 7> 300°K. In Fig. 4
we have plotted w1(4s,41)/2(\2:%)? as a function of &;,
at 400°K using both approximation (44) and approxima-
tion (45). Since (44) comes much closer to satisfying
(41c) than (45) at 400°K it more accurately reflects
the shape of the envelope in the region of small &y,

Cr3+:400°
T;'O— ®=194 cm™
(3]
’%_’ 8| P -7 N
F1c. 4. Plots of the transition w // N
rate w(42,41)/2(A\2%)? versus @u a / N\
for Cr3* over the region 0 — 22 at x 6 N
400°K obtained by using approxi- Z / \
mation (44) (dotted line) and ap- = 4 N\
proximation (45) (solid line). g 4 - // \\
< 4 h AN
= N
2L N
~
~ ~ -
o | | t ; I ! I | | ]
(o] 2 4 6 8 10 12 14 16 18 20 22@

ENERGY (cm™')
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Fic. 5. Plot of the transition rate
w1 (A2,41)/2(N\2%)? for 4T:— E of
Cr#t as a function of temperature up
to the melting point of Al,Os.

4] 200 400 600 800 1000 1200 1400

T(°K)

1600

values (@2<12®). Above 800°K our calculations indi-
cate that approximation (44) appears to have no ad-
vantage over approximation (45) in any region of the
spectrum. In Fig. 5 we have plotted w(*Ts,%E)/
2[A(4T5,2E) |2 (*Ty— %E occurring at wp~120) as a
function of temperature using (44) at temperatures up
through 400°K, and using (45) at temperatures above
400°K up to 2300°K (the melting point of Al:O3). We
observe a peak for w;(*7%,2E), occurring at around
800°K, which appears to be rather flat. This peak lies in
that region where we have shifted from approximation
(44) over to approximation (45). The rise observed for
w1(4T»,2E) with increase in temperature between 50 and
800°K is gradual.

In the case of wi(*T%,%4,)(*Ty— 44, occurring at
@12~86%), the rise in amplitude with increase in tem-
perature is quite abrupt. For this reason in Fig. 6 we
have plotted wi(4T,%42)/2[A(*T,*45)]* versus tem-
perature (solid line) on a logarithmic scale so that we
might compare this rapid increase with the more stand-

‘0-240

1800 2000 2200 2400

ard temperature variation given by?

[N@)+1]@mas1a, (56)
the transition rate for the decay of an excited electron
of energy?® @n+aS by the excitation of (@i+aS)/®
quanta of energy @ (dotted line). Although we feel that
the perturbation methods leading to (56) are not directly
applicable to our case (S=6), Fig. 6 illustrates the fact
that our results predict even a greater change of
w1(*Ts,*4,) with temperature than is normally con-
sidered. We have therefore normalized the dotted curve
to agree with our solid curve at 0°K.

One aspect of our calculation of w1(*7%,*4,) requires
further explanation. The Lorentzian broadening factor
e~ Tlsl appearing in (27b) is physically unacceptable to
use in calculating K'(w) in the far wings, as it falls off
too slowly to use with approximation (45), which de-
scribes K%w) as a Gaussian. We therefore replace
e~Tlol in (27b) by ¢70-3807I%% jtg Gaussian half-height

107200 L
1o-'e0
10-120

IO-BO

TRANSITION RATE (cm™)

lo-40

Fic. 6. Logarithmic plot of
the transition rate wi(4.,41)/
2()\2[0)2 for Ty — 44, of Cr3t
as a function of temperature
(solid line) as compared with
similar plot using the more
standard but not applicable
perturbation approach given
by (56) (dotted line).

4T2"4A2

10° | | | | | | | |
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26 In this case Vy becomes part of the perturbation and the unperturbed energy wp is given by (53),
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equivalent, so that, by use of (45), wi(42,4;) becomes

'wl(A 2,A z) = 2gr1/2Q1 ()\2 10)2(&)12“*'(:)5)2
Xexp[— (@e—aS)?/Q%], (57a)
with
Q=[2SQN &)+ 1)a2+1.443T2]12,  (57b)

For S=6, I'=0.150 it was possible to obtain three-
figure accuracy in @ at all temperatures by neglecting
the second term within the square root in (57b).

V. SUMMARY AND CONCLUSIONS

We have attempted in this paper to outline a method
for the calculation of the (nonradiative) electron-
transition probability per unit time between pure elec-
tronic states for an impurity or defect electron trapped
in a crystalline lattice. In order to handle a possibly
strong electron-lattice distortion V4 we have introduced
a canonical transformation

ei(R(H0+ Vd) iR

of Ho+V 4, our unperturbed Hamiltonian, to insure the
use of pure electronic states with our perturbation V.
To simplify our formalism and computation we have
permitted some loss in generality by introducing the
assumption that the matrix elements v;;,, and v;, of
V. and V4 are related by the expression

A= — A

(58)

In so doing we have restricted our consideration of the
lattice to a set of phonon modes satisfying this condi-
tion. As a result we obtain a simple expression for our
(nonradiative) transition probability per unit time,
which can be correlated to the radiative spectral func-
tion K;;(w) between the electronic states 1 and 7 with
argument « taken relative to the zero-phonon energy
position. Because of this fact we have discussed in gen-
eral the radiative spectral functions and developed their
properties. Of particular importance is the relation

K12'(—Arp)=¢P22K1,0(A12), A1a=w— @12,

predicting the symmetry of the absorption spectrum
(for the Hamiltonian H,+V,) relative to the zero-
phonon energy @is.

We have chosen Cr®* and V3t in corundum as a
physical example for the theory since their d electrons
appear experimentally to exhibit a strong Va-type cou-
pling to the 194-cm™! E, mode of the Al,O; lattice. As
we have not assumed an exact knowledge of the form of
either the electron-phonon coupling or the phonon dis-
tribution for this example, we have used two approxi-
mations in order to develop the theory. In the first
approximation we look for a simple algebraic form for
the expressions I1,%(8,s), defined in (41b), which will
insure that they provide adequate convergence of
Lys(s) (our correlation function) to zero for large |s|
and satisfy as far as possible the symmetry requirement

V37, 0N (Vi n— "5 ,n), are real.
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(41c). This procedure provides for the proper symmetry
of the spectral function in the neighborhood of the zero-
phonon line, in addition to permitting its numerical
calculation. The approximation is limited at very low
temperatures by the fact that one obtains a set of -
type functions for the function K1,°(w) at absolute zero.
Although this limitation does not alter the spectral
contour, it distorts the degree of resolution of the satel-
lite vibrational peaks at very low temperatures. In
order to compensate for this peculiarity we have estab-
lished a low-temperature cutoff of 50°K. It is to be ex-
pected that the exact expressions for I12%(8,s), as given
by (41b), should exhibit little change between 0 and
50°K. At high temperatures the approximation is
limited by its overestimation of the moments of the
spectrum. The problem here is more serious, with the
result that the approximation is not acceptable for use
with the chosen example at temperatures 7>400°K.
It is also not acceptable for use in calculating spectral
amplitudes far out on the high-energy wing (as required
in calculating the 472 — 44, transition rate in Cr3*) at
any temperature. On the positive side (see Fig. 1), the
spectral function K1s!(w) at S0°K for w<20& compares
favorably with McClure’s experimental data, although
the vibrational satellites do not damp off as fast with
increasing phonon number as might be expected. As a
result we have used this approximation to compute
w1(*Ty — 2E) occurring at an electron difference of 12&
at temperatures up through 400°K.

As a second approximation for I12*(8,s) we have in-
troduced the “slow modulation” formulation by ex-
panding exp(=£iw,s) in (41b) to second order in s. Al-
though the line shape in the neighborhood of the zero-
phonon position is acceptable only at very high tem-
peratures in this approximation, its estimation for the
moments of the line at S= 6 is quite-good; and we have
used it at all temperatures where amplitudes far out on
the high-energy wing are desired.?” From this approxi-
mation we obtain a Gaussian form for both K;»%(w)
and Ki»'(w) (upon requiring that strain and other re-
lated broadening mechanisms become Gaussian) and in
this manner we obtain a very simple and compact ex-
pression for wi(44,4;), given by (57a) and (57b). The
temperature dependence of the transition rates for
4Ty —%E and “Ty— %4, in Cr® plotted in Figs. 5 and
6 shows a flat peak for Ty — 2E at about 800°K and a
rapid increase for 4Ty — 44, above 50°K. The rate for
4T — 44, peaks only at physically unrealizable tem-
peratures above 100 000°K. It is to be emphasized that
nowhere in our treatment of the electron-phonon in-
teraction do we require that the distortion V4 be a
perturbation.

We plan in a later paper to eliminate assumption (58)
and consider the more general case where more than

27 At S=6 the spectrum peaks far enough to the high-energy
side of the zero-phonon position that a good approximation to the
higher-order moments should predict reasonable amplitudes far
out on the high—energy wing. i
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one region in the phonon spectrum may be involved in
the calculation of transition rates. For example, 2;,,
may show strong coupling at acoustic phonon frequen-
cies while v;;,, exhibits a maximum coupling at optical
phonon modes. Also, we shall consider a more exact
method for handling I15%(8,s) involving some estima-
tion of the nature of the electron-phonon coupling co-
efficients and phonon distribution function, along with
a numerical calculation of the summation over phonon
modes contained in J1,%(8,s)—missing in approxima-
tions (44) and (45) of this paper.
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APPENDIX A: CANONICAL TRANSFORMATION

Following a suggestion of Kane’ we introduce a ca-
nonical transformation

di=e®a; e ®, (Ala)
b= 0, (A1b)

R=2 giaila;, g=1% vin(bn—ba")/wn,
Lg:gi1=0, (Alc)

of the operators af, ¢ and b%,b of our system, such that

Hoy=e®(Hy+ P’d)e‘iG‘:HO—Z. v w20t ai/wn.  (A2)
Writing "

A=Y Ca(ba—ba"), Ca=i% vinailai/wn, (A3)

it is a trivial matter to show, from the definition of & in
(Ala), (A1b), and (Alc), that

dy=e"0g;,

ba="bn+iCny bat=0,14iCs.

(Ada)
(Adb)

adt=eiva,

If we picture b as an operator of the distorted lattice
and express our lattice momentum and position opera-
tors p,q in accordance with (1c) and (1d) as

p~b—bt, g~b+bt,
we can establish from (A3) and (A4b) that

f;n=Pn, qn=9n—2 Z v,-,,,a;*ai/w,.. (AS)
Expressions (AS) illustrate the fact that the distortion
arising due to Vg4 is that of position, not momentum,
and in terms of ¢ has a value of 2iC. The exponential
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phonon operator exp(—ig;) may be designated as the
creation operator for the “phonon cloud” that surrounds
the electron in the sth state as a result of this distortion.
Comparing (Alc) with (A3), we see that a replacement
of C, by 1v;,,/w, implies a replacement of ® by g:. Thus,
using (A1b), we may replace (A4b) by

€D, =0, — 05,/ Wn, €0byle =0yt —0; 0/w,, (A6)

and write the commutator expressions
[0a(8),eE0: ) = A (v4,0/wp)e it eini () |
[0a1(£),ex19i ¢ = = (v;,n/ i )eien U=t gias () |

where

(AT7a)
(ATb)

g:(t) i e"HB‘gz-e“”B‘, b"(t) — eiHBtbne—iHBt= e—iwntbn , etc.

Letting (A7a) operate on |0)—the vacuum state of our
system—we see that for an electron in the sth state,

balc)i=(—vin/wn)|c)s, |c)i=e"|0), (A8)

and | ¢); is an eigenstate of b, with eigenvalue (—v;,,/wa).
Thus, a state of the “phonon cloud” is likewise an
eigenstate of the lowering operator b. If a simplified
form for |c); is desired we can write

|C>i=eXP(—% > 'vi',,z/w,ﬁ) eXP(—Z vi,nbnf/wn) [ O>

using (Alc) and a well-known identity,? where we have
now eliminated the “annihilation’” portion of g; from
[¢):. Finally, within the framework of our one-electron
system? we see from (1d), (A3), and (A4b) that we can
express _ ‘
V= Z vij,nqi,,.e’(‘”“‘”')dﬁaj,
g
1#]

(A9a)

(A9b)

= 2 0ijne*099g; naila;,
ijm
i

in terms of a position coordinate operator
Gin= bn+bnT'_ Zvi,n/wn .

Expressions (A9a) and (A9b) illustrate the fact that it is
the relative distortion characterized by expi(gi—g;) that
is physically important.

APPENDIX B: PROOF OF RELATIONS
(382) AND (38b)

Lax? has demonstrated that the spectral function
K .;(w,H')—which we have defined in expression (29)—
can be written (we use our notation) as

1 0
Kij(w,H')= -

T J o

dsei(@ii—w)etfii(e) |

2% We employ the identity e**v=¢}=vleze?, where the com-
mutator [x,y] is a ¢ number. See, e.g., H. F. Baker, Proc. Math.
Soc. (London) 3, 24 (1905).

20 The operator a;'a;'axa; acting upon one-electron states is zero,
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where
(vi,n_v',n)z
fi(9)=2 ——;J*—
n w,n

X[ sinwas— (2N ,+1)(1—coswas)]. (B1)

Replacing s by —s in (B1) and applying (37) we obtain

0

dse‘b'(w—ﬁii)fﬂ‘fii("s) . (BZ)

K w0—aij)=—
TJ o

It is now a simple matter to introduce (17a) and (17b)
into (B2) and prove (38a) and (38b).

APPENDIX C: MOMENTS OF K 3°(w—®i2)

Expressing the #th moment of K;°(w—a;;) as

uiz’"=in[(d"/d’") / d“’eni(w_&"")'Kf:‘(’(w—‘:’if)] ,

£=0
we obtain upon inserting (17a) and (17b)
= ,I:n[(dn/dtn)e—Sﬁ(ﬁ)elii(ﬂ,t):]t=0 ,
Li(B0)=I;*(B)+1:(8,0),

where use has been made of (38a) and (38b) and the
definitions (41a) and (41b). The first four moments are

ui’=1,

1 y| d
pijt= i[}f (8 ,t)l=0 ;
d? d 2
Wif?= 12[d_t21 (8,8)+ (;}I #(8 J)) l=0 )
. a3 d da? ;
wi=1 [E;;I ij(ﬁ)t)"l’s( -d_lI ij(ﬁyt)) (d_tzl ij(ﬁat))

+ (%I ij(ﬁ,f))g:lt=0 )

d4 dz 2
A4 __T.. S
Mi"=1 [dl“lu(ﬂ,t)—l—\g(dtZI”(ﬂ’t))

+4(%I ;j(ﬁ,t)) (g;sf .-,-(ﬁ,t)) +6(§;I ij(ﬁﬁ))z

() ()]
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We shall now compute these moments for K150(w— a12)
using first the exact expression for I;;(8,) given by
(41b) (used in conjunction with assumption [17),
using second approximation (44), and using finally the
“slow modulation” approximation (45). From the exact
expression [computing u12(e) ] we obtain

u(e)=1,
ul(e)=aS,
(€)= G 2N (&) 115+ a2S?,
u123(e) = %S+ 3% 2NV (@) + 1152+ @358,
p12(e) = S [2NV (@) -+ 115+ 364[2N (@) + 125
+ 404524604 2N (&) + 1153+ w454,

Using (44) [computing u12(1)] we obtain

p12°(1)= u12°(e)

pa2t(1)= pas'(e)

p12%(1) = p1?(e)+ (2T/B)[2N (@) +17S,

12 (1) = p12®(e)+ (6T/B8)@S+ (6T/B)a[ 2N (@) +1]52,

pa2?(1)= p12*(e)+ (6T/B)@* 2NV (@) +1]25*
+(12T%/8%)[2N (@) 1]25%4- (24T/B)@2S?
+(12T/B)@’[2N (@) +1]5?
+[(12T/B)w+(121%/8%)+ (24T/8%)]

X[2N (@)+13S,

and using (45) [computing u12(2)] we obtain

p12°(2) = p12"(e)

p12'(2)= p1s'(e)

p12%(2) = p1o*(e)

p128(2) = p12*(e) — &°S,

119°(2) = p1t(e) — 2V (&) + 115 — 4iatS?.

One sees immediately from these expressions that (44)
tends to overestimate and (45) tends to underestimate
the moments. Only at very low temperatures is (44)
preferred, (45) being superior at most temperatures
especially when used with large values of S.



