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There are dipole-moment data available on still other

heteronuclear molecules. Our preliminary results for

BH, CH, and CO, however, indicate that force and
kinetic energy are not effective in yielding good dipole
moments. These molecules are in a different class
than the ones we report, in that they are generally con-
sidered to be more covalent in nature. There seems to
be some significance to this, but any detailed analysis
at the present time would be premature.
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A combined electrostatic virial theorem is introduced and used to derive a differential
equation for the scale factor p in a diatomic molecule. This equation can either be used to
compute df/dR or it can be integrated to yield

t(R, )
ii' — 1 ' 2F(RI —MF(RI/dR

~ )T(R) 2T(RO) R T(R)

where R is the internuclear distance, R —= fR, F = (-BV~/BR), with V~ the one-electron po-
tential, T =— (g —2V ), and Ro is an integration limit. It is shown that if r. (RQ) is a. vari-
ational scale factor, then t'(R) is also a variational scale factor provided the electron density
p~ involves no other unoptomized variational parameters. Unlike the conventional variational
expression for (, which contains two-electron integrals, the above formula involves only
the one-electron force and kinetic energy integrals. Using this (, electron densities and
energies are calculated for Hq, H2, Heq, and Li& and compared with experimental and
variationally calculated values. Qualitative agreement is obtained in general, and, in par-
ticular, our theoretical energy curve for He2 is in very good agreement with the best vari-
ational results for 1.5 a.u. &R& ~. It is also shown how the electrostatic-virial theorem
can be used as a conditionin continuing density-matirx calculations from R to R+DR.

I. INTRODUCTION

In the first paper in this series, ' the electro-
static and virial theorems were used to determine
a semiempirical electron density. The method con-
sisted of three main steps: (a) A simple function-
al form for p, (r', r, R) was assumed and inserted
into the electrostatic and virial theorems. (b) In
place of the electronic energy E(R) and its deriv-
ative dZ(R)/dR, experimental data were used.
(c) The resulting equations, which by virtue of
(a) and (b) uniquely determine p„were solved.

In the present paper, a similar approach is fol-
lowed except that the semiempirical aspect [step
(b) above] is eliminated. This is accomplished by
combining the electrostatic and virial theorems
into a single equation that can be expressed en-
tirely in terms of the one-body density p, (r ', r, R).
This electrostatic-virial (EV) theorem can then be
used as a purely theoretical condition on the one-

body density.
If the density is expressed as p, = K'p, (fr ', rr, fR),

the EV theorem serves to uniquely determine f in
terms of force and kinetic-energy integrals in-
volving only the unscaled density p, (r', r, R). In
the first parts of this paper, a method is developed
for the theoretical calculation of the scale factor g .
It is shown that our f is the same as the variational
scale factor provided the density contains no other
unoptimized variational parameters. It is also
shown computationally that, even though many of
the densities we work with do contain other un-
optimized variational parameters, our g's are, in
every case, in qualitative agreement with the
variational f s, and in one important case quanti-
tative agreement is obtained.

The lastpart of the present paper is devoted to
the derivation of density-matrix equations that
allow one to continue an i.dempotent matrix from
one value of a parameter X to another X+ &X.
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When X —=R, the EV theorem can be used as a con-
straining condition in these equations.

R (d/dR ) [f ~ (R )F(R )] + 2f 2 (R )F(R)

= (d/dR)[g'(R) T(R)], (3)
II. COMBINED ELECTROSTATIC-VIRIAL THEOREM

Consider the electrostatic and virial theorems
for a diatomic molecule. We have

(d/dR) E(R) = J (aV, /SR) p, (r, R)d'r,

R(d/dR) E(R) yE(R) = T(R)-

'J-[-v'p (r', r, R)]- d3~,

dR d

dR dR ( (R) g (R)

R df(R)

f'(R) dR

in& (R) ~,
r. (R) dR

where we interpret g as a function of R. We now
transform the derivatives in Eq. (3) as follows:
Since d/dR = (dR/dR) (d/dR) and

R dF(R)/dR y 2F(R) = dT(R)/dR. (2)

Equation (2) is the EV theorem referred to in Sec.
I. It is an integrodiff erential equation representing
a necessary condition on an exact electron density.
There are infinitely many densities which will
satisfy Eq. (2). However, as demonstrated below,
this infinity can be reduced to a single density by
suitable choice of the functional form of p, (r', r, R).
One such choice that is completely general involves
the scaling of a known density. This is discussed
next.

where V, is the one-body potential, R is the inter-
nuclear distance, and E(R) is the electronic energy.
We now define the electronic force as F(R) =

-dE(R)/dR. Differentiating the second of Eqs.
(1) and using the definition of F(R), we have

we have g(R) d

dR 1 R(d/dR) -In& (R) dR

Using this result, Eq. (3) becomes

R (d/dR) [ f'(R)F(R)]

+ 2[1—2 (d/dR)lnr. (R)]r„(R)F(R)

= g (R)(d/dR)[r. '(R) T(R)) .
After some manipulation this reduces to

2T(R)dg (R)/dR + g (R)d T(R)/dR

RdF (R)/dR 2F (R) = 0-

or
dr (R)/dR+ fd[ ln T't'(R) ]/de ~ (R

= [ 2F(R)+RdF(R)/dR ]/2T(R).

(4)

(8)

III. THE ELECTROSTATIC-VIRIAL EXPRESSION
FOR THE SCALE FACTOR

We now consider a scaled first-order density
K 'p, (f r ', 5 r, K R) where p, (r ', r, R) is known and is
such that

Jp, (r, R)d'r=N,

This equation will be recognized as a first-order,
linear, inhomogeneous differential equation, the
solution of which is immediate. In terms of an
arbitrary integration limit Rp we have

(()))=( ) (((R,)

the total number of electrons. It then follows that
r 'p, (r. r, 5R) also integrates to N That is, le. tting
r =f r and R =JR we have

o 2F(R)+RdF(R)/dR dR ~

T~~2(R)
(8)

g' Jp, (r, R) dx = fp, (r, R)d'7 =N

We now insert this density (and the corresponding
kernel) into Eq. (2) in order to determine r„(R).
It is easily shown using dimensional arguments
that

T(g R) —=f'T(1, R),

where T(g, R) is the kinetic energy for the scaled
density at the internuclear distance R. One can
also show that2

F(g R)= g'F(1, R).

We simplify our notation by writing T(l, R) =—T(R)
and F(1,R) =F(R).

Inserting &'T(R) and &'F(R) into Eq. (2) yields

which is the electrostatic-virial expression for
the scale factor. Note that, unlike the variational
expression for g, which contains two-electron
integrals, Eq. (8) involves only the one-electron
force and kinetic- energy integrals. Two- electron
effects enter Eq. (8) only through P(R,). The re-
lation of the EV scale factor to the variational
scale factor is discussed next.

IV. THE VARIATIONAL SCALE FACTOR

It will now be shown that certain variational
densities satisfy an electrostatic-virial theorem.
This follows from a theorem due to Hurley,
which states that for any completely optimized
variational wave function both the electrostatic
and virial theorems are satisfied. That is, not
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only are Eqs. (1) satisfied in the exact ca.se but
also in the case where every parameter in the
wave function is variationally chosen. In order
to make this completely clear, we will give a
brief version of the proof.

Consider an e].ectronic wave function for an
N-electron diatomic molecule. Let the only R-
dependence in this wave function be via variation-
al parameters )uf(R); then

4'= 4 [rl. . . rN, p, l(R). . . p, f, (R)].

we have

2T(g, R) + V(f, R)

+R[&T(g, R)/&R]( +R[&V(r, R)/&R]g =0. (13)

But since

U(f, R) = E(f, R) —T(r, R),

Eq. (13) takes the form

Since the electronic Hamiltonian

e= --,'ZV. ',Z V;,Z V;,
g i 2 (

is also R dependent, the R dependence of E
=( + ~ & ~ 'P) derives from two different sources
We therefore can write dE/dR as

+ QR
II ~ + ~ Il gR

R [sE(g, R)/sR ]& =R[&E(g, R)/&R]&

= —E(g, R) —T(r, R).
However,

dE (g, R) /dR = [&E(g, R—)/&R] ~

because [&E(g, R)/~g ] = 0

for all R; therefore

(14)

But by hypothesis

94 g Sp, f B)fv

z ~R 'jz
so that

+ +. dR' g . 4&~4. 10

But the variational condition is (&/& pf ) (4'IH i =0
for all ]Lt,&. Thus

dE ~H ~V,= J s R' p, (r, R)d'r = F, —-
A,

where BH/BR and 8V,/8R are calculated holding all
variational parameters fixed. Thus, provided
p, (r, R) is completely optimized, the electrostatic
theorem is satisfied.

%e now show, following Coulson and Bell, 4 that
a variationally optimized & is sufficient to ensure
satisfaction of the virial theorem. Defining

N

V()', R)= V)E V)+ E. Vjj ''0),; ''(~

RdE(f, R)/dR+E(g, R) = —T(g, R) (15)

RdF(g, R)/dR +2F(f, R) = —dT(r. , R)/dR. (16)

The differential equation for the scale factor Eq.
(3), follows upon showing that F(f, R) = f'F (1,R).
But this can be shown using Eq. (11) and the fact
that the one-body Coulomb potential V, is homo-
geneous of degree —1 in r and R. Thus

—F(g, R) =dE(r. , R)/dR—
1 7 $3p jr gR d3~

R

which is the usual form of the virial theorem.
Thus both the electrostatic and virial theorems
[Eqs. (11) and (15)] are satisfied for a wave func-
tion in which all parameters, including a scale
factor, are variationally determined (Hurley's
theorem).

The EV theorem for completely optimized den-
sities now follows upon differentiating Eq (15).
with respect to R using Eq. (11), viz.

where 0 is the scaled wave function, we have

E(f, R)= f'T(R) yr V(R)

by the usual dimensional arguments. Thus
[ SE(g, R)/Sr„]R = 0 implies that

dR
(12)

p, gr, fR d' gy'

&(CR) ) &

=-f'F(R).

A comparison can now be made to the convention-
al variational P formula. ~ Solving Eq. (15) for r,
we obtain the well-known expression,

Multiplying Eq. (11) by r and using

d T(R)/dR = r„' [sT(R)/~R] g

d V(R)/dR = r„'[~V(R)/~R]~,

V(R) +RdV(R)/dR

2T(R) +Rd T(R)/dR

which does not depend on the variational optimiza-
tion of other parameters. This is in contrast to
the EV expression
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Ro 2F(R)+R dF(R)/dR

T'"(R)

which requires that SE/& p,
&

=0 for all i . On the
other hand, Eq. (18) contains (via V) both the one-
and two-body densities while Eq. (8) has the ad-
vantage of involving only the one-body density.

V. APPLICATIONS OF THE ELECTROSTATIC-VIRIAL
g FORMULA

I, 7

I.6-

l.5-

l.4-

1.3

l.2

A. General

The equivalence of the EV and standard variation-
al scale factors, discussed above, will seldom be
met in practice; as a rule, one is not presented
with a density which is completely optimized. Par-
ticular difficulties are presented by relatively
small (limited basis) calculations which fail to op-
timize the so-called "floating" parameter, This
parameter, first introduced by Gurney and Magee, '
allows the base functions to be displaced from the
nuclei. Hurley' and more recently Shull and Eb-
bing, ' have variationally determined a scale and
floating parameters for some simple molecular-
orbital (MO) and valence-bond (VB) wave functions
for H,

+ and H, . These functions constitute ex-
amples of complete optimization. The floating
parameter X(R) is largest in the neighborhood of
equilibrium, attaining values of 0. 1 a. u. for H2
(MO), = 0. 05 a. u. for H, (MO), and =0. 06 a. u. for
H, (VB). Although X(R) can be as large as 5-10%
of the internuclear separation, the corresponding
energies and scale factors differ from the unfloated
variational values by less than 1%. On the 'other
hand, several calculations'~ ' have shown that the
"floated" and "unfloated" Hellman- Feynman forces
differ considerably. In general, therefore, we do
not expect the EV theorem to be quantitatively ap-
plicable to simple unfloated densities. Conversely,
the EV theorem should be exactly satisfied if aEE

parameters, including X are variationally deter-
mined. This was computationally verified in the
case of the variationally floated 8, MO of Shull and
Ebbing. Using their values of X, the EV g formula,
Eq. (8), was used to reproduce their variational
scale factor. The following calculations, using
standard unfloated densities, will serve to amplify
the above discussion and at the same time provide
examples of the use of the EV g formula, .

B. The H& Molecule

The EV scale-factor curve for the unfloated is
1s«wave function for H, + is displayed in Fig. 1
The variational integration limit'

has been used. Note that the EV f curve, although
manifesting qualitatively correct behavior, is in
poor agreement with the variational values for

1.0

RADIAL DISTANCE a, u,

FIG. l. f' curve for H2 ls R(~) =1). Comparison
variational t's are in icated by crosses.

small R. The total energy

U(R) = E (R) + ZAZB/R

resulting from the corresponding scaled density
exhibits no minimum. Thus the neglect of floating
in applying the EV P formula to this case is a se-
vere approximation. This is consistent with
Hurley's electrostatic calculation of the H, + energy
using the unfloated 1s function, which also pre-
dicted instability. '

C. The H2 Molecule

Several EV scale-factor curves were computed
for the H, 1so wave function. Curve III in Fig. 2
has r (~) adjusted to the variational value 0. 843 75. '

As in H, +, the EV g curve increases too slowly
with decreasing R, indicating a significant effect
due to neglect of floating. However, the agree-
ment with the variational result is better than in
H, , in accord with the relatively smaller values
of the floating parameter given above. Curve I of
Fig. 2 is for f (~) = 1, which is the "experimental"
scale factor corresponding to dissociation into two
neutral hydrogen atoms. Curve II of Fig. 2 is for
f adjusted to the variational value of 1.2 at the
equilibrium distance 1.4 a. u. The changes in in-
tegration limits are seen to cause very nearly
parallel displacements of the curves, resulting in
improved values of g for small R.

The total energy curves for f(~) = 0. 84375 and
for f (~) =1.0 are displayed in Fig. 3, along with
the highly accurate Kolos-Roothaan' energy curve
and the MO variational values for R = 1.4 and
R . Here, in contrast to H, +, the qualitative
behavior of the energies is rather good, reflecting
a smaller error due to neglect of floating.

Qualitatively similar results were obtained for
the EV scaled valence-bond density for H, .
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density. Nevertheless, it does encourage one to
suspect that neglect of floating may not cause
serious errors in similar inert interactions de-
scribed in limited bases. If this suspicion is
borne out, the EV f formula will enable one to ob-
tain reliable interaction-energy curves with rel-
ative ease.

P(~+ ~~) =P(~)+P'(~)~X+ . ,

P2(~+ ~X) =P2(X)

(19a)

+ [P(X)P'(X)+P'(x)P(x)] ah+ ~ ~ ~, (19b)

TrP(X+ c&)Oi(X+ AX) = TrP(X)Oi(X)

+ [TrP'(X)Oi (X) + TrP(&)Oi'(&)] L&+ ~ ~ ~,

0; (X+ aX) = Oi (x)+ 0 (Z) am+. (19c)

Now, by hypothesis, P'(X) =P(X). Thus the first-
order idempotency condition is

P(X)P.'(X) +P'(X)P(X) —P'(X) = 0,
and I" is subject to the first-order constraining
conditions

Tr[P'(&)Oi (&)+P(~)Of (x)] =Oi (x).

Idempotency of P(X+ bA) implies

P(x ~ aX) = C(X+ az)c (X ~ aX)

(21)

= [c(~)+c'(x)~~+ . ][c (~)+c' (~)~~+ ](22)

VI. IDEMPOTENT DENSITY-MATRIX
CONTINUATION EQUATIONS

In previous sections we have been concerned
with scaled densities without unknown linear pa-
.rameters. We will now consider the problem of
a fixed basis and concern ourselves with the vari-
ation of the density matrix I'with respect to a
parameter X.. The particular application of
interest here is when X=R and the constraint is the
EV theorem.

Consider the pure-state (idempotent) density
matrix P (X) in an orthogonal basis. We require
P(X+ 4X) to be idempotent and to satisfy a certain
set of constraints TrPOz = Oz to first-order in

We first expand all quantities in powers of 4X:

so that to first order we have

P(X + 4X) = C (X)C (X)

+ [ c(&)c' (x) ~ c' (x)c (x)] ay.

Comparing Eqs. (19) and (23), we see that

p'(~) =C(&)c' (x)+c' (x)c (x).

(23)

(24)

Tr[P'(RF- T) yP(RF'+2F —T')] =0, (25)

It can be immediately incorporated as a constraint
[compare Eq. (21)] in the continuation of the den-
sity matrix & from R to R+M.

VII. SUMMARY AND CONCLUSION

An electrostatic-virial (EV) theorem, which is
an exact integrodifferential condition on the one-
body density matrix alone has been derived. This
theorem results very simply from the combined
use of the electrostatic and virial theorems, which
separately involve both the one- and two-body
densities.

In the present work, the particular application
of the EV theorem to a scaled density is worked
out in detail, resulting in the scale-factor for-
mula of Eq. (8). It was shown that under certain
conditions this formula yields the conventional
variational scale factor. The several calculations
performed re-emphasize the importance of corn-
plete variational parameter optimization in the use
of the electrostatic theorem.

Finally, a formalism was developed in which the
EV theorem serves as a constraint on the deriva-
tive of an idempotent density matrix with respect
to internuclear distance.

Inserting this expression into Eqs. (21) yields a
system of linear equations for the elements of
C'(&), since C(X) and P(X) are assumed known. It
is now obvious that the number of constraining
conditions [Eqs. (21)] is equal to the number of
elements of C'(X).

Consider the case where X=R. Since the EV
theorem

RdF /dR y 2F = d T/dR

takes the matrix form
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