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A quantum-mechanical derivation of the dipolar models of lattice dynamics is presented, with particular
reference to the shell model. The method is based on a systematic self-consistent Born-Oppenheimer pertur-
bation expansion in powers of the lattice displacements, and utilizes a formalism previously developed by the
author, whereby the perturbation in electronic charge density is obtained self-consistently in terms of a
"bound" part moving rigidly with the cores and a "deformation part" representing the distortion effects.
A certain approximation made in the relevant matrix elements is shown to lead to a self-consistent solution
for the deformation part in terms of polarization waves, provided the dipole polarization vectors satisfy an
equation which is exactly of the form of the shell equations of the shell model. The lattice equations of
motion are then obtained and are exactly the same as the shell-model equations. The validity of the central
assumption is discussed in terms of the band structure, and it is shown why the model should be reasonably
good for insulators with large band gaps. It is shown how local-6eld corrections to the point-dipole approxi-
mation arise naturally out of the solution of the self-consistency conditions and may be incorporated into
the theory. Explicit expressions are derived for the various bonding coeKcients in terms of the general band
structure of the solid. The close connection between the shell model and the pseudopotential theory for the
lattice dynamics of metals is established, both being limiting cases of guessing at the nature of the solution
for the self-consistent electron response to the lattice perturbation. Finally, the close relationship between
the quantum-mechanical derivation of the shell model and the theory of the dielectric constant is pointed out.
Rigorous relations are established between the dielectric constant obtained from the shell model and that
calculated from the band structure in the random-phase approximation.

I. INTRODUCTION
' 'N the last few years, the problem of performing a
~ - proper quantum-mechanical calculation of phonon-
dispersion relations in the nearly-free-electron type
metals has been successfully tackled by several
authors. ' ' For such metals it is possible to use pertur-
bation theory, utilizing the fact that the ionic potential
may be replaced by a pseudopotential' —' or model

potential, ~ and many-electron eBects may be taken into
account by performing a self-consistent screening calcu-
lation. For ionic and covalent solids, however, the situ-
ation is not quite so satisfactory. The original model

used to explain the lattice dynamics of ionic crystals was
the "rigid-ion model" ' in which the ions were supposed
to move as rigid units interacting via electrostatic forces
and short-range "overlap" forces. The reasonably good
agreement which this model gave with experiment for
such quantities as Debye temperatures was shown to be
fortuitous, however, when account was taken of the
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electrostatic polarizability of the ions. ' "Subsequently,
more sophisticated "dipolar" models were evolved,
where the ions were assumed to interact directly with
each other via electrostatic and overlap forces but were
also assumed to suffer a distortion of their valence
electron shells during the lattice motions due to both
electrostatic and overlap or "mechanical" forces. This
distortion was then represented as a dipole moment
developing at the equilibrium lattice site, and these
dipole moments were supposed to introduce further
interaction both between themselves and with the
ions. This is the basic idea behind the theories of
Tolpygo and co-workers" " the "shell model" (SM)
of lattice dynamics as developed by Cochran and
others, " "and the "deformation-dipole model" (DDM)
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developed by Hardy. "A recent review of these methods
has been given by Dick."

Although the SM and DDM were essentially phe-
nomenological, their justification rested on the pioneer-
ing work of Tolpygo, Mashkevich, and others" "who
were the 6rst to construct a microscopic quantum-
mechanical theory. Their approach is reviewed. by
Kaplan, "who, however, also pointed out some of its
shortcomings. Cowley" also established the formal
equivalence between Mashkevich's formulation and
the SM.

It is the purpose of this paper to take a slightly dif-
ferent approach to the microscopic theory„by deriving
the equations of motion for such dipole models starting
from the actual crystal wave functions of the unper-
turbed lattice (which are now available for a large
number of solids, including ionic crystals, "with the
advent of self-consistent band-structure calculations
on high-speed computers), and using a self-consistent
Born-Oppenheimer expansion to obtain the perturbed
wave functions and. energies in powers of the ionic
displacements. In this way, one may relate the bonding
coeScients of the model to quantities which are obtained
in the course of a band-structure calculation. Also one

may discuss the validity of the approximations made to
derive the dipole model in terms of the band structure
of the solid in question. Further, if one assumes that the
adiabatic and harmonic approximations of lattice
dynamics are valid, the Born-Oppenheimer expansion
(where self-consistency for the perturbation in electronic
wave functions is achieved at each stage of the expan-
sion") offers a systematic and rigorous way of working
to the correct order of approximation, namely, energy
perturbation need be considered only to second order in
the nuclear displacements, and the self-consistent per-
turbations in the wave functions need. be considered. only
to Grst order. Sham' has used this approach to derive
the phonon-dispersion relation for sodium, where the
exist.ence of a weak pseudopotential makes the result
essentially equivalent to using direct perturbation
theory to second order, with the change in pseudo-
potential as a weak perturbation. ' Thus the derivation
of the equations of motion of a dipole model for tightly
bound. solids from such an approach would provide a
very de6nite link with the theory of lattice dynamics of
metals, showing that the equations of motion for these

two types of solids arise in a sense as two limiting cases
of the same formalism. The achievement of these ob-
jectives is the purpose of this paper.

There are essentially two main reasons why the above
kind of approach has not hitherto been applied to solids
such as ionic crystals. The first reason is that the rigor-
ous solution to the self-consistency problem involves

"J.R. Hardy, Phil. Mag. 6, 2/ (1961)."B.G. Dick, Lattice Dynamics (Pergamon Press, Inc. , New
York, 1965), p. 159."R.A. Cowley, Proc. Roy. Soc. (London) A268, 109 (1962)."P.A. Decicco, Phys. Rev. 153, 931 (1967)."G. V. Chester, Phil. Mag. Suppl. 13, 89 (1964}.

the inversion of a dielectric matrix" which is enormously
difficult (though probably not impossible) to carry
through for a crystal where the wave functions are far
from free-electron-like. The second reason is the absence
hitherto of anything like a pseudopotential for such
solids, which in the case of the simple metals enormously
simplifies the evaluation of the matrix elements and the
convergence of the expansions in reciprocal space.

Kith regard to the first point, it should be noted that
Cochran" noticed a formal similarity between the
equations of motion of the SM (once the dipole moments
were eliminated) and the equations of motion for the
lattice dynamics of the simple metals, as obtained by
Sham, ' Toya, ' and Harrison. ' He also pointed out that
both types of theory had the property that the electron-
charge distribution was deformed by the lattice motion,
and this deformation at the same time served to "screen
out" the perturbation. He further suggested that the
shell equations of the SM correspond. ed to the self-con-
sistency conditions for electron screening used in the
theory of metals. We shall see that the shell equations
may indeed be derived as a limiting case of the self-
consistency equations, provided a certain assumption
(corresponding essentially to the dipolar approximation)
is made about the nature of the solution to these equa-
tions. This will lead to a certai~ restriction on the band
structure which will have to be satis6ed for the model
to be valid. Thus the dipole models for the lattice
dynamics of such solids may be regarded as physically
intuitive guesses as to what best approximates the true
solution for the self-consistent electron response ap-
propriate to these solids. The same remark may in fact
be applied to all the other models proposed. for the
lattice dynamics of diferent types of solids such as the
free-electron models, exchange-charge models, quad-
rupole models, and so on.

Very recently, in fact, Phillips" has developed a
theory of covalent bonding in terms of "bonding
charges" situated on the bonds, and Martin" has used
this model to calculate the phonon-dispersion relations
in silicon, with a fair degree of success. Such a model
corresponds to yet another guess, in the sense mentioned
above, about the self-consistent solution for the electron
response, and. an alternative approximation for the
microscopic polarizability tensor to our basic approxi-
mation in Eq. (28). Such a model may be more appro-
priate for covalent solids, whereas it is likely that for
ionic crystals the dipolar model is likely to be a better
approximation.

With regard to the pseudopotential problem, we note
that in a previous paper by the author" (henceforth
referred to as I) a formalism was developed whereby
phonon-dispersion relations in a variety of solids could,

"L. J. Sham and J. M. Ziman, Solid State Phys. 15, 221
(1963).

2' W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).
rs J. C. Phillips, Phys. Rev. 166, 832 (1968); 168, 905 (1968).'r R. M. Marttn, Phys. Rev. Letters 21, 536 (1968)."S.K. Sinha, Phys. Rev. 169, 477 (1968).
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be derived in terms of the band structure using a self-
consistent Born-Oppenheimer expansion. It was noted
there that the use of the latter eliminated the objections
to the use of perturbation theory, even in the case
where the ionic potentials could not be replaced by weak
pseudopotentials as in the simple metals, but that for
tightly-bound solids, as well as for simple metals, one
could nevertheless de6ne a quantity in the lattice-
dynamical problem, which was exactly analogous to the
pseudopotential. The formalism showed that one could
regard the deep potential mell near the ion cores as
essentially moving some part of the valence charge dis-
tribution rigidly with the core, and that the further dis-
tortion of this charge distribution could then be regarded
as arising self-consistently in response to a weaker per-
turbation, described as the "residual potential, "with the
deep wells near the cores eliminated. The dynamical
matrix was then shown to be made up of a part due to
interactions between "rigid pseudoatoms" and a part
due to the distortion of the valence charge distribution.
The similarity with the physical ideas underlying the
above dipole models is obvious, and the exact connection
may be made by regarding the deformation part of the
valence charge distribution in I as being in some sense
a polarization wave propagating through the valence
charge in the crystal. In fact we shall see how the point-
dipole assumption may be relaxed slightly while still
preserving the form of the SM equations which we shall
derive from this approach. This is equivalent to allowing
approximately for local-field corrections to the fields
produced by the electronic distortion, and we shall see
how' we may define form factors for the shells as origin-
ally suggested by Cochran. "Finally, we shall discuss
the relationship of our method to the quantum theory
of the dielectric constant. Cochran and Phillips" have
already gone far in establishing such a connection, by
comparing the static wave-number-dependent dielec-
tric function obtained from the SM to that obtained
from band theory in the random-phase approximation
(RPA), and have suggested reasons for the discrepancies
between the two. By means of our method, we shall in
fact be able to demonstrate rigorously the exact
relationship between the two dielectric functions.

Since the SM contains all the essential features of the
dipole models discussed earlier, it is sufhcient to com-
pare the equations we derive with those of the SM.
It is worth re-emphasizing that our discussion will be
most relevant to crystals containing atoms with tightly
bound electronic con6gurations.

II. SHELL-MODEL EQUATIONS

Let us assume that there are r atoms per unit cell.
With each atom we can associate a symmetric volume
around it which has a fixed geometrical configuration
with respect to the unit cell, and we may call this the

~ W. C. Cochran and C. J. Phillips, Phys. Rev. 134, AI402
t,'1964).

w= Yw'. (2)

In matrix form, the SM equations of motion may then
be written as

(d2Me= (ZCZ+R)e+(ZCY+T)w', (3a)

(3b)0= (YCZ+Tt)e+(YCY+S)w',

where Z is the diagonal matrix Z„b„„.8 s (cV„ is the mass
of the )(th atom), C is the electrostatic bonding coeK-
cient between unit charges, as defined by Kellerman, '
and R, T, and S are 3r&&3r matrices describing the over-
lap or nonelectrostatic short-range bonding coeKcients
between rigid atoms, between atoms and shells, and
between shells, respectively. Elimination of w' from
Eqs. (3) gives us the equation of motion of the atoms
alone as

(O'Me = L(ZCZ+ R)—(ZCY+ T) (YCY+S)—&

X(YCZ+ Tt)]e, (4)

from which we may obtain the phonon frequencies in
the usual manner. We note that the shell-charges V,
are actually 6ctitious charges and so are the shell dis-

"subcell" associated with the atom. (By "atom" we
mean the core plus the total valence charge density
inside the subcell in the unperturbed lattice. Thus we
really mean an ion if each subcell carries a net ionic
charge as in an ionic crystal. ) We shall follow conven-
tion in referring to the nuclei together with their tightly
bound electrons as the cores and to the loosely bound
electrons which suffer distortion during the lattice
motion as the valence electrons. These correspond to the
shells of the SM. We now briefly discuss the SM
equations of motion.

Let I„, ' denote the n component of the displacement
of the atom in the ath subcell of the 1th unit cell. The
SM assumes that there is also a dipole moment repre-
senting the distortion of the valence charge density in
that subcell, whose n component is m „, ' when the lattice
is vibrating. It also assumes that both I,,

' and m„, '
may be written in the form

I )—P'Q) —)/2(Q & &i» (r)+rz)

+Q 4~ 8e-i» (r)+r„)) (]a)
l (/l/Q)—-1/2(Q»0 ei» (rt+rg)

+Q,*»(„,.*e '» "+'")) (Ib)
where iV is the number of unit cells per unit volume, 0 is
the total crystal volume, Q» is the normal coordinate
operator, and e and w are 3r-component unit polari-
zation vectors associated with e„, * and m„, ', respec-
tively. r& is the equilibrium position of the origin of the
3th unit cell, and r, is the equilibrium position of the
atom in the ~th subcell relative to this origin. The SM
associates with each atom an ionic charge Z„and with
each shell a shell charge P„. We may de6ne a shell
displacement w' defined by
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placements, the physically meaningful quantities being
of course the dipole moment polarization vectors w.
It is therefore convenient to eliminate these from Kqs.
(3), by defining new short-range bonding coef5cients
I', 8' related to the SM bonding coeKcients by

lim P (ZCY+T).p""'=0
q~0 g'

lim Q (ZCZ+R).p'"' ——0,
q~0 a'

(ga)

(gb)

T= T'Y,

S=YS'Y.

In terms of these, Eqs. (3) become

cv'Me= (ZCZ+R)e+(ZC+T')w,

0= (CZ+ T't) e+ (C+S')w.

(6a)

(6b)

It is important to note that in practice, the elimin-

ation of the quantities w leads to two types of
nonuniqueness in the SM bonding coefficients if one
wishes to work back from the dispersion relations to
obtain the latter quantities. In the first place, we note
that if F is any 3r&&3r matrix which is a periodic func-

tion of q and satisfies the same symmetry requirements
as the R, S', and T' matrices, then the transformation

(ZC+T') -+ (ZC+T')F, (7a)

(C+S') —+ F(C+S')F (7b)

will not affect the phonon frequencies or eigenvectors.
Further, if F= 1 for q ~ 0, the transformations in Eqs.
(7) will not affect the static polarizabilities of the atoms
either. Hence, the SM which is fitted to these polariza-
bilities and the phonon frequencies will not be unique
relative to such a transformation. The nonuniqueness

of the shell charges Y„as exemplified by the transfor-
mation from Eqs. (3) to Eqs. (6) is just a trivial example
of this where F is in fact the constant diagonal matrix
Y. In this case the physical quantity w is unchanged by
such a transformation, but in the most general case
)Eqs. (7)g it may not be unchanged. Also, in general,
the transformations in Eqs. (7) may change the values

of both the Coulomb and short-range parts of the
"atom-shell" and "shell-shell" bonding coefficients. To
eliminate this lack of uniqueness, the conventional SM
fits to the experimental data usually assume R= S=T
for all q, where these are the short-range bonding
coefficients in. Kqs. (3). We shall presently derive

quantum-mechanically based expressions for these

coefficients which do indeed exhibit some similarity
between them but do not justify making them equal.

Secondly, we note that the division of the valence

charge density perturbation into a bound or rigid-atom

part and a dipolar part may be made more generally
than in the case of the conventional SM. In the latter,
the restriction to the case where the bound part repre-
sents the rigid motion of atl the valence charge within

the whole subcell a,nd the dipolar part represents the
rest of the perturbation is made by imposing the par-
ticular form which the conditions of translational
invariance take in this case, namely,

implying that for q=0 there is a solution to Eqs. (3)
for which zs„'=a constant, m„, '=0, and co=0.

On the other hand, it may be more convenient to
split the perturbation in valence charge density more
generally into a bound part corresponding to the rigid
motion of the valence charge within a volume Vo (not
necessarily the whole subcell) surrounding the core,
and a deformation part representing the rest of the
perturbation. This was the approach from which the
formalism in I was developed. If the deformation part
now can be identified. with a dipolar deformation, the
SM equations of motion, as represented by Kqs. (3),
would still be true but the quantities w', Z, R, S, andI would obviously have different meanings. For
instance, Z would n.ow represent only the total valence
charge inside V0 and not the whole ionic charge. As we
shall see later, it is quite possible that the dipolar ap-
proximation is better satis6. ed by not choosing V0 to be
the whole subcell volume, and there is experimenta, l
evidence'4'~" that SM fits for ionic crystals tend to
favor ionic charges smaller than the actual ionic charges.
The condition of translational invariance in the general
case only requires that the over-all dynamical matrix
for the atoms D p""'(q) Ldefined in Eq. (4)] satisfies

lim g D.p(q) s""'=0.
ti~0

In our treatment we shall therefore derive the SM
equations as represented by Eqs. (3) in the above,
more general, sense.

Finally, we discuss the relationship of the SM to the
pseudopotential method. As stated in the Introduction,
our formalism as developed in I is based on the fact that
by explicitly building the rigid motion of the bound part
into the perturbed valence charge density, the effect
of the perturbation on the remainder may be expressed
in terms of a weak residual potential not involving the
deep potential well due to the cores. (This is very similar
to the use of pseudopotentials in lattice-dynamics
calculations for simple metals, but is more general in
nature. ) Since we intend to derive the SM from this
formalism, the SM should also exhibit this elimination
of the strongest part of the interaction between its
cores and shells. The core-shell bonding coeScients
depend on the matrices C and T. It is interesting to note
that C specifically eliminates the Coulomb interaction
between a core and the shell in its own subcell. This is
the familiar elimination of the "exciting field" in a unit
cell in evaluating dipolar sums as discussed by Born
and Huang. "I contains short-range interactions be-

'0 M. Horn and K. Huang, DynamicaL Theory of Crysta/ Lattices
(Oxford University Press, New York, 1956).
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tween nearest neighbors, and the interaction between a
core and its own shell is represented by an isotropic
spring of force constant k, which merely contributes a
constant to the bonding coeS.cient. Thus the strong
short-range part of the ion-electron interaction has been
effectively "transformed away" in the SM formalism
and for the same genera1 reasons as in our quantum-
mechanical treatment.

energy EI, and occupation number n(k), Apq(K) repre-
sents the Fourier transform of hpq(r), H and H' repre-
sent reciprocal lattice vectors, and X(q+H, q+H') is
defined by

1 n(k) —n(k')
x(q+H, q+H') =g'—

k, k' Q EI,—EIci

111. SELF-CONSISTENT FIELD EQUATIONS
AND THE DIPOLAR APPROXIMATION

We now briefly describe the results obtained in I for
the self-consistent perturbed charge density for a
crystal with one atom per unit cell. Strictly speaking,
the SM has never been applied to monatomic crys-
tals, but we shall continue to assume one atom per
unit cell for the purpose of deriving the SM equations
in order to keep the notation from becoming too
complicated. However, we shall not assume a neutral
unit cell as in a metal. The generalization to the case
of crystals with basis is then straightforward and is
made in Sec. IV.

In I, we split the 6rst-order term in a Born-Oppen-
heimer expansion for the perturbed valence-electron
charge density into two parts:

(The prime over the summation means the terms for
which k= k' are to be excluded from the sum. ) W'(K)
is the Fourier transform of the potential W'(r —r~)
defined as

W'(r —ri) = y~(r —ri) —LV(r) —V(r,)] (14a)

for r inside Vo(l), and

W'(r r()—=y, (r r))— (14b)

for r outside Vo(l), where p~(r —r~) represents the po-
tential which a valence electron sees due to the whole
pseudoatom inside the volume Vp, i.e., the core plus the
unperturbed valence charge density inside Vo, V(r, ) is
the value of the crystal potential V(r) (assumed
spherically symmetric) on the surface of the volume Vo,
and v(r—r') is the unscreened electron-electron inter-
action including exchange and correlation effects in the
local approximation. ' Finally, MI, & is de6ned by

where Ap "&(r) describes the 6rst-order change due to a
rigid movement along with the core of the valence
charge within some characteristic volume Vp surround-
ing the core and is designated as the bound part, de6ned
by

My~ y=
2m ~, ~ &p(&)

( a a
X I

V'0'~ * 4~ fr *~' fI—I (15)
ax. ax. ia

Ap"'(r) = —r, p(r «)I-'—
Bx~

(11) or
A2

My~a=
2m l, awhere p(r —rg) describes that function which is equal to

the unperturbed valence charge distribution inside the
volume t/ p around the /th atom, and is zero outside.

Apq(r) represents the rest of the perturbation and is
designated as the deformation part.

By using the Schrodinger equation to transform the
total self-consistent electron-ion matrix element, and
applying self-consistent Born-Oppenheimer perturba-
tion theory, we obtained Ap(r) back in the assumed
form of Eq. (10).Thus we had effectively a self-consis-
tency equation for Ap&(r) which was written as

Sp(l)

/a a a'
|l —A* 4 I, (16)

&an ax. anax. i'

Mg~y=i (t/0)~I'
XLQ,&~ ~,,+Q,*&~ ~, ,]P s.l.", (1&)

Ap„(q+H) =p L0 (q+H')bp (q+H')

where a/an denotes differentiation normal to the sur-
face 50(l). Using the formula for the I ', Mq q was shown
in I to be of the form

—i(E0)'12Q P(q+H') e W'(q+H')]

1 n(k) —n(k')
Xx(q+H, q+H')+P'—

I &' 0 Eg—EI,

XM Q I

'«+ &'l4'), (»)
where fI, represents the valence wave function with

where the symbol 6», ~ denotes unity if k' —k=q
modulo a reciprocal lattice vector and zero otherwise,
and k,k' denote the Bloch wave vectors of states k,k',
respectively, in the reduced-zone scheme. Explicit
expressions for I ~'~ in the case where the wave func-
tions were calculated by means of the augmented-plane-
wave (APW) formalism, and the volumes Ve were
taken to be muon tins surrounding the cores, were
derived in Appendix A of I.
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Note that W'(r —rt) is a weak potential which has
the deep potential well near the core subtracted out; it
is continuous at the surface

I
r—rt

I

= r, of Vo, and for a
metal, for instance, tends to become very small if Vo is
taken large enough so that the pseudoatom inside is
almost neutral. Thus, in general, W'(K) will be smoothly
damped for large K, and the sum over I' is expected to
be fairly well convergent. Note that Eq. (12) has the
form of a general self-consistency equation for hp~,
where the driving perturbation is the direct interaction
between the valence electrons and the pseudoatoms
through the potential W'(r rt—) as well as an overlap or
mechanical interaction with them through the term
involving M~ ~. The latter give rise to the deformation
dipoles of Hardy's model. "

Let us define a polarization wave P(r) associated
with the deformation part Apa(r) of the perturbed charge
density by means of the relation

VP(r) =—Apa(r) . (18)

—i P X.P.(K)= Ap, (K), (19)

where we have defined P(K) by

As is well known, such an equation does not define P (r)
uniquely. This point is discussed further in the last
section. The Fourier transform of Eq. (18) is

we assume P (K) to be of the much more general form

P, (K)= (ill/0)'"[Q, w, bx, ,+If(K)
+Q~*~-*~-K,~+Hf*(K)] (23)

where the function f(K) is left undefined at present.
Substituting this form in Eq. (19), we get

Xg(q+H). in.f(q+H) (24a)

and

Apo[ (q—+H)]= t'Q, *($/0)'t'

Xg(q+H).~.'f*(q+ H). (24b)

We now use a result derived by Pines, "
O'I p-&"'l 4' &

A~le"'l4'&= —Z&-, (25)
ttt Ei,—Ei, + tt'E'/2ttt

where p is the operator for electron momentum, and m
is the electron mass. Equation (25) is an identity valid
for any eigenfunctions of a crystal Hamiltonian. Using
Eq. (25) we may write &(q+H, q+H') as deiined in
Eq. (13) in the form

P(r) =P P(K)e'*' (20) x(q+H, q+H') =
—P (q+H). tt' dt(q+H, q+H')(q+H')tt, (26)

The simplest procedure is to make the literal point-
dipole assumption for P(r) as in the conventional SM,
i.e., to assume that we may write

P (r)=(&f1) '"Z [Qq~ e""

+Q,*w,*e-'&'"]b(r—rt). (21)

Note that we cannot, as we shall see later, assume that
the m are real, even though for a Bravais lattice we
can take the e, as real.

In this case,

P.(K)= (At/n)'»[Qq~o. sx,q, s+Q,*w.*s K,,+H]. (22)

Substituting this into Eq. (19) and then into Eq. (12),
we may show by means of certain transformations that
Eq. (12) leads to the shell equations of the SM provided
X(q+H, q+H') satisfies a certain relation. However,
this relation is unnecessarily restrictive because of the
rather unrealistic nature of the point-dipole approxi-
mation which completely neglects local-Geld correc-
tions. ""It was pointed out by Cochran and Phillips"
that such corrections could be incorporated into the SM
without changing the general form of the SM equations
by postulating a form factor for the shells. Accordingly,

"M. Lax, Lattice Dynamics (Pergamon Press, Inc. , New York,
1965), p. 184.

where we de6ne the microscopic polarizability tensor
per unit volume of crystal by

j't' 1 n(k) —n(k')
o'-s(q+H, q+H') =—2'-

ns' I,&' 0 EI,—Eg

It'(q+ 8)') j't'(q+8')'~ -'

(X &t &t + -I Pt Pt+—
2ttt ) 2ttt

X(4'IP-e *'" "l4' &(6 IP~&"" "14~& (27)

For the case H=H'=0, and q —+0. we see that this
reduces to the ordinary static polarizability tensor
tt s(0) for the crystal. We note here that Eq. (27) is
completely general and applies also to the case of crystals
with more than one atom per unit cell. We shall use it
later to discuss what is meant by polarizabilities which
we can ascribe to particular ions in the cell.

We now make the central approximation which leads
to the SM equations and from which Eq. (12) may be
solved without the enormous diKculty of inverting a
dielectric matrix as required by the rigorous solution
discussed in I. This consists of assuming that the

"D. Pines, Elemerttary Esoitatiortsiil Solids (W. A. Benjamin,
Inc. , New York, 1963), p. 171, Eq. (4-12).
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It is this factorization which makes a solution of Eq.
(12) possible. The approximation (28) is equivalent to
putting

x(q+H, q+H') = —g (q+H) f(q+H)

X.'.p(q)f*(q+H')(q+H'), . (29)

Note that the approximation in Eq. (29) represents the
other extreme limit from the case of nearly-free elec-
trons, where the off-diagonal terms in X(q+H, q+H')
are neglected altogether. For most solids, the latter
underestimates the local field corrections, while Kq.
(29) probably overestimates these corrections.

The validity of the approximation in Eqs. (28) and
(29) is discussed in detail in the Appendix, and depends
on the detailed band structure of the solid in question.
For instance, it is shown that it is rigorously true in the
tight-binding limit of two flat bands of importance. Very
recently, Pick, Cohen, and Martin" have arrived at a
more general formulation of the approximation em-
bodied above, and also discussed its application to the
lattice dynamics of insulators.

Let us define a polarizability tensor per unit cell

a= (1/$)a', (3O)

where a' is the matrix defined by Eq. (A8) and appears
on the right in Eq. (28). Note that a is a Hermitian
matrix. Let us also define matrices V, W, and J by the
equations

I"-p(q) =&Z(q+H)-(q+H) pf(q+H)

xf"(q+ H) Qtt(q+ H), (31)

W p(q) =XQ(q+H). (q+H) p

Xf(q+ H) QW'(q+ H), (32)
and

k 1 n(k) —n(k')I.p(q) = EP'-—(I k'k)8

m I, I ' 0 EI,—EI,

0

d 0 *()pe.()l(&. ~ ) A'-. , , (33)

where the integration is over the origin unit cell. If we
now substitute Eq. (24a) as a trial solution in Eq. (12)
and use Eqs. (17), (A5), and (29), we find that the re-
sulting equation is satisfied if

w+a(Vw+Wte)+ Jte=o, (34)

~ R. Pick, M. H. Cohen, and R. M. Martin, in EroceeChlgs of
IANNA Symposium on Inelastic Neutron Scattering, Copenhagen,
Denmark (International Atomic Energy Agency, Vienna, 1968).

polarizability tensor may be factorized as

a-p(q+H, «+H') =f(q+H)~'-p(q)f*(q+H') (28)

Wt= CZ+ U't

V= C+V',

(36)

(37)

where U' and V' are the short-range parts of W and V
resulting from the effect of the form factors f(q+8) and
departures of the potentials W' and v from Coulomb
potentials at short distances due to exchange and cor-
relation effects. The matrices C and Z were defined in
Sec. II. Therefore, we finally obtain

0= [CZ+ (U'+ Ja—') i]e+ [C+(V'+ a—')]w. (38)

Thus the short-range or mechanical coupling between
the dipole moments and the ions is through U' and the
overlap matrix Ja '. Note that if the wave functions
were well localized so that there was no overlap, the
Ip~'~ would vanish and hence this term as well. This
point is similar to that discussed in more detail in I.
The "first-principles" calculation of the overlap inter-
action involves calculating the Ip"'~ (as discussed in
Appendix A of I), the dipole oscillator strengths, and
the q-dependent polarizability from Eq. (A8). The
short-range shell-shell or dipole-dipole coupling is
through V' and the possible q dependence of a' p(q).
For the case described previously, namely, only two
fiat bands with tightly bound atomiclike orbitals, the
g dependence of a p' disappears, as assumed in the
conventional SM, although the form factors f(q+H)
still give a possible q dependence to V'. It is interesting
to note that for many ionic crystals, the mechanical
dipole-dipole interactions are not important in getting
a good fit to the experimental data, "but in other cases
shell-shell force constants have to be assumed, pre-
sumably to take the above q dependence into account.

IV. EQUATIONS OF MOTION FOR CORES

In I, we obtained by means of a self-consistent Born-
Oppenheimer expansion the potential function for the
vibrating lattice up to second order in the nuclear dis-

'4 J. R. Hardy (private communication).

where w and e denote the polarization vectors z and
e, respectively. The dagger symbol denotes the
Hermitian conjugate of a matrix. We may rewrite this
equation as

0= (W+ Ja ')te+(I+a—')w, (35)

where we see that it has the familiar form of the shell
equation [compare Eq. (6b)]. Note that the matrix
V is Hermitian but that the matrices W and J are not.
However, all the matrices have the correct property
that the transformation q —+ —q converts them into
their complex conjugates. This ensures that Ap(r) is
real. Because W'(r —ri) is Coulomb-like at large dis-
tances with a charge= Z, the total charge on the pseudo-
atom in the volume Vo, and because n(r —r') is also
Coulomb-like at large distances (with unit charge), it
follows that we may write
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placements. This was written as

C'"' =
» Z q'~p" »i~'n&)'+ Q»Q»* Q e epR t)

&"((I)
l,l' aP
eP

1 n(k) —n(k')
X @ II OW'q II

r I~Q

x(r,")'&h(r+ H) (&r, ,
~

&'&'+ &'~p ))+ce. , (39)

where we have chosen to write the deformation part
explicitly in terms of Apd(q+H) rather than in terms
of the related functions F,(q+H) as in Eq. (66) of I.
In Eq. (39), Q s" are force constants representing
direct interactions between the pseudoatoms in the
volumes Vo in the 3th and t'th unit cells, respectively.
They may be split up into an electrostatic force constant
and a short-range force constant due to the exchange
and correlation corrections to the direct interaction
v(r —r') between valence electrons. Thus,

82 Z28~

-~~a~~P ~ —& r/ —r~ Pp(l)

82

X dr'p(r —ri)p(r' —r'i ) ()„(r—r'), (40)
Vp(l') Bgal9XP

where Z is the total charge on the pseudoatom inside
Vp. For i= l', P &)" contributes merely a constant to the
dynamical matrix which may be fixed by the trans-
lational invariance condition as discussed in I. 2&'. &)(»)(q)

corresponds to the overlap interaction as discussed in
I and is given by

action with the motion of cores in other cells through
the potential W'(r —ri). (See the discussion in I.) This
causes an effective coupling between the cores through
the charge distortion. Unfortunately the form of the
overlap interaction does not lend itself to expressing it
in terms of dipole moments of the perturbed charge
distribution, so for the present we shall have to keep this
term as a long-range, core-core interaction. Later on we
shall see how it nevertheless fits into the SM formalism
and may be interpreted as part of the core-shell-core
interaction.

Equation (39) shows that the contributions to the
dynamical matrix falls into two parts —one associated
with the bound part and involving the direct inter-
action between the pseudoatoms, and another involving
the part Ap~(r) of the perturbed charge density.

The expression for C'&" given in Eq. (39) is quite
rigorous. To obtain the SM equations of motion for the
cores, we merely substitute the approximate form of the
solution given in Eqs. (24) for hpz(q+H), namely, the
solution obtained on the dipolar assumption. To be
consistent we must also replace the matrix elements of
the form Qi le'«+")'lP), ) by the expressions given
in Eqs. (AS) and (A6) as required by the dipolar
assumption.

Let us define a matrix R' by the relation

X-', (A. .,.+&. . »). (42)

We note that according to Eq. (A6),

1 n(k) —n(k')
iV P' —— (I "')*P(q+H)&)QlV'(q+H)

A, A,
" Q

1 n(k) —n(k')—»iV Z —— (I i'i)81 )r')r

& &' 0 Ejr,—EP~

X-', (A, ,+A), ), ,) l+c.c.+C, (41)~ ~

where C is a constant which may be incorporated
formally in the term involving P„p" and hence need not
be evaluated explicitly. It is to be noted that the overlap
interaction E &)(')(q) actually contains a long-range
part in the term involving W(q+ 8) since the potential
8"(r—ri) is Coulomb-like at large distances. The
physical reasons for this term are as follows. This term
represents the overlap interaction between the core and
the charge distortion in its own cell caused by inter-

X(q+H)&)f*(q+H)QW'(q+H)= —(JW*) p, (43)

(0)(q) Q y )vs&» (rr& rO—
)I

(45)

(Note that the matrix V is real. ) Now substituting the

where the matrix J was de6ned in Eq. (33), and W*
denotes the complex conjugate of the matrix W dined
in Eq. (32). Similar results hold. for the term involving

Ape(q+H) in Eq. (39).
Using all these results, we Anally obtain

C&')=Q Q,*Le (D&')+R') e——',e (J*W+JW*) e
+-,'e (W*—J*V) w'+-,'e (W—JV) w], (44)

where
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solution of Eq. (35) for w, we obtain

C &»= Q,Q,*e LD«&+ R' ——,'J*W——,'JW'
—-', (W*—J*V)(V+a ')-'(W*+J~a ')~

——;(W—JV) (V+a-')-'(W+ Ja-') &] e.
We note that

(46)

D&'&= ZCZ+ X, (50)

where X is the bonding coefEcient between the pseudo-
atoms due to the short-range exchange and correlation
correction to the bare interaction between the valence
charge distributions. We thus see that Eq. (49) repre-
sents the exact form of the SM equations of motion
once the w' have been eliminated from Eqs. (6a) and
(6b). Equations (49) and (38) thus show that the as-
sumption represented by Eq. (A4) is sufhcient to obtain
faithfully the exact form of the SM equations from the
very general formalism developed in I, based on a self-
consistent Born-Oppenheimer expansion. In the Appen-
dix, it is also shown that the validity of the central
assumption may be evaluated in terms of the band
structure of the solid in question, and is likely to be
reasonable for simple kinds of insulators with fairly
large band gaps. This shows that the form of the SM
equations is probably valid for such substances more
generally than one might suppose from the way that the
SM equations were originally set up, "' namely, in
terms of simple spring interactions between cores and
6ctitious massless shells. Indeed, the bonding coefficients
that we have derived are more general than those one
might obtain from the simple SM with the short-range

'6 J.M. Ziman, Electrons and I'honons {Oxford University Press,
Neer York, 1963).

—x2LW —JV]fV+a—']—'LW+ Ja ']t
= —-', LW+ Ja-']LV+ a-']-'PV+ Ja-']t

+-', JLW+ Ja-']t
= —-'PV+ Ja-']LV+ a ']-'PV+ Ja-']&

+-,'JW*+-,'Ja-'J~ (47)

since Wt =W* Lsee Eq. (32)].Using Eq. (4/), we obtain
for Eq. (46)

C«&=Q~Q~~e (D"&+R'+-,'$Ja 'Jt+J*a (J*)t]
——,'LW+ Ja-']LV+ a-']C W+ Ja-']t

—x2LW*+J*a-']LV+ a ']LW*+J~a ']t).e. (48)

For the case where the wave functions are such that
the P&,(r—r&) in Eq. (A1) may be chosen to be real, it
may also be shown that the matrices J and W are also
real. Although it is dBFicult to prove this in the general
case, we shall assume this to be true.

Then Eq. (48) gives us the equations of motion, "
Ale'e=D«&+R'+ Ja 'Jt

—LW+Ja ']tV+a '] 'PW+Ja ']t.p(49)

Note that by Eqs. (45) and (40) we may write

core-core, core-shell, and shell-shell interactions repre-
sented by central interactions between nearest neigh-
bors, and so on. This might explain some of the compli-
cated sets of force constants needed to fit experimentally
measured dispersion curves according to the SM. In
fact, the explicit values for the matrices R, T', and S'
introduced in Eqs. (3), (5), and (6), are given by
Eqs. (36)-(38), (49), and (50).

R= X+R'+Ja 'Jt,
T'= U'+ Ja-'

S'= V'+ a-',
(52)

(53)

where X was defLned in Eq. (50), R' in Eq. (42), J in
Eq. (33), a in Eq. (30), and V' and U' are, respectively,
the short-range or non-Coulombic parts of the bonding
coefficients V and W defined in Eqs. (31) and (32). We
note that the matrices R and S' are Hermitian, but that
T is not, since the matrix J is not symmetric. Indeed
there is no reason for it to be Hermitian since the form
of Eq. (49) ensures that the dynamical matrix as a whole
is Hermitian even if J is not. In the conventional SM,
however, because T' is obtained in terms of force con-
stants, it always comes out Hermitian (or, in the case
of a monatomic lattice such as considered here, sym-
metric). Note that although R, T', and S' exhibit some
similarities, they are, in general, not equal. Further, as
mentioned before, we have described the model in
terms of pseudoatoms sitting inside a certain volume Vo
surrounding each core. If this volume Vo is taken as the
unit cell itself, we have the conventional SM division
into a pure rigid atom and a pure dipole part of the
perturbed charge density, and in this case it may be
veriied that the translational invariance conditions in
Eq. (8) are satis6ed. However, for calculational pur-
poses it will be most convenient to take Vo to be, for
instance, the APW sphere centered on each lattice site,
in which case Z is now not to be taken as the whole
ionic charge. It should be noted that R contains a con-
stant term in this case which ensures that over-all
translational invariance is satis6ed.

From what has been said it is clear that our quantum-
mechanical SM, if parametrized, allows in principle a
large number of parameters. The theoretical expressions
derived above may, however, be of considerable use as
a guide to the reasonableness of such parameters. Of
course, the ideal test of the theory would be to calcu-
late the bonding coefficients from the given theoretical
expressions in terms of a band-structure calculation.
Such a calculation is presently being attempted for a
number of ionic crystals.

Before closing this section, we discuss the generali-
zation of the above theory to the case of a crystal with
more than one atom per unit cell. The results, which we
state here without detailed proof, may be verified by
going through the derivation given in these last two
sections in the same way for the general case.
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I et us assume the lattice displacements are given by
Eq. (1a). The ionic charge matrix Z now becomes a
3r)&3r diagonal matrix Z,b„„'8 p, where Z, is the charge
inside the volume Vo" in the zth subcell. The 3r)&3r
matrix C is now the standard electrostatic bonding
coefEcient for a lattice with basis. The matrix X is now
calculated in terms of short-range force constants.

Finally the polarizability matrix a' de6ned in Eq.
(AS) must be generalized to

fis 1n(k) —n(k')
(o')-e""'(a)=&'—,Z'-

Xeia (x~r~~)r kk'r, k'kA, (59)

eg~', )l']z—
where r„, ~'~ is the 0' component of the dipole matrix

dr dr' p„(r—r(—r„) element for the sth subcell, similar to the one entering
Vo(V, «') Eq. (5S) above. Note that there are, in general, inter-

ference or cross terms between different subcells in this
polarizability matrix, except in the extreme tight-

8$~8xp binding limit. At q ~0, the static polarizability per
unit cell is obtained from Eq. (27) as

where Vs(l, s) denotes the volume Vs' in the sth subcell
of the /th unit cell, having an origin at (r)+r„), and

p„(r—r)—r„) denotes the valence charge distribution
inside Vs(t, s). The generalizations of the matrices V and
W are

o-e(0)=- Z (~')-e"'(o),
g k, k'

V ""'(~)=& Z(q+H). (q+H)e'" '-"'f"(q+H)

W e""'(q)=EQ(g+H) (q+H)ee'H'('~"') f"(q+H)

so that if the interference terms are appreciable, we
will not get additivity of ionic polarizabilities in the
crystal. For q=o, in fact, Eqs. (59) and (60) provide
a rigorous expression for the static polarizability of a

XLf" (q+H)3 Qe(q+H) ~ (55) crystal in terms of the actual crystal wave functions
(which are, in general, diferent from those of the free
ions).

XQW. '(q+H), (56)

where f"(q+8) is the form factor for the "shell" in the
Kth subcell, and may be evaluated from Eq. (A4) by
replacing the integrals over the unit cell on the left-
hand side by integrals over the f':th subcell in the origin
unit cell instead. We note that Eq. (A6) may now be
generalized to obtain for the wave function fk in the
(l,~) subcell,

(Q)-(lseik (r)+r, )Pka(r r& r) (57)

k 1n(k) —n(k')
~.e""'(a)=—& Z'—

1S &,&' 0 Ey—Eyr

In the tight-binding limit, @k"(r—ri —r„) represents the
atomic orbital in the ~th subcells for the state 4 and is
negligible in other subcells for the same k. The general-
ization of J is

V. RELATION TO QUANTUM THEORY OF
DIELECTMC CONSTANT

Ke now discuss the relation between the dielectric
constant obtainable from the SM and that obtainable
from a band-structure calculation. Ke present here an
extension of the ideas put forward by Cochran and
Phi11.ips."

Let us consider the case where there is no motion of
the cores, i.e., we discuss only the electronic part of the
dielectric constant. Suppose that there is a weak ex-
ternal potential V(r) acting on the system with only one
slowly varying Fourier component, so that

V(r) = V(q)e' '.
The self-consistency equation (12) becomes in this case

Aps(a+H) =r. I:Qs(a+H')~pe(q+H')+ V(a) ~H sj
Hl

XX(q+H, q+H'). (62)

XeiH(r~r~~)(j k'k)4 dr yk"'(r —r,.)
~a ~a' (o,«')

Xp.yk" (r—r„.)~, ,„(5S)
where the integral in the dipole matrix element is over
the s'th subcell in the origin unit cell, the (I„, k'k) is
evaluated from the surface integral over the surface of
Vo" in the If:th subcell, and —I is the reciprocal lattice
vector needed to connect (k' —k) to q. (Note that h, k',
and g are all de6ned in the reduced-zone scheme. )

Vi(K) = V(q)bx, ,+Qs(K)Ape(K). (63)

Adler" and Wiser'~ have shown that the K=q com-
ponent of Vi(K) describes the macroscopic or "average"
total potential, and that we may de6ne a q-dependent

"S.Adler, Phys. Rev. 126, 413 (1962).
g N. Wiser, Phys. Rev. 129, 62 (1963).

Let V,(K) be the Fourier transform of the total
self-consistent potential in the crystal including the
electron response,
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macroscopic dielectric constant ~(q) such that

V (q) = V(q)/ (q).

We thus concentrate on the longitudinal microscopic
dielectric constant eH(q). An alternative definition of
str(q) is

On the other hand, a rigorous self-consistent solution of
of Eq. (62) may be shown"" to yield

P.(q) =Z.(q)(1/4 )L.-n(q) —1]/.-~(q). (70)

so that we have the relation

derived by Adler and by Wiser.
We may also write from Eqs. (63) and (65)

Comparing Eqs. (69) and (70), we see that air(q) is the
V,(q)=g ~ '(q, q+I')V(q+H')=~ '(qq)V(q), (65) same as e(q) defined in Eq. (64) only if Qv(q)=4m/q',

i.e., if we consider only Hartree screening in the RPA
and neglect exchange and correlation corrections to
v(q). This is the case considered by Adler and by Wiser.

(66) If we now solve Eq. {62) by making the dipolar ap-
proximation as in Eq. (28) we obtain, exactly as we
obtained the shell response to the lattice motion in
Sec. III,

—i 2 a-P-(q) =—V(q) e(q) —1

Qv(q) e(q)
(68)

V (q) —V(q) V(q)
t '(q q) —1j (67)

Qv(q) Qv(q)

If P(q) is the transform of the macroscopic polarization
wave associated with hpq(r), then by Eqs. (19) and (66)
we have

Q S.p""'w„.
v
= f"(q)X'", (q), (71)

where S stands for the shell-shell bonding coe%cient
LV+a '], and we have assumed the f"(q) are real.
Equation (71) is just the "condition of equilibrium" for
the shells in an external field, apart from the factor f"(q).

Using Eq. (23), which relates P(K) to the w, we obtain

This equation is satisfied if

~-(q) = —iLv-V(q)/v'Qv(q)jL~(q) —13/ (q)
= L~-(q)/v'Qv(q)3L~(q) —13/s(q),

where E(r) is the applied electric field associated with

V(r). (We are here working in units such that e=1.)
This solution assumes that P is parallel to E. Note that
we are considering here only longitudinal 6elds, i.e.,
E(q)~~q. The self-consistent 6eld equation (62) relates
the charge density response to the externally applied
longitudinal field, and by Eq. (18) we see that the only
relevant component of P is the longitudinal component

E„(q), since the transverse component automatically
satisfies the equation 7' E&(q)=0.30 Hence, as far as

Eq. (69) is concerned, P is arbitrary to the extent of
any P&(q). This arbitrariness does not matter, since in
the electrostatic approximation the lattice equations of
motion are determined only by hp(r) and hence only

by P„(q). Therefore, no particular significance is to
be attached to apparent components of P(q) perpen-
dicular to q which come out of the SM formalism, since
the model has only been fitted to the lattice-dynamical
data. Alternatively, we may say that the lattice equa-
tions of motion are determined purely by the longi-
tudinal component of the general dielectric tensor. "
The transverse components have to be determined in
terms of the electron response to an external electro-
magnetic transverse field as discussed by Pines" and
Adler. " (At q=0, these two components are of course
equal. ) Thus, it would seem diflicult to ascribe any
physical significance to the i,(q) derived by Cochran
and Phillips" for germanium on the basis of the lattice-
dynamical data alone.

Now let us assume f"(q) is independent of subcell x,
as in a crystal where each subcell contained the same
kind of atom. Then we have

~.(q) = f'(q) 2 (L~-'].s""')&&(q) . (73)

Since f(q) = 1 for q= 0, this equation leads to the same
value of the electronic contribution to the dielectric
constant as calculated from the original SM."For non-
zero values of q, Cochran and Phillips have defined a
q-dependent logitudinal dielectric function obtained
from the original point-dipole form of the SM from the
relations

KK

by picking out the longitudinal part,

(74)

Let us define their dielectric function as e,„{q).Then
from Eq. (70), by comparing Eqs. (73) and (74), we have

s~(q) —1 ~..(q) —1
f'(q)

~~(q) ".(q)
(75)

Equation (75) gives the rigorous relation between the
macroscopic longitudinal Hartree dielectric function
eH(q) Ldefined by Eq. {70)] as calculated from our
generalized SM, and the dielectric function e,„(q)
calculated in the point-dipole approximation. It may
be seen that they are equal for q=o.

38R. A. Cowley, Proc. Roy. Soc. (London) A268, 12j. (1962).



Finally, let us relate exactly the dielectric function
«,„(q) which Cochran and Phillips obtained to the
general dielectric matrix «(q+H, q+H') entering into
Eq. (65) and obtained from a band-structure calculation.

From Eqs. (66), (69), (70), and (75), we obtain

where the integral is over the origin unit cell only. Let
us write

Ep—Eg.+5'(q+ H)'/2m
in the form

—1=
«.,(q)

4s f'(q)
{-'(q, q) —1)

g'Qn(q)
(76)

Exchange and correlation corrections to w(q) render
it approximately of the form'

~k ~k'

fi'(q+H)'
Ei Ei'+

2m

«y~*(r)p.e-'~'+H&'@'(r)

«e~'(r)p. e'(r)

4x 1 g'
r(q) = 1—

Qg' 2 q'+ P)
From Eqs. (84) and (85), si ce f(q) 1 as q 0, we

see that «„(q) —+ 1/« '(q, q). We note that Cochran
and Phillips identihed their dielectric function with

1/« '(q, q) for all q. They also compared «, i,(q) with

«(q, q), the diagonal element of the dielectric matrix as
CRlculatcd for gcrmanluI11 oIl R slnlplc band model by
Penn" and found agreement at q=—0, but about 30%%uq

disagreement at the zone boundary. Penn actually
fitted the parameters in his model so that «(q, q) agreed
with the experimentally observed static dielectric
constant « '(q, q) at q=0. The disagreement for q/0
may therefore be attributed to (a) off-diagonal elements
of «(q+H, q+H'), so that «

—'(q, q)W1/«(q, q); (b) the
factors f'(q) and q'Qv(q) in Eq. (76); (c) neglect of the
exchange and correlation effects in Penn's dielectric
constant; and (d) breakdown of the dipolar assumption
for nonzero q.
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APPENDIX

In this Appendix wc discuss thc justl6cation of the
basic approximation made in Eq. (28) to derive the
SM equations. Let us write the wave functions ip& in

the 1th unit cell in the general form

«4.'(r)PA ~ (r)

X (A3)

Ei,—Eg + (A'/2m) (q+ H)'

d ~.*()p"-"'"V'()

«A*(r)p.l~ (r)

=f(q+8), (A4)

and combining Eqs. (25), (A3), and (A4),

Q.I«-"" "IA )= —&—f(q+H)Z(q+H).

«0.*(r)P-O'(r)

The central approximation of the SM is to take the
factor in large parenthesis in Eq. (A3) as independent of

the sts, tes k and k' but depending only on (q+H).
Let us call it f(q+H) since, as we shall see, it will be
consistent to take the f(q+H) introduced in Eq. (23)
as the same function, thus defining a form factor for the
shells.

Thus we have in this approximtion,

A(r) = (fl) "'«'" "A(r—«) (A1)

where

gati(r)

is a function defined only in the unit cell
but is the same for RO unit cells for a given state k.
For the case of nonoverlapping tight-binding wave
functions, «4(r) is simply the atomic orbital Pi,(r)
associated with the state k, but in the general case Qi, (r)
= e'~'N~(r), where Ni(r) is the periodic or Bloch part of
the wave function iraq(r). Then we have

O'I pi& '"" "IA)

(Ea—Ea )
Rnd

8 ~ I
&'"+""I&')=&—f"(q+H) Z(q+H).

«4.*(r)P.A (r)

X—
(&a—@a )

(AS)

(A6)

~.*()P--' ""'~'(), (A2)

"D.R. Penn, Phys. Rev. 128, 2093 (1962).

Note that f(0)=1. f(K) is not, however, simply the
Fourier transform of the charge density in the shell

(i.e., the valence charge density) as assumed by Cochran
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and Phillips. "Let us now discuss the validity of the
approximation in Eq. (A4). The assumption of a form-
factor independent of the states k and k' is, strictly
speaking, inconsistent with the generalized f sum rule. '2

Substitution of Eq. (A5), which is a consequence of
Eq. (A4), in the f sum rule shows that f(K) must be
independent of K. However, we note that the relevant
transitions in the matrix elements that enter into the
lattice-dynamical problem are only those from occupied
to unoccupied states, and that hopefully only a few
transitions are important. In this restricted sense, Eq.
(A4) may not be a bad approximation. Consider, for
example, the case where only two bands are of impor-
tance —an occupied valence band and an unoccupied
conduction band. Let us also assume that the tight-
binding limit is satis6ed in the sense that EI, is inde-
pendent of the Bloch wave vector k and depends only
on the band index, and that p» is also independent of
k and is simply the atomic orbital associated with the
band in question. In this case

f(q+H) =
B,+(fi'/2m) (il+ H)'

insulators. For metals, the assumption obviously breaks
down. Needless to say, the validity of the central as-
sumption in Eq. (A4) can only be checked from an
actual calculation of the oscillator strengths in question.
Note that the point-dipole assumption requires that
f(K)=1 for all X Lsee Eq. (22)]. This assumption is
valid only in the case where (a) for all relevant values
of (q+ H), (h'/2m) (il+ H) ' is much less than the typical
band gap to the unoccupied states, and (b) the functions

P»(r) are extremely localized. These are more restrictive
assumptions than are necessary for deducing the SM
equations. %e should point out that the approximation
in Eq. (A4) obviously gets better as (q+H) becomes
smaller. Hence it is important to choose a formulation
which is rapidly convergent in terms of its reciprocal
lattice sums. This has been achieved partly by the use
of our residual-potential formalism. In particular we
should choose V» such that both W'(il+H) and 3E»»
Xg» ~s '«+H&'~P» ) are rapidly damped for increasing

(q+8) Lsee Eq. (12)$. This may not necessarily be the
whole unit cell (or subcell in the case of lattices with
basis).

Now substituting Eqs. (A5) and (A6) into Eq. (13),
and dining a g-dependent polarizability tensor

dr y„*(r)P.s '«+»'y-, (r)

(A7)

where E, is the energy gap, and subscripts e and c refer
to the valence and conduction bands, respectively.
Since there is now only one effective interband tran-
sition, Eq. (A7) shows that Eq. (A4) becomes rigorously
true in this case. In general, we might still hopefully
neglect the k and k' dependence of the left-hand side
of Eq. (A4) by defining f(q+ H) as some kind of average
over the important allowed transitions in the case of

we get

«0 *(r)psst (r)

(A8)

Xo'.p(q) f*(q+H')(q+H')s. (A9)

x(q+H, q+H') = —p (q+H).f(il+H)
aP


